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Abstract

A convergent route to the synthesis of manassantins A and B, potent inhibitors of HIF-1, is described.
Central to the synthesis is a stereoselective addition of an organozinc reagent to a 2-benzenesulfonyl
cyclic ether to achieve the 2,3-cis-3,4-trans-4,5-cis-tetrahydrofuran of the natural products.
Preliminary structure—activity relationships suggested that the (R)-configuration at C-7 and C-7″′
is not critical for HIF-1 inhibition. In addition, the hydroxyl group at C-7 and C-7″′ can be replaced
with carbonyl group without loss of activity.
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Tumor cells function under a condition of low physiological oxygen levels known as hypoxia.
To cope with this environment, tumor cells have developed a number of essential mechanisms
to promote angiogenesis and cell survival.1 Among these coping mechanisms is a response
mediated by hypoxia-inducible factor 1 (HIF-1).2 More than 60 target genes that HIF-1
regulates have been identified, and the products of these genes act at various steps in tumor
progression.3 In addition, tumor cells characterized by over-expression of HIF-1 have been
shown to be more resistant to traditional cancer treatments such as radiation and chemotherapy.
4 Due to the importance of HIF-1 in tumor development and progression, a considerable
amount of effort has been made to identify HIF-1 inhibitors for treatment of cancer. Several
small molecules have been reported to inhibit the HIF-1 signaling pathway,5 however, these
compounds often exhibit biological activities other than HIF-1 inhibition. In addition, most of
them lack the desired selectivity for the HIF-1 signaling pathway or toxicity profiles required
for a useful therapeutic agent.

Interestingly, the dineolignans manassantins A (1) and B (2) (Figure 1), isolated from the
aquatic plant Saururus cernuus L., have been shown to be potent inhibitors of HIF-1.6
However, their molecular mechanisms of action have yet to be established. Hanessian and co-
workers recently reported the first total synthesis of 1 and 2 as well as confirmed the absolute
configuration of the natural products.7 In broad connection with our interest in the
stereoselective synthesis of tetrasubstituted tetrahydrofurans,8 we undertook the synthesis of
1 and 2 to develop a synthetic route to the natural products that would be easily amenable to
the development of analogues for biological studies. Herein, we report a synthesis of 1 and 2
through nucleophilic addition of an organozinc reagent to a 2-benzenesulfonyl cyclic ether to
achieve the 2,3-cis-3,4-trans-4,5-cis-tetrahydrofuran moiety of the natural products and
preliminary structure—activity relationships.

Figure 1 describes our approach to the synthesis of manassantins A (1) and B (2). Previously,
we reported a stereoselective synthesis of 2,3-cis-3,4-trans-4,5-trans-and 2,3-trans-3,4-
trans-4,5-trans-tetrahydrofurans via BF3·OEt2-promoted reductive deoxygenation of cyclic
hemiketals.8 The stereochemical outcome was rationalized based on Woerpel’s “inside attack”
model.9 Based on the same rationale, we envisioned that the organozinc reagent 4 would be
added to the sterically more favorable conformation (B) of the 2-benzenesulfonyl cyclic ether
5 from the inside face of the envelope conformer to stereoselectively provide the 2,3-cis-3,4-
trans-4,5-cis tetrahydrofuran (3a). This core tetrahydrofuran unit 3a could be coupled to the
appropriate side arms via SN2 reactions to complete the synthesis of 1 and 2.

As shown in Scheme 1, reduction of 68 with DIBALH followed by treatment with PhSO2H
and camphorsulfonic acid provided the 2-benzenesulfonyl cyclic ether 5.10 Unfortunately, the
key nucleophilic substitution reaction of 5 with (4-benzyloxy-3-methoxyphenyl)zinc(II)
bromide 4, derived in situ from (4-benzyloxy-3-methoxyphenyl)magnesium bromide and
ZnBr2

,10 provided a 2:1 diastereomeric mixture of 2,5-diaryl-3,4-dimethyl tetrahydrofurans.
Careful analysis of 1H NMR spectral data revealed that the major diastereomer had the desired
2,3-cis3,4-trans-4,5-cis-configuration (3a) and the minor diastereomer had the 2,3-cis-3,4-
trans-4,5-trans-configuration (3b). We reasoned that the poor diastereoselectivity of the
reaction would stem from two competing factors. According to Woerpel’s “inside attack”
model, 4 would be delivered to 5 from the inside face of the envelope conformer (7B) to provide
the desired tetrahydrofuran (3a). However, the addition of 4 to the oxocarbenium intermediate
via 7B also causes an unfavorable repulsive interaction with the C-4 methyl group leading to
poor diastereoselectivity. We hypothesized that minimization of the steric repulsion between
the incoming nucleophile and the C-4 methyl group would improve the disastereoselectivity.
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To prove this hypothesis, we tested two model systems where the repulsive interaction was
reduced by addition of a smaller nucleophile or removal of the C-4 methyl group (Scheme 2).
As expected, addition of a sterically less demanding PhZnBr to 5 gave a 3.5:1 diastereomeric
mixture of 10a and 10b. In addition, when 4 was added to the cyclic ether 9, the reaction
proceeded with excellent distereoselectivity (dr = 20:1). Based on the observations, we
envisioned that the installation of a sterically less demanding exo-methylene group as a
precursor to the C-4 methyl group and stereoselective reduction of the double bond would
provide 3a in good stereoselectivity.

As shown in Scheme 3, alkylation of 8 with Eschenmoser’s salt and m-CPBA oxidation
smoothly proceeded to afford 12 (80% for 2 steps).11 Reduction of 12 with DIBALH followed
by treatment with PhSO2H provided 13 in 64% yield. As expected, the exo-methylene group
in 13 directed the addition of 4 via “inside attack” model to provide the desired 2,3-cis-2,5-
trans-tetrahydrofuran 14 as a major diastereomer (dr = 10:1, 41%). However, catalytic
hydrogenation under conventional conditions (e.g. Pd/C, PtO2) or diimide reduction of 14 only
gave the desired 2,3-cis-3,4-trans-4,5-cis-tetrahydrofuran as a minor diastereomer (dr = 1:1–
1:4). After extensive search of reaction conditions, we were delighted to find that asymmetric
hydrogenation of 14 in the presence of Ir and (4S,5S)-ThrePHOX12 provided 3a in 99% yield
(dr = 4:1).13

With the desired tetrahydrofuran 3a in hand, we turned our attention to the installation of the
side arms (Scheme 4). We anticipated that coupling of 16 and 17 by Mitsunobu coupling or
oxidation—reduction condensation via alkoxydiphenylphosphines14 would proceed to afford
18. However, our efforts for coupling reactions were unsuccessful in all attempts and led us to
adopt the procedures reported by Ley15 and Hanessian.7 A BEMP-mediated SN2 reaction of
16 and 1716 followed by stereocontrolled-reduction using polymer-supported BH4 completed
the synthesis of manassnatins A (1). In order to accomplish the synthesis of 2, 16 was subjected
to the BEMP-mediated SN2 reaction with 1 equivalent of 17 to form the mono-alkylation
product 19 (29%) in addition to 18 (21%). Compound 19 was then subjected to a second BEMP-
mediated SN2 reaction with 2016 to give 21 (77%). Reduction of 21 with polymer-supported
BH4 then afforded manassantin B (2).

ODD-Luc assay17 to assess HIF-1 inhibitory activity of 1, 18, and anti-diol diastereomer 22
((7S,7″′S)-epimer) revealed that 1, 18, and 22 exhibited similar levels of HIF-1 inhibitory
activity (IC50 = 1–10 nM). The data suggested that the (R)-configuration at C-7 and C-7″′ is
not critical for HIF-1 inhibition. In addition, the hydroxyl group at C-7 and C-7″′can be replaced
with carbonyl group without significant loss of activity.

In summary, we applied a direct nucleophilic addition of the organozinc reagent 4 to the 2-
benzenesulfonyl cyclic ether 5 followed by an asymmetric hydrogenation to synthesize the
2,3-cis-3,4-trans-4,5-cis-tetrahydrofuran moiety of 1 and 2, potent inhibitors of HIF-1. The
stereoselectivity of the nucleophilic addition reaction was improved by introduction of the
sterically less demanding exo-methylene group as a surrogate for the C-9′ methyl group in 1
and 2. The synthetic strategy would allow access to more potent and selective analogues of 1
and 2 for biological studies to identify their molecular mechanism of action.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Retrosynthetic plan for manassantins A (1) and B (2).
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Scheme 1.
Nucleophilic addition of (4-benzyloxy-3-methoxyphenyl)zinc(II) bromide to 2-
benzenesulfonyl cyclic ether
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Scheme 2.
Model studies for nucleophilic addition reaction
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Scheme 3.
Stereoselective synthesis of 2,3-cis-3,4-trans-4,5-cis-tetrahydrofuran

Kim et al. Page 8

Org Lett. Author manuscript; available in PMC 2010 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Scheme 4.
Completion of synthesis of manassantins A (1) and B (2)
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Figure 2.
Inhibition of HIF-1 by 1, 18, and 22.
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