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The glass transition, whereby liquids transform into amorphous
solids at low temperatures, is a subject of intense research despite
decades of investigation. Explaining the enormous increase in
relaxation times of a liquid upon supercooling is essential for
understanding the glass transition. Although many theories, such
as the Adam–Gibbs theory, have sought to relate growing relax-
ation times to length scales associated with spatial correlations in
liquid structure or motion of molecules, the role of length scales in
glassy dynamics is not well established. Recent studies of spatially
correlated rearrangements of molecules leading to structural re-
laxation, termed ‘‘spatially heterogeneous dynamics,’’ provide
fresh impetus in this direction. A powerful approach to extract
length scales in critical phenomena is finite-size scaling, wherein a
system is studied for sizes traversing the length scales of interest.
We perform finite-size scaling for a realistic glass-former, using
computer simulations, to evaluate the length scale associated with
spatially heterogeneous dynamics, which grows as temperature
decreases. However, relaxation times that also grow with decreas-
ing temperature do not exhibit standard finite-size scaling with
this length. We show that relaxation times are instead determined,
for all studied system sizes and temperatures, by configurational
entropy, in accordance with the Adam–Gibbs relation, but in
disagreement with theoretical expectations based on spin-glass
models that configurational entropy is not relevant at tempera-
tures substantially above the critical temperature of mode-cou-
pling theory. Our results provide new insights into the dynamics of
glass-forming liquids and pose serious challenges to existing the-
oretical descriptions.

correlation length � dynamic heterogeneity � finite-size scaling �
glass transition � relaxation time

Most approaches to understanding the glass transition and
slow dynamics in glass formers (1–10) are based on the

intuitive picture that the movement of their constituent particles
(atoms, molecules, polymers) requires progressively more coop-
erative rearrangement of groups of particles as temperature
decreases (or density increases). Structural relaxation becomes
slow because the concerted motion of many particles is infre-
quent. Intuitively, the size of such ‘‘cooperatively rearranging
regions’’ (CRR) is expected to increase with decreasing tem-
perature. Thus, the above picture naturally involves the notion
of a growing length scale, albeit implicitly in most descriptions.
The notion of such a length scale, related to the configurational
entropy Sc (see Methods), forms the basis of rationalizing (1, 6,
7) the celebrated Adam–Gibbs (AG) relation (1) between the
relaxation time and Sc.

More recently, a number of theoretical approaches have
explored the relevance of a growing length scale to dynamical
slow down (5, 7, 9). A specific motivation for some of these
approaches arises from the study of heterogeneous dynamics in
glass formers (11–14). In particular, computer simulation studies
(12–14) have focused attention on spatially correlated groups of
particles that exhibit enhanced mobility, and whose spatial extent
grows upon decreasing temperature. The spatial correlations of
local relaxation permits identification of a dynamical (time

dependent) length scale, �, through analysis of a 4-point corre-
lation function first introduced by Dasgupta, et al. (15) (see
Methods), and the associated dynamical susceptibility �4 (16, 17).
These quantities have been studied recently via inhomogeneous
mode-coupling theory (IMCT) (5) and estimated from simula-
tion and experimental data (5, 10, 18–21).

The method of finite-size scaling, used extensively in numer-
ical studies of critical phenomena (22), is uniquely suited for
investigations of the presence of a dominant length scale. This
method involves a study of the dependence of the properties of
a finite system on its size. We study a binary mixture of particles
interacting via the Lennard–Jones potential (23), originally
proposed as a model for Ni80P20, and widely studied as a model
glass former. We perform constant temperature molecular
dynamics simulations at a constant volume [see Methods and (24)
for details], for 7 temperatures, and up to a dozen different
system sizes for each temperature. For each case, we calculate
the dynamic susceptibility �4(t) as the second moment of the
distribution of a correlation function Q(t), which measures the
overlap of the configuration of particles at a given time with
the configuration after a time t (see Methods).

Results
From previous work, it is now well-established that �4(t) has
nonmonotonic time dependence, and peaks at a time �4 that is
proportional to the structural relaxation time �. Such behavior is
shown in Fig. 1A Inset. In Fig. 1A, we show the peak values
�4

p��4(�4) vs. system size (number of particles) N for a range of
temperatures. At each temperature, �4

p is an increasing function
of N, saturating at large N. The saturation occurs at a larger value
of N at lower temperatures. This is the expected finite-size
scaling behavior of a quantity whose growth with decreasing
temperature is governed by a dominant correlation length that
increases with decreasing temperature.

We have estimated the correlation length � from finite-size
scaling of �4

p(T,N), which also involves estimating the value of �4
p

as N3 �. Because the latter estimation is a potential source of
error in estimating �, we employ the Binder cumulant of the
distribution of Q(�4) to estimate �. The Binder cumulant (25),
defined (see Methods) in terms of the 4th and second moments
of the distribution, vanishes for a Gaussian distribution, whereas
it acquires negative values for bimodal distributions. The Binder
cumulant has been used extensively in finite-size scaling analysis
in the context of critical phenomena, owing to its very useful
property that in systems with a dominant correlation length �, it
is a scaling function only of L/� (or equivalently, of N/�3), where
L is the linear dimension of the system. The distributions
themselves are shown in Fig. 1B Inset, for 2 different system sizes
for temperature T � 0.47. We see that the distribution is
unimodal for the large system size of N � 1600 whereas it is
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strongly bimodal for the small system size of N � 150. The same
trend is observed as temperature is decreased for a fixed size of
the system. The data collapse of the Binder cumulant, from
which we extract the correlation length �(T), is shown in Fig.
1(b). The collapse observed is excellent, confirming that the
growth of �4

p with decreasing T is governed by a growing
dynamical correlation length. The values of � obtained from this
scaling analysis are consistent with less accurate estimates ob-
tained from a similar analysis of the N dependence of �4

p(T,N),
and from the wave-vector dependence of the 4-point dynamic
structure factor S4(q,�4) (see, e.g., ref. 5). Because the data
collapse of the Binder cumulant is not affected by a uniform

rescaling of L/� for all temperatures, we can determine �(T) only
up to an unknown multiplicative constant that is common to all
of the temperatures. The unknown multiplicative constant has
been fixed so that the � value from finite-size scaling matches the
value obtained from analysis of S4(q,�4) at one temperature.
Estimated values of �4

p as N3 � compare very well with the q3
0 limit of S4(q,�4), up to a proportionality constant (described
elsewhere).

The value of � increases from 2.1 to 6.2 as T decreases from
T � 0.70 to T � 0.45. We find that both � and the asymptotic,
N3� value of �4

p deviate from power law behavior as the critical
temperature TMCT of mode-coupling theory (TMCT � 0.435 in
our system) is approached (consistently with previous observa-
tions). However, the power-law relationship between �4

p and �
predicted in IMCT is satisfied by our data. Because the range of
the measured values of � is small, it is difficult to obtain accurate
estimates of the exponents of these power laws.

Next we consider the dependence of the relaxation time � on
T and N. For each case, we calculate the relaxation time from the
decay of �Q(t)�. The results for � are displayed in Fig. 2, which
shows that � increases as the temperature decreases, as expected.
However, the observed increase in � with decreasing N for small
values of N at fixed T is not consistent with standard dynamical
scaling for a system with a dominant correlation length (e.g., near
a critical point): dynamical finite-size scaling would predict a
decrease in � as the linear dimension L of the system is decreased
below the correlation length �*. Similar finite-size effects on
relaxation times have been observed in previous simulations of
realistic glass formers (e.g., ref. 26) but have not been analyzed
in detail. Due to computational limitations, our simulations
cover a (relatively) high-temperature regime, the lowest tem-
perature considered being slightly above the mode-coupling
temperature TMCT for this system. However, it is clear from Fig.
2 that the N dependence of � becomes stronger and persists to
larger values of N as the temperature is decreased. Therefore,
the deviations of the N dependence of � from standard dynamical
finite-size scaling are expected to be more pronounced at

*We have checked from simulations with a shorter cutoff for the interaction potential that
the observed N dependence of � is not due to the cutoff being larger than L/2.

0 200 400 600 800 1000
N

10

20

30
χP

4(T
,N

)

T = 0.450
T = 0.470
T = 0.480
T = 0.500
T = 0.520
T = 0.550
T = 0.600

10
0

10
2

10
4

t

0

30

χ 4(t
)

0 5 10 15 20 25 30 35 40 45

N/ξ3

-0.5

-0.4

-0.3

-0.2

-0.1

0

B
(N

,T
)

T = 0.450
T = 0.470
T = 0.500
T = 0.520
T = 0.550
T = 0.570
T = 0.600
T = 0.700
T = 0.800

-0.4 -0.2 0 0.2 0.4
Q(τ4) − 〈Q(τ4)〉

0

1

2

3

P[
Q

(τ
4) −

 〈Q
(τ

4)〉
] N = 150

N =1600

T = 0.470

A

B

Fig. 1. System size dependence of dynamic susceptibility �4
p, and finite-size

scaling of the Binder cumulant B(N,T). (A Inset) �4(t), shown here for N � 1,000
and selected temperatures, exhibits nonmonotonic time dependence, and the
time �4 at which it has the maximum value has been observed to be propor-
tional to the structural relaxation time �. (A) Peak height of the 4-point
dynamic susceptibility, �4

p(T,N) � �4(t � �4, T, N), has been shown as a function
of system size N for different temperatures. For each temperature, �4

p(T,N)
increases with system size, and saturates for large system sizes. �4

p(T,N) also
increases as the temperature is lowered. (B Inset) The distribution
P[Q(�4)��Q(�4)�] of Q(�4)��Q(�4)� is shown for 2 system sizes for T � 0.470.
Although the distribution for the large size is nearly Gaussian, the small system
exhibits a strongly bimodal distribution. Such bimodality is also observed to
emerge as the temperature is decreased at fixed system size. (B) Binder
cumulant B(N,T) (see Methods) has been plotted as function of N/�3 for
different temperatures in the range T � [0.45, 0.80]. The correlation length �

is an unknown, temperature dependent, scaling parameter determined by
requiring data collapse for values at different T. By construction B(N,T) will
approach zero for large system sizes at high temperatures. It changes to
negative values as the temperature or the system size is decreased such that
P[Q(�4)��Q(�4)�] becomes bimodal. The correlation length �(T) is the only
unknown to be determined to obtain data collapse for B(N,T) and the quality
of the data collapse confirms the reliability of this procedure.
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Fig. 2. Relaxation times as a function of temperature and system size.
Relaxation time �(T,N) for the largest system size increases approximately by
3 decades from the highest to the lowest temperature shown. For each
temperature, �(T,N) increases as N is decreased for small values of N, displaying
a trend that is opposite to that observed near second order critical points. For
the smallest temperature, �(T,N) increases by approximately a decade from the
largest to the smallest system size.
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temperatures near the actual glass transition. The N dependence
of � shown in Fig. 2 is opposite to that found in finite-size scaling
studies of some spin-glass models (27) but similar to that found
in other studies (ref. 28 and Biroli G, personal communication).

Fig. 3 Inset shows the large-N value of � plotted as a function
of (bottom curve) the correlation length � on a double-log scale,

and (top curve)
�

kBT
on a semilog scale. The power-law relation

between these 2 quantities predicted in IMCT (5) is found above
T � 0.5; deviation from a power law is found at lower temper-
atures. The semilog plot indicates that an exponential form � �
exp(k(�/kBT)�), with � � 0.7, describes the data well in the entire
range. Although such a dependence is expected according to the
random first order theory (RFOT) (7), the exponent value we
observe cannot be easily rationalized within that framework. We
comment further on the significance of the exponent value later.
Fig. 3 shows relaxation times �(T,N) for different N values scaled
to the asymptotic N 3 � value �(T), plotted against values of
�4

p(T,N) scaled to the asymptotic N3� value �4
p(T). If the system

size dependence of � and �4
p are governed by the same length

scale, one must expect a universal dependence of the scaled
relaxation times on the scaled �4

p values. From the data shown in
Fig. 3, it is clear that there is no universal relation between the
scaled � and �4

p that describes their variation both with T and with
N. These results indicate that the observed N dependence of � is
not consistent with standard finite-size scaling with the length
scale of dynamic heterogeneity.

Motivated by the AG relation (1), �� exp� A
TSc

� , where A is

a constant, we next consider the dependence of � on the
configurational entropy Sc whose evaluation is described else-

where (24). As shown in Fig. 4 where log(�) is plotted vs.
1

TSc
for

all temperatures and system sizes studied, we find a remarkable
agreement with the AG relation, not only vs. T but also for all
system sizes. To our knowledge, such a demonstration of the
validity of the AG relation for finite or confined systems has not
been made earlier. Thus, the N dependence of �, which cannot
be understood from dynamical finite-size scaling, can be ex-
plained in terms of the N dependence of Sc, suggesting that the
growth of � with decreasing temperature is more intimately
related to the change of Sc, than to the increase of the correlation
length � and susceptibility �4 predicted in IMCT. Because Sc at
a given temperature varies with system size N, it is tempting to
inquire whether the N dependence of Sc is associated with a
length scale. We extract such a length scale from data collapse
of Sc(T,N), scaled to its value as N3 �, shown in the Fig. 4 Upper
Inset. We obtain reasonable data collapse, but the extracted
length scales turn out to have substantially weaker T dependence
compared with �, as shown in the Fig. 4 Lower Inset.

Discussion
A central role for the configurational entropy, along with an
analysis of a length scale relevant to structural relaxation, are the
content of the random first order theory, developed by Wolynes
and coworkers (7). According to RFOT, the length scale of
dynamical heterogeneity is the ‘‘mosaic length’’ �m that repre-
sents the critical size for entropy driven nucleation of a new
structure in a liquid. Mean-field arguments based on known
properties of infinite-range models suggest that the RFOT
mechanism is operative for temperatures lower than TMCT. In
this regime, the dynamics of the system is activated, with the
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Fig. 3. Relationship between the relaxation time �(T,N), correlation length
�(T) and the dynamic susceptibility �4

p(T,N). (Inset) �(T,N3 �) is shown against
�(T), in a log-log plot (bottom curve). This plot shows that a power-law
dependence holds over a temperature range above T � 0.5, but breaks down
at lower temperatures. �(T,N3 �) is shown against �(T)/kB T, in a semilog plot
(top curve). This plot shows that an exponential dependence �� exp(k(�/kBT)�),
with � � 0.7, describes the data well in the entire temperature range. How-
ever, the observed exponent value � � 0.7 is difficult to explain with existing
theories. The surrounding semilog plot shows relaxation times �(T,N)/�(T,N3
�) against �4

p(T,N)/�4
p(T,N3�). Although at fixed N both � and �4

p increase upon
decreasing T, at fixed T, they show opposite trends, with � increasing for
decreasing N and �4

p increasing for increasing N. If � and �4
p are determined by

the same length scale � and further, if their finite-size behavior is governed by
N/�3, the plotted data are expected to lie on a universal curve, which is seen not
to be the case.

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
1/TS

c
(N,T)

10
1

10
2

10
3

10
4

10
5

τ(
N

,T
)

T = 0.450
T = 0.470
T = 0.500
T = 0.520
T = 0.550
T = 0.600
T = 0.700

10 20 30 40 50

N/ξs
3

0.8

0.9

1.0

S c(T
,N

)/
S c(T

,N
→

∞
)

T = 0.450
T = 0.470
T = 0.500
T = 0.550
T = 0.600
T = 0.700

0.5 0.6 0.7
T

2.0

4.0

6.0

ξ 
, ξ

s

S
c
(N,T)

B(N,T)

Fig. 4. The dependence of relaxation times � on the configurational entropy
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sizes studied. The impressive data collapse of all of the data onto a master
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we treat the data presented as validating the AG relation. (Upper Inset) The
configurational entropy Sc(T,N) scaled to its N3 � value, has been plotted as
function of N/�s

3 for different temperatures in the range T � [0.45, 0.80], to
extract a temperature dependent length scale �s that leads to data collapse.
(Lower Inset) The length scale obtained from the data collapse of the config-
urational entropy (green diamonds) compared with the length scale obtained
from finite-size scaling of the Binder cumulant (red triangles). It is apparent
that the length scale from configurational entropy shows very weak temper-
ature dependence, in contrast with the dynamical heterogeneity length scale.
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relaxation time expected to vary as � � �0 exp�B�	F
kBT�

��, where

	F is the free energy barrier to structural rearrangements, and � is
an unknown exponent. The free energy barrier in turn depends on

the mosaic length as
	F
kBT

� �m
� , where � describes the dependence

of the surface energy on the size of a region undergoing structural
change. Further, the configurational entropy is related to the

mosaic length as �m � 1/
TSc�
1

d��, and thus, � � exp�A/
TSc�
��

d��. If
we interpret the length scale � as the mosaic length �m (29),† then

the observed validity of the AG relation (which requires
��

d � �
� 1),

and the dependence of the relaxation time on the length scale �, � �
exp(k(�/kBT)�), with � � �� � 0.7, can be rationalized within RFOT
if the exponent � is assumed to be close to 2.3, and the exponent
� is close to 0.3. However, this interpretation has the drawback
that the exponent � does not satisfy the physical bound, � 	 2,
in 3 dimensions, and there is no evident explanation for the value
of �. We note that similar conclusions were reached in a recent
analysis (21) of experimental data near the laboratory glass
transition, on a large class of glass-forming materials. Thus, we
find puzzling values for the exponents relevant to the applica-
bility of RFOT, which are in need of explanation, and data in
(21) indicate that such a result may apply for a wide range of
temperatures, all of the way to the experimental glass transition.

RFOT focuses on behavior near the glass transition, and in the
limiting case of the spin glass models where theoretical perdi-
tions are available, configurational entropy plays no role in the
behavior of the system above the mode-coupling temperature.
However, there have indeed been attempts to extend the RFOT
analysis to temperatures above the mode-coupling temperature
(30–32) and to estimate a mosaic length scale at such temper-
atures, and we thus compare our results with predictions arising
from these analyses. Stevenson, et al. (30) have considered the
change in morphology of rearranging regions above the mode-
coupling temperature, and correspondingly the dependence of
relaxation times on configurational entropy. The predicted de-
pendence of relaxation times on configurational entropy differs
from the Adam–Gibbs form, whereas our results strikingly
confirm the Adam–Gibbs form. Franz and Montanari (31) have
estimated a mosaic length scale in addition to a heterogeneity
length scale, and have discussed the cross-over in the dominant
length scale near the mode-coupling temperature. However, this
analysis does not contain explicit predictions regarding the
relevance of the configurational entropy at temperatures higher
than the mode-coupling temperature.

Our observation that the configurational entropy predicts the
relaxation times in accordance with the AG relation for all of the
temperatures and system sizes we study poses serious challenges
to current theoretical descriptions based on the analogy with the
behavior of mean-field models. Although the relevance of the
configurational entropy at high temperatures has been observed
in earlier simulation studies and analyses based on the inherent
structure approach (24, 33, 34), we emphasize that a theoretical
analysis that satisfactorily explains such dependence is not at
hand at present, and our results concerning the robustness of the
Adam–Gibbs relation in finite systems highlights further the
challenge to existing theoretical descriptions. Indeed, earlier
work (28, 35) has highlighted the puzzle that aspects of the
energy landscape and mode-coupling theory descriptions appear
to apply over a significant temperature range side by side, rather
than in neatly separated temperature regimes as expected from

mean field theoretical descriptions. Our results emphasize the
importance of understanding such overlap of temperature re-
gimes and relaxation mechanisms, which has recently been
addressed in (32). Equally importantly, our results indicate that
the length scale that describes the growth of dynamical hetero-
geneity in IMCT may not play the central role attributed to it in
recent analyses, and highlights the necessity to understand the
role of other relevant length scales, along the lines of the analysis
in ref. 31.

Methods
Simulation Details. The system we study is a 80:20 (A:B) binary mixture of
particles interacting via the Lennard–Jones potential:

V
�
r� � 4�
� ��
�

r �12

� �
�

r �6�, [1]

where 
,� � {A,B} and �AB/�AA � 1.5, �BB/�AA � 0.5, AB/AA � 0.80, BB/AA �

0.88, masses mA � mB. The interaction potential is cutoff at 2.50
�. Length,
energy and time are reported in units of AA, �AA and �AA

2 /�AA, and other
reduced units are derived from these. All simulations are done for number
density � � 1.20. We have used a cubic simulation box with periodic boundary
conditions. Simulations are done in the canonical ensemble (NVT), using a
modified leap-frog integration scheme. We simulate for 7 temperatures in the
range T � {0.450, 1.00}. The mode-coupling temperature for this system has
been estimated (23) to be TMCT � 0.435. We equilibrate the system for �107 �

108 MD steps depending on system size and production runs are at least 5 times
longer than the equilibration runs. We use integration time steps dt from
0.001 to 0.006 for the temperature range 0.800 to 0.450. The studied system
sizes vary from N � 50 to N � 1,600.

Dynamics. Dynamics is studied via a 2 point correlation function, the over-
lap Q(t),

Q
t� � 	d r��
r�, t0��
r�, t � t0� � 

i�1

N

w
�r�i
t0� � r�i
t0 � t��� [2]

where �(r�,t0) etc are space-time dependent particle densities, w(r) � 1, if r 	

a and zero otherwise, and averaging over the initial time t0 is implied. The use
of the window function [a � 0.30] treats particle positions separated due to
small amplitude vibrational motion as the same. The second part of the
definition is an approximation that uses only the self-term, which we have
verified to be reliable (see ref. 17 for details). The structural relaxation time �

is measured by a stretched exponential fit of the long-time decay of Q(t).
The fluctuations in Q(t) yields the dynamical susceptibility:

�4
t� �
1
N

��Q2
t�� � �Q
t��2. [3]

Ref. 17 shows that �4(t) reaches a maximum for times �4 which are proportional
to the structural relaxation time �. We report the values of �4

p � �4(t � �4).
The Binder cumulant, which we use for finite-size scaling, is defined as

B
N, T� �
� �Q
�4� � � Q
�4� � 4 �

3 � �Q
�4� � � Q
�4� � 2 � 2 � 1. [4]

B(N,T) � 0 , if the distribution P(Q(�4)) is Gaussian, and is a scaling function of
�/L only (where L is the linear size of the system, and � is the correlation length),
without any prefactor.

Configurational Entropy. Sc, the configurational entropy per particle, is calcu-
lated as the measure of the number of distinct local energy minima, by subtract-
ing from the total entropy of the system the ‘‘vibrational’’ component:

Sc
T� � S total
T� � Svib
T� . [5]

Details of the calculation procedure are as given in ref. 24.
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