
Uncovering the rules for protein–protein interactions
from yeast genomic data
Jin Wanga,b,1, Chunhe Lia,c, Erkang Wanga,1, and Xidi Wangd,1

aState Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin
130022, China; bDepartment of Chemistry, Physics, and Applied Mathematics, State University of New York at Stony Brook, Stony Brook, NY 11790;
cGraduate School of the Chinese Academy of Sciences, Beijing 100039, China; and dCitibank, Paulista 1111, Sao Paulo, 01311-920, Brazil

Edited by Peter G. Wolynes, University of California at San Diego, La Jolla, CA, and approved January 7, 2009 (received for review July 3, 2008)

Identifying protein–protein interactions is crucial for understand-
ing cellular functions. Genomic data provides opportunities and
challenges in identifying these interactions. We uncover the rules
for predicting protein–protein interactions using a frequent pat-
tern tree (FPT) approach modified to generate a minimum set of
rules (mFPT), with rule attributes constructed from the interaction
features of the yeast genomic data. The mFPT prediction accuracy
is benchmarked against other commonly used methods such as
Bayesian networks and logistic regressions under various statisti-
cal measures. Our study indicates that mFPT outranks other meth-
ods in predicting the protein–protein interactions for the database
used. We predict a new protein–protein interaction complex whose
biological function is related to premRNA splicing and new pro-
tein–protein interactions within existing complexes based on the
rules generated. Our method is general and can be used to discover
the underlying rules for protein–protein interactions, genomic
interactions, structure-function relationships, and other fields of
research.

FPT � frequent pattern tree search � indentifications of protein functions �
predictions of protein–protein interactions

Protein–protein interactions are essential for the formation of
cellular networks. Identification of these interactions is crucial

for the understanding of underlying cell functions and regulatory
mechanisms. Some protein interactions can play important roles in
many cellular processes (1, 2). In recent years, with the development
of experimental technologies in genetics, genomes, expressions, and
applications of high-throughput approaches, data about protein–
protein interactions have been accumulated rapidly (3). The current
methods of finding protein–protein interactions can be divided into
several categories : biological methods such as Yeast Two Hybrid
(Y2H) (4, 5) and Tandem Affinity Purification (TAP) (6); compu-
tational methods such as Phylogentic Profile (7) and the correlated
domain signature method (8); and integrative methods (9). Issues
concerning the methods remain: Most are applied only to a limited
set of protein pairs and do not cover all of the possible interactions;
and the overlap between the predictions of different methods is
often small (9). One needs to integrate evidence from different
sources when evaluating protein–protein interactions. Some recent
efforts have been made (e.g., refs. 1 and 10) trying to combine
several attributes into one integrated predictor. These attributes can
be from either predictions of other methods or from different data
sources. Widely used methods feature integration, including Bayes-
ian approaches (1, 11), decision trees (2), support vector machines
(12), and neural networks (1, 13).

In our study, we employ an adapted frequent pattern tree (see
Table S1) method (14, 15) to generate a minimum set of rules
(FPT) and apply it to integrate protein–protein features from
multiple data sources. Different protein–protein interactions form
patterns in the spaces expanded by their features. Consequently, the
number of possible patterns grows combinatorially with the number
of features. For a given database, the advantage of FPT is that it
exhaustively searches for interactive patterns among all possible
components up to a specified minimum number of appearances

within the database–support level. The support controls the
amount of the statistical robustness required to make our statistical
predictions. In particular, when the support is set to be 1, FPT
guarantees all interaction patterns within the development data-
base to be found, including those rarely occurring ones often missed
by other statistical methods. Our objective is to predict the pairwise
protein–protein interactions given their features gathered from
different sources. FPT patterns can be considered as rules with
attributes constructed by the protein interaction features. We
build all possible rules to predict protein interactions in the form
of: if feature-1 and feature-2, etc., then interaction is expected.

False-positives can occur due to the data noise from unreliable
experiments. Although not within the scope of our current study,
FPT can also be applied to multibody interactions. One practical
issue of using FPT is that rules generated by FPT largely correlate
or overlap with each other. We adopted the FPT algorithm to
generate a minimum number of rules (mFPT) without losing
detection accuracy.

The mFPT method can extract significant rare patterns from
large amounts of data. mFPT provides a powerful method of data
mining for discovering underlying rules and making predictions. It
can be used for scientific and engineering explorations such as
bioinformatics, drug discovery, chemometrics, engineering design
and quality control, and environmental control; industrial applica-
tions such as fraud detection and risk in banking and insurance;
government administration such as the IRS, health care, and credit
bureaus; and business and management applications such as data-
base marketing, internet shopping, and customer relationship man-
agement (16).

Our study is prompted by an earlier integrated Bayesian ap-
proach to predict protein interactions (1). The protein features
considered include mRNA expression, biological function, essen-
tiality, and experimental data. Later on, the list of genomic features
is expanded to 16, and assembled based on both single-protein and
protein-pair features derived from a wide range of physical, genetic,
contextual, and evolutionary properties of yeast genes.

For prediction and validation of the protein complexes, a stan-
dard dataset is created upon which our comparative studies with
other statistical methods is based. MIPS (17) (Munich Information
Center for Protein Sequences) complexes catalog were used as the
positives (proteins within the same complex); a negative gold-
standard is harder to define, but essential for successful training, so
lists of proteins in separate subcellular compartments were col-
lected as negatives (proteins do not interact) (13). The mFPT
approach is used to train data and predict interactions based on
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their genomic features. Hence, our study, to be precise, is to predict
whether 2 proteins are in the same complex, not whether they
necessarily had direct physical contact. We validate the predicted
results against actual results for the holdout sample to evaluate the
prediction accuracy with several statistical measures and find that
mFPT outperforms other data mining methods in predicting the
protein–protein interactions. Rules for predicting protein–protein
interactions are built consequently as the results of frequent pat-
terns. Further, we predict and analyze a new protein–protein
interaction complex with the rules obtained.

Results and Discussions
Rules of Protein–protein Interactions. Genomic features for our
computation include Essentiality data, Functional similarity data
from MIPS and from Gene Ontology (GO) databases, mRNA
expression data (1), and 12 other features.

First, we consider only the 5 most important genomic features.
The input database for mFPT is organized in the same way as
for FPT:

In Table 1, each line represents a protein pair, and each column
represents one of the genomic features, denoting essentiality (rang-
ing from 1 to 4), mRNA coexpression (13) (ranging from 5 to 24,),
MIPS functional similarity (ranging from 25 to 30), GO functional
similarity (ranging from 31 to 36), and experimental interacting
datasets (ranging from 37 to 52); the last column represents whether
the protein pairs interact, with 95 for positive and 94 for negative.
We then divide data samples to 2 training (70%) and testing (30%)
files.

We execute the mFPT algorithm with following steps:

Y Run FPT once, produce a complete set of patterns.
Y Sort these rules according to their performances. (Here we use

the product of hit-rate and square root of number of hits by the
rule.)

Y Select the best rule. (We choose highest hit-rate above support
level.)

Y Remove the samples hit by this rule, go to step 1 and run FPT
again.

mFPT arithmetic prescribes that the lower the minimum support is,
the more accurate the rules are predicted. Here, we choose the
minimum support as 1, the minimum hit rate as 0.5, below which
considered to be insignificant rules.

After almost 50 loops, we obtain 53 rules.
Here, we choose top 10 rules to explain in Table 2:
In Table 2, the first column represents the hit-rate (ratio of

positives over positives plus negatives) of the corresponding
patterns, and the second column expresses the number of hits
(positive � negative). The rule 1 (first line) states that protein
pair possessing higher coexpression level, lower MIPS and GO
values, has a higher probability of interaction, consistent with
intuitions. Rules 2, 3, 4, 8, and 10 are similar to rule 1 but differ
in coexpression levels and experimental interaction indication.
Rules 5, 6, and 9 state that higher MIPS (differ in their MIPS
values with each other) and experimental interactions lead to
higher hit. Rule 7 states that higher Go values and experimental
indication leads to higher chance of the pair interaction.

Evaluations of Results with KS and ROC. We predict protein–protein
interactions in training and testing datasets using the 53 rules. We
evaluated the number of true/false positives predictions in the
testing set. We calculated the Kolmogorov and Sminov Statistics
(KS) values and Receiving Operator Characteristic (ROC). Both
KS and ROC give the quantitative measure of how good the
discrimination is in identifying the protein–protein interactions
(SI Text).

The KS values are �50% with a 0–80% hit rate in training
samples, and KS values are �50% with a 0–60% hit rate in testing
samples as shown in Fig. 1. This indicates the robust separation
power of the protein–protein interactions with only a few of the
most important rules. This is also reflected on the ROC curve with
sharp increase of sensitivity (TPR: the ratio of true positives with
respect to the sum of true positives and false negatives) with respect
to specificity (FPR: the ratio of true negatives with respect to the
sum of true negatives and false positives) in both training and testing
samples as shown in Fig. 2.

Comparison with Different Methods. For the purpose of benchmark-
ing, we perform the protein–protein interaction prediction using
the Bayesian network (BN) approach (see Figs. S1 and S2) (18, 19),
the logistic regression method, and the simple naive Bayesian
classifier (SNB) used in (1). Fig. 3 A and B shows the comparisons
of the results of ROC curve for different methods for both training
and testing samples. From these graphs, we can see that the mFPT
and the Bayesian network perform better because their ROC
curves climb more rapidly toward the upper left corner (high
sensitivity versus specificity), and the mFPT approach is mildly
better than Bayesian network. Fig. 3 C and D shows the KS value
comparisons. In a wide range of hit rate ranging from 40% to 100%,
the mFPT outperforms other methods with higher discrimination
power. Fig. 4 shows the comparisons of the correct prediction rate
(equals sensitivity in ROC curve) when hit rate is 0.5. mFPT
performs the best.

Results of Adding New Features. To further test the performance of
mFPT, we added more features to predict. We integrated 8 more
features from different sources of data (including EXP, Mes, APA,
REG, PGP, GNN, ROS, and INT, for a total of 5 � 8 � 13 features)
from the total 12 features to perform the mFPT data mining. We
change the minimum support to 3 for the sake of computational
time. We compare the correct predictions of 5 features and 13
features (see Fig. 5). In SI Text, we show the ROC curve and the
KS value comparisons of mFPT with 5 features and 13 features,

Table 1. Input format of FPT

Ess mRNA MIPS GO Expe Interaction

4 9 28 35 51 95
3 7 28 35 51 95
4 6 25 35 51 95
2 13 29 36 52 94

Ess, essentiality; Expe, experiment.

Table 2. Rules of FPT

Hit-rate Support Features

0.963 658 35, 28, 8
0.902 679 35, 28, 9
0.981 369 35, 28, 7
0.813 569 4, 35, 28, 10
0.854 391 28, 48
0.909 209 48, 26
0.980 151 34, 41
0.562 695 52, 4, 35, 11, 28
0.751 225 27, 48
1.000 78 52, 35, 28, 6

The meaning of category values are as follows: 1, both proteins are essen-
tial; 2, one is essential, another is not; 3, both are not essential; 4, not found
in essentiality database; 5–23, Pearson correlations for each protein pair, and
the smaller the category value is, the bigger correlation is; 24, not found in
mRNA coexpression database; 25–29, MIPS value, and Mips increase with
category values increased; 30, not found in MIPS database; 31–35, GO value,
and GO increase with category values increased; 36, not found in GO database.
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respectively (see Figs S3 and S4). From the results, we can see that
integrating 13 features perform better than 5 features alone.

We also compare the mFPT method with other data mining
methods for 13 features (see Fig. S5). We found that mFPT is
consistently better in the quantitative statistical measures ROC and
KS of discriminating interactions. Fig. S6 in the supplement shows
that mFPT predicts more accurately. This supports our conclusion
that mFPT is the best predictor of all of the data mining methods
included.

Predicting Protein–Protein Interactions in Existing Complex. We ob-
tain the network connection graph of protein interactions based on
our mFPT predicted results using the pajek graphic software (20).
By analyzing the network connection graph, we recognize some
large complexes. For example, with 53 rules we predicted 15,222
pairs of protein interactions with 1,991 nodes when we integrate 5
feature values to predict results using mFPT. The network structure
can be further reduced when we set certain minimum link values as
thresholds. So, we can acquire 1 network with 316 nodes when the
value of links is larger than 25.

From Fig. 6, we see 4 obvious complexes, including cytoplasmic
ribosome, 26S proteasome, mitochondrial ribosome, and a new
predicted one for premRNA splicing.

Mitochondrial ribosome(MR) is one of the largest complexes in
our predicted network. Fig. 7 shows the network of mitochondrial
ribosome complex in more detail. Our predictive results replicated
well the MR proteins in the Saccharomyces Genome Database
(www.yeastgenome.org). From Fig. 7 and Table S2, we can see that
mFPT and SNB methods all predict some MR proteins and some
related proteins; however, there are many other MR proteins that

the mFPT method predicts but SNB does not. In Fig. 7, blue nodes
represent proteins that mFPT and SNB both predict; cyan and red
nodes represent proteins mFPT predicts but SNB does not. Most
of the cyan nodes are Mitochondrial ribosomal proteins(MRPs)
(21) (details in Table S2). Mitochondrial ribosomal proteins
(MRPs) are the counterparts in that organelle to the cytoplasmic
ribosomal proteins in the host (22). The function of mitochondrial
(mt) ribosomes is the biosynthesis of a small number of proteins
encoded by the mt DNA. Direct links to the functions of MRPs have
been studied only at a rudimentary level (23). It has been suggested
that mt ribosomes are more or less associated with the inner side of
the mt inner membrane (24).

Red nodes represent 10 proteins including YBR024W,
YBR120C, YDR115W, YGL143C, YLR069C, YLR203C,
YOL023W, YPL104W, YPL183WA, and YPR047W. They do not
belong to MR proteins but are associated with MR proteins.

YLR069C(MEF1) is a translation elongation factor and should
be transiently associated with the MR. YBR024W is a protein
anchored to the mitochondrial inner membrane (25). YBR120C is
a protein required for translation of the mitochondrial COB
mRNA. YDR115W is putative mitochondrial ribosomal protein of
the large subunit. It is similar to E. coli L34 ribosomal protein, as
are most mitochondrial ribosomal proteins. YGL143C(MRF1) is a
Mitochondrial polypeptide chain release factor, related to mito-
chondrial translation. YOL023W(MSS51) is a Mitochondrial trans-
lation initiation factor, which is associated with the MR. YLR203C
Nuclear encoded protein required for translation of COX1 mRNA.
YPL104W is Mitochondrial aspartyl-tRNA synthetase.
YPL183WA is a homolog of the prokaryotic ribosomal protein L36,
likely to be a mitochondrial ribosomal protein coded in the nuclear
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Fig. 1. FPT KS curve of training (A) and testing (B) samples.

Fig. 2. FPT ROC curves (A and B) for different scales. Red curves represent training samples, and green curves represent testing samples.
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genome (22). Therefore, our predictions for these newly added
proteins as mitochondrial ribosomal proteins are consistent with
their biological functions.

In the same way, we can see that mFPT predict more proteins
than SNB for 26S proteasome complex (26) and cytoplasmic
ribosome complex (27, 28) from Tables S3 and S4 and Figs. S7 and

S8 (blue nodes represent proteins that mFPT and SNB both predict,
cyan nodes represent proteins that mFPT predicts while SNB does
not). For 26S proteasome complex, mFPT predicts 29 proteins
more than SNB’s 13 proteins, and database search tells us that these
newly predicted proteins all belong to 26S proteasome or 20S
proteansome, which are associated with 26S proteansome.

Predicting New Protein–Protein Interaction Complex. More impor-
tantly, there is another large complex in the lower left corner of Fig.

Fig. 3. ROC curve and KS value comparisons for 4 methods. (A and B) ROC curve comparisons of the training (A) and testing (B) samples for 4 methods. (C and
D) KS value comparisons of the training (C) and testing (D) samples for 4 methods.

Fig. 4. Comparisons of correct prediction rate for 4 methods for both
training and testing samples

Fig. 5. Comparisons of correct prediction rate for 5 features and 13 features
with both training and testing data samples
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6, which we magnify in Fig. 8 (see Table S5). This new complex
includes 43 proteins. After searching through the SGD(Saccharo-
myces Genome Database) we found that these 43 proteins belong
to 4 categories. They are Sm proteins, Sm-like proteins, snRNAs
(U1, U2, U4, and U5), and other proteins related to snRNAs or
premRNA processing.

SnRNP proteins are involved in a wide variety of functions,
including premRNA splicing (29, 30). The Sm protein was charac-
terized by a domain present in a group of 8 small proteins
(alternatively spliced products B, B�, D1, D2, D3, E, F, and G) that
associated with 4 snRNAs, including U1, U2, U4, and U5. Sm-like
proteins also encode proteins containing Sm domains and are thus
named LSM (Like SM) proteins (29). And other proteins apart
from these kinds are also related to the splicing of premRNA.

YBL026W and YER112W are Sm-like proteins. YER029C is a
Core Sm protein Sm B, YGR074W is a Core Sm protein Sm D1,
YLR147C is a Core Sm protein Sm D3, and YLR275W is a Core
Sm protein Sm D2. YOR159C is a Core Sm protein Sm E, and
YPR182W is a Core Sm protein Sm F. YBR055C, YDL030W,
YDL043C, YMR268C, YDR473C, YPR178W, YML046W,
YDR243C, YGL120C, YGR006W, YGR075C, YGR091W,
YHR165C, YJL203W, YKL012W, YLL036C, and YDR235W are
premRNA processing proteins. YBR119W, YLR298C, YGR013W,
YIL061C, YDR240C, and YHR086W are components of U1
snRNP required for mRNA splicing (31). YIR009W, YOR319W,
YML049C, and YMR240C are components of U2 snRNP, or
U2-snRNP associated splicing factors involved in splicing.
YBL074C and YKL173W are components of U5 snRNP, splicing
premRNA protein. Others (including YMR213W, YLR117C,
YMR125W, YPR101W, YDR088C, and YPR057W) are involved
in mRNA splicing, or required for premRNA splicing (32).

Therefore, we can conclude that what we found is a new function
complex related to premRNA splicing. And these comparison
results with SGD further support the predicting power of mFPT
method.

For the sparse structure in the left middle of our prediction graph
(Fig. 6), we found that some components belong to RNA polymer-
ase, and we do not have enough evidence to prove these proteins
should be put together. Considering the numbers of interactions are
lower in these structure, it seems that they may form a weakly
connected complex.

Methods
Several studies have been carried out to search for individual features contained
in the genomic datasets that are useful for protein interaction prediction. How-
ever, each genomic feature, by itself, is only a weak predictor of protein inter-
actions.Therefore,predictionscanbe improvedby integratingdifferentgenomic
features (13).

Our study is motivated by an earlier integrated Bayesian approach to predict
protein interaction (1). The various protein features considered include mRNA
expression,biological function,essentiality,andexperimentdata. Ina later study,
the list of genomic features is expanded to 16 that are assembled based on both
single and protein pair features, which are derived from a wide range of physical,
genetic, contextual, and evolutionary properties of yeast genes.

For the validation and prediction of protein complexes, a reference dataset
was created serving as gold-standards of positives (proteins that are in the same

Fig. 6. Predicted complex.

Fig. 7. Mitochondrial ribosome complex.

Fig. 8. New complex.
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complex) and negatives (proteins that do not interact) (1). The Munich Informa-
tion Center for Protein Sequences (MIPS) (17) complexes catalog was used as the
gold-standard for positives. A negative gold-standard is harder to define, but
essential for successful training. The negatives were collected from the lists of
proteins in separate subcellular compartments (13).

We use the FPT approach to train data and predict interactions based on their
gold-standard data and their genomic features. Hence, our goal, precisely de-
fined, is to predict whether 2 proteins are in the same complex, not whether they
necessarily had direct physical contact.

We can assess performance of FPT by comparing predicting results against
samples of known positives and negatives (‘‘gold-standards’’). We can further on
make new predictions.

Method of Frequent-Pattern Mining. First, we examine Frequent-pattern mining
(14, 15). Let I � A1, A2, . . . , Am be a set of items, and a transaction database DB �

T1,T2, . . . ,Tn, where Ti (i � 1 . . . n) is a transaction that contains a set of items in
I. The support (or occurrence frequency) of a pattern Q, where Q is a set of items,
is the number of transactions containing Q in DB. Pattern Q is frequent if Q’s
support is no less than a predefined minimum support threshold, �. Given a
transaction database DB and a minimum support threshold �, the problem of
finding the complete set of frequent patterns is called the frequent-pattern
mining problem (14, 15).

Mining frequent patterns in transaction databases has been a popular subject
of study in data mining. Most studies on frequent pattern mining adopt the A
priori algorithm (33). The bottleneck associated with this method is the huge
candidate sets and multiple scans of the entire database with huge computa-
tional costs.

The FPT method discovers frequent patterns in transactional databases by
FP-growth arithmetic. FP-growth (15) first performs a frequent item-based da-
tabasesprojectionwhenthedatabase is largeandthenconstructsacompactdata
structure, called FP-tree, which is condensed but complete for frequent pattern
mining. In this way, problem of mining a database is transformed into that of
mining one compact tree. Compared with some representative frequent-pattern
mining methods for data mining, the FPT approach has several advantages: It
alleviates themultiscanproblemandimprovesthecandidatepatterngeneration;
it is faster than A priori and outperforms the tree projection algorithm (34, 35)
and it performs well especially when the dataset contain many patterns or when
the frequent patterns are long (14, 15).

A frequent-pattern tree (or FP-tree in short) is a tree structure and it can be
designed as follows.

1. It consists of 1 root labeled as ‘‘null,’’ a set of item-prefix subtrees as the
children of the root, and a frequent-item-header table.

2. Eachnodeinthe item-prefixsubtreeconsistsof3fields: item-name,count,and
node-link, where item-name registers which item this node represents, count
registers the number of transactions represented by the portion of the path
reaching this node, and node-link links to the next node in the FP-tree carrying
the same item-name, or null if there is none.

3. Each entry in the frequent-item-header table consists of 2 fields, (i) item name
and (ii) head of node link (a pointer pointing to the first node in the FP-tree
carrying the item name).

According to the design principle, after scanning all of the transactions, the
FP-tree could be constructed. First, a scan of DB derives a list of frequent items,
such as (F:4), (C:4), (A:3), (B:3), (M:3) (here F, C, A, B, and M represent items, and
the numbers after the colons indicate the support), in which items are ordered in
frequency-descending order. Second, the root of a tree is created and labeled
with ‘‘null.’’

To facilitate tree traversal, an item header table is built in which each item
points to its first occurrence in the tree via a node-link. Nodes with the same
item-name are linked in sequence via such node-links. And an example of mFPT
method’s detailed designing process is shown in SI Text.

Conclusions
We have applied a mFPT approach to predict protein interactions
integrating different sources of data and genomic features. mFPT
outperforms other data mining methods included. We acquire
reliable predicting results, see better correspondence with SGD.
We also predict some new interactions within the existing complex
and a new functional protein–protein interaction complex for
premRNA splicing. With the addition of more genome features, our
method can achieve greater performance. It is anticipated that this
approach could be used to find protein interactions in other
organisms and furthermore for gene networks. The potential and
application of mFPT as a general tool will be far reaching for not
only biology but other areas in science and industry where large
data and information mining are required.
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