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A number of covariate-balancing methods, based on the propensity score, are widely used to estimate treatment
effects in observational studies. If the treatment effect varies with the propensity score, however, different methods
can give very different answers. The authors illustrate this effect by using data from a United Kingdom–based
registry of subjects treated with anti–tumor necrosis factor drugs for rheumatoid arthritis. Estimates of the effect of
these drugs on mortality varied from a relative risk of 0.4 (95% confidence interval: 0.16, 0.91) to a relative risk of
1.3 (95% confidence interval: 0.8, 2.25), depending on the balancing method chosen. The authors show that these
differences were due to a combination of an interaction between propensity score and treatment effect and to
differences in weighting subjects with different propensity scores. Thus, the methods are being used to calculate
average treatment effects in populations with very different distributions of effect-modifying variables, resulting
in different overall estimates. This phenomenon highlights the importance of careful selection of the covariate-
balancing method so that the overall estimate has a meaningful interpretation.

covariate balance; effect modification; observational study; propensity score; weighting

Abbreviation: TNF, tumor necrosis factor.

It is widely accepted that randomized controlled trials
provide the best evidence for the effect of drug treatments.
Nevertheless, in situations in which a randomized trial is
impractical or would take a long time to complete, valuable
information can be gathered from an observational study,
provided that the study is designed and analyzed appropri-
ately. In general, exposed and unexposed subjects in an
observational study will differ regarding a number of vari-
ables related to the outcome under study, and balancing
these variables is required. Many of the balancing methods
proposed involve the propensity score (1), used for either
stratifying subjects (2), matching (3), or weighting (4).

Drug registries are becoming more widely used to assess
the long-term effectiveness and safety of drug treatments.
Such registries commonly aim to include all subjects admin-
istered a particular treatment at a given point in time and
subjects unexposed to the drug under study to act as a com-

parison group. The subjects in a registry, however, may not
be representative of all those using a particular drug. For
example, the drug may be used initially by subjects with
severe disease; later, access is widened to include subjects
with milder disease. Propensity models generally assume
either that the effect of treatment is the same for all subjects
or that a mean treatment effect for some particular popula-
tion is the object of inference. If the effect of treatment
depends on patient-specific factors, then 2 populations with
different distributions of these factors will produce different
estimates of the treatment effect.

In this paper, we present an example of using propensity
methods to balance covariates when assessing the rate of
adverse events in drug registry data. The treatment effect
measure varied considerably with the propensity score,
causing different propensity-based balancing methods to
produce very different effect estimates. Thus, the expected
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effect of treatment would depend on the characteristics of
the population to which it was given.

MATERIALS AND METHODS

Subjects

The subjects in this analysis were enrolled in the British
Society for Rheumatology Biologics Register. The primary
aimof the register is to examine themedium-term to long-term
safety of biologic drugs in patients with rheumatic disease.
The methodology has been described in detail elsewhere (5).
In brief, the register consists of a cohort of rheumatoid arthritis
patients treated with anti–tumor necrosis factor (TNF)-a
therapy (the exposed) and an anti-TNF-a-naı̈ve comparison
cohort of rheumatoid arthritis patients treated with non-anti-
TNF-a therapy (the unexposed). The United Kingdom national
guidelines recommend that anti-TNF-a drugs be reserved for
patients with active rheumatoid arthritis (defined as a 28-joint-
count Disease Activity Score (6) of >5.1) despite previous
therapy with at least 2 disease-modifying antirheumatic drugs,
oneofwhich shouldbemethotrexate (7), and that ‘‘anyclinician
prescribing these medications must (with the patient’s permis-
sion) undertake to register the patient with the BSRBR and
forward information on dosage, outcome and toxicity on a
six-monthlybasis’’ (8, p. 4, section1.5).Theunexposedpatients
should have a physician diagnosis of rheumatoid arthritis with
active disease (guideline 28-joint-count Disease Activity Score
of �4.2) despite current treatment with a disease-modifying
antirheumatic drug and be biologically naı̈ve. Unexposed sub-
jects were recruited during a visit to their physician, when their
treatment could have been changed, so that their baseline was
comparable with that for exposed subjects.

For both exposed and unexposed subjects, data were
collected at baseline on demographics, disease duration, 28-
joint-count Disease Activity Score, Health Assessment Ques-
tionnaire score (adapted for British use (9)), body mass index,
smoking history, previous and current drug use, and a number of
comorbidities (listed in Table 1). In this analysis, we used death
as an endpoint: all patients in the register were ‘‘flagged’’ with
the Office for National Statistics, so we were informed of all
deaths and received copies of the death certificates.

Covariate-balancing methods

A number of methods of balancing baseline covariates
between exposed and unexposed subjects are available. The
methods examined in this analysis all utilize a propensity
score. The propensity score, introduced by Rosenbaum and
Rubin (1), reflects the probability that a patient with a given
set of covariate values would receive treatment and is most
commonly estimated by using logistic regression. It is some-
times more convenient to work with the linear predictor from
a logistic regression, that is, the log-odds of treatment or logit,
since its distribution is likely to be closer to normal.

The variables used to define the propensity score for this
example are listed in Table 1. To allow for nonlinearity in the
association between the continuous predictors and the log-odds
of treatment, powersof the6 continuousvariablesup to the sixth
were included. All 2-way product terms for which the P value
was less than 0.05were included in the propensity scoremodel.

Stratifying. The first, and most common, balancing
method is stratification on the propensity score. The popu-
lation is divided into subgroups based on estimated propen-
sity score, and the exposed and unexposed subjects are
compared within strata of propensity score. In this way,
exposed subjects are compared with unexposed subjects
whose propensity scores are similar. It has been shown that
using 5 strata can be expected to remove about 90% of the
confounding bias introduced by a continuous confounder
(10). However, the remaining confounding bias means that
this method is not asymptotically unbiased.

Weighting. Alternatively, a weighting scheme can be used
to balance the covariates (4). With this method, observations
are reweighted to form a larger pseudopopulation in which
the covariates are no longer associated with treatment. Let the
probability of receiving treatment at a given level of the co-
variates, x, be p1(x), and let p0(x) ¼ 1 � p1(x) be the proba-
bility of not receiving treatment. Then, sampling weights for
the treated subjects, w1(x), and untreated subjects, w0(x), are
selected so that the odds of receiving treatment in the pseudo-

population, w1ðxÞp1ðxÞ
w0ðxÞp0ðxÞ, do not depend on x. For example, if

w1(x) ¼ 1/p1(x) and w0(x) ¼ 1/p0(x) ¼ 1/(1 � p1(x)), then
the odds of receiving treatment are given by

Odds ¼ w1ðxÞp1ðxÞ
w0ðxÞp0ðxÞ

¼ 1=p1ðxÞ3 p1ðxÞ
1=p0ðxÞ3 p0ðxÞ

¼ 1

1

¼ 1

for all values of x. Since the covariates are no longer related
to the probability of receiving treatment, they are no longer
confounders.

Different definitions of w1(x) and w0(x) lead to different
distributions of the covariates in the pseudopopulation (11).
The weighting scheme described above is referred to as in-
verse probability of treatment weighting, and it creates the
same distribution of covariates in the pseudopopulation as in
the entire sample. An alternative weighting scheme, referred
to as standardized mortality ratio weighting, has w1 ¼ 1 and
w0 ¼ p1(x)/p0(x). This scheme does not alter the distribution
of covariates in the treated subjects but rather reweights
the distribution in the untreated subjects to make it the same
as for the treated. It therefore provides an estimate of the
effect of treatment for those who are treated.

Matching. The final method considered was matching.
With matching, each exposed subject is paired with the un-
exposed subject whose propensity score is the closest. The
usual procedure involves setting a limit on how close
a match needs to be before it can be considered appropriate:
this limit is referred to as a caliper.

Matching may be performed either with or without re-
placement. In matching without replacement, once an un-
exposed subject has been selected as a match for an exposed
one, he or she is removed from the list of potential matches.
With matching, it is possible that not every exposed subject
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Table 1. Distribution of Baseline Covariates Among Subjects Exposed and Unexposed to Treatment for Rheumatoid

Arthritis, and Impact of Adjustment on the Estimated Relative Rate Among Biologic Users vs. Nonusersa

Variable
Exposed

(n 5 8,437)
Unexposed
(n 5 1,497)

Change in
Rate Ratio,b %

Age, years 57 (48–65) 61 (53–69) 41

Disease duration, years 12 (6–19) 7 (2–16) 2

Disease Activity Score 6.6 (5.9–7.3) 5.0 (4.1–6.0) �26

Health Assessment Questionnaire score 2.1 (1.8–2.5) 1.6 (1–2.1) �22

Systolic blood pressure, mm Hg 135 (120–150) 136 (122–150) 2

Diastolic blood pressure, mm Hg 80 (71–88) 80 (71–86) 1

Gender: female 76.5 72.9 3

No. of previous DMARDs

1 1.7 29.6

2 16.1 26.7

3 21.5 19.2

4 19.2 12.4

5 16.1 6.5

�6 25.4 5.7 �10

Body mass indexc group

<20 8.6 6.1

�20–<25 34.3 34.1

�25–<30 33.1 35.2

�30 24.0 24.6 �1

Smoking

Never 22.1 21.6

Former 38.4 39.9

Current 39.5 38.5 1

History of

Hypertension 30.4 33.9 3

Angina 4.7 7.7 4

Myocardial infarction 3.1 5.5 4

Stroke 2.1 3.6 3

Epilepsy 1.2 1.6 0

Asthma 9.9 13.2 1

Chronic obstructive pulmonary disease 5.2 9.2 6

Peptic ulcer disease 8.7 8.3 1

Liver disease 2.3 1.9 0

Renal disease 2.9 3.4 0

Tuberculosis 2.0 2.7 0

Demyelin 0.2 0.5 1

Diabetes 5.6 6.0 0

Hyperthyroidism 3.4 4.1 0

Depression 20.0 16.4 1

Cancer 3.3 6.7 3

Abbreviation: DMARDs, disease-modifying antirheumatic drugs.
a Values are expressed as median (interquartile range) or percentage.
b This column gives RRA�RRC

RRC
, where RRC is the crude rate ratio and RRA is the rate ratio after adjusting for the

variable in question. It measures the extent to which the variable is confounding the rate ratio.
c Weight (kg)/height (m)2.
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will be matched if there are insufficient suitable unexposed
subjects. In matching with replacement, each exposed sub-
ject is matched to the nearest unexposed subject. In this way,
more exposed subjects can be included in the analysis; all
will be included provided there is at least one unexposed
subject within the caliper, but an unexposed subject may be
matched to several exposed subjects.

Assessing balance. The aim of balancing covariates is to
create exchangeability of the exposed and unexposed sub-
jects and thus eliminate the confounding effect of variables
associated with both the treatment and the outcome. There-
fore, both the difference in the distribution of the variable
between the exposed and unexposed subjects and the asso-
ciation between the variable and the outcome are important:
variables not associated with the outcome do not lead to
confounding and therefore do not need to be balanced.

The degree to which an individual variable confounds the
association between outcome and exposure after balancing
can, for example, be assessed by measuring the propensity-
adjusted effect of treatment and then repeating the analysis,
further adjusting for the variable of interest to the extent
possible. If the estimate of the treatment effect changes, this
change implies residual confounding by the covariate and
that the balancing was incomplete. When we performed this
additional adjustment, continuous variables were fitted after
categorizing them into quintiles to avoid assuming a linear
association between covariate and outcome.

Relative contribution to rate ratio based on covariate
balancing method. The process of matching subjects can
be thought of as a form of weighting. In matching with
replacement, each exposed subject receives a weight of 1,
and each unexposed subject receives a weight equal to the
number of exposed subjects to whom he or she is matched
(0 for those unexposed subjects not matched to any exposed
subject). In matching without replacement, each subject
used in the analysis is given a weight of 1, and each subject
not used is given a weight of 0.

For stratification, the weighting works slightly differently.
Individuals are not weighted, but the maximum likelihood
estimate is a weighted mean of the stratum-specific estimates:

h ¼
P

s WshsP
s Ws

;

where

Ws ¼
D1sY0s

Y1s þ hY0s
D1s ¼ number of deaths among exposed subjects in stratum s

Y0s ¼ person-years of follow-up among unexposed

subjects in stratum s

Y1s ¼ person-years of follow-up among exposed

subjects in stratum s

hs ¼ Rate ratio in stratum s

provided that there is at least one death among the un-
exposed and one death among the exposed within each stra-

tum. We can therefore think of all subjects in stratum s being
assigned a weight Ws.

In this analysis, stratifying, weighting, and matching were
all used to balance the baseline covariates. In the stratified
analysis, 5 strata were defined as the quintiles of the pro-
pensity score distribution, with stratum 1 being the least
likely to receive treatment and stratum 5 the most likely.
Weighting was used to match the distribution of covariates
in both the exposed and unexposed groups to the overall
distribution in the entire sample (inverse probability of treat-
ment weights) and to the distribution in the exposed subjects
(standardized mortality ratio weights). Matching was per-
formed both with and without replacement. For both types
of matching, we used the linear predictor of the propensity
score (3) as the matching variable, with a caliper of 0.01.

Estimation of rates and rate ratios

The mortality rates and rate ratios for the exposed and
unexposed subjects were calculated by using Poisson re-
gression in Stata, version 9.2 software (12). The P values
for the differences in rate ratio between propensity quintiles
were calculated by fitting indicator variables for the quin-
tiles and calculating a Wald test of the hypothesis that the
parameter was constant over all quintiles. To test for a trend
across quintiles, the quintile number was fitted as a contin-
uous variable and the coefficient of that variable compared
with 0 by using a Wald test. In the weighted analyses, the
weights were fitted as probability (sampling) weights so that
the standard errors were not artificially decreased by the
apparent increase in sample size due to the weighting.

RESULTS

Initial distribution of covariates

This analysis considered 8,437 exposed subjects and
1,497 unexposed subjects recruited between December
2001 and June 2006. Recruitment of unexposed subjects
began in January 2003: mean (and median) follow-up was
2.5 years for the exposed (interquartile range: 1.7–3.3) and
1.5 years for the unexposed (interquartile range: 0.9–2.1).
A total of 622 physicians identified exposed subjects, while
112 of these physicians identified unexposed subjects.

Table 1 shows the distribution of baseline covariates
among subjects treated with anti-TNF and those not treated
with anti-TNF. Age, Disease Activity Score, and Health As-
sessment Questionnaire score had the greatest potential for
confounding, as seen in the last column of Table 1, because of
their large differences between exposed and unexposed sub-
jects and strong association with mortality. Unexposed sub-
jects were older and had more comorbidities, increasing their
mortality risk. Conversely, they had less active disease, which
would tend to decrease mortality. The net effect of these
differences in baseline covariates was not obvious a priori.

Balancing of covariates

The effects of the different methods of balancing covari-
ates on actual balance of covariates, as assessed by the change
in estimated rate ratio after controlling for each variable
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individually, are shown in Figure 1. Each box-and-whiskers
plot shows the distribution of the changes in the rate ratio
after adjusting for each of the 26 variables in Table 1 using
one of the balancing methods: the first plot corresponds to
the last column of Table 1. All methods demonstrated a
marked improvement in balance, with the rate ratio changing
by less than 5% formost variableswith allmethods and by less
than 10% for all variables and all methods with the exception
of age when stratifying. Matching without replacement
seemed to perform best, followed by weighting to the overall
distribution.

Rate ratio estimates

The rate ratio estimates produced by the different balancing
methods are given in Table 2. There were considerable differ-
ences between the different estimates. These differences are
unlikely to be due to residual confounding; matching without
replacement and weighting to the entire population were the
most effective in removing imbalance in the covariates and yet
produced very different estimates of the rate ratio.

Quintile-specific rate ratios

One possible explanation for these differences in estimates
would be differences in effect depending on one or more
covariates. To explore this possibility, we calculated the rate
ratios in each quintile of propensity score separately (Table 3).
We found large differences between quintiles of the rate ratio
when all methods were used, but, within quintiles, the esti-
mates were broadly similar across the different methods (ex-
cept for matching without replacement, which used only
a small proportion of the data in the upper quintiles and hence
had verywide confidence intervals for these estimates). For all
methods, the relative risk for exposure to biologicswashigh for
subjects with a low propensity to receive them and was much
lower for subjects with a high propensity to receive them.

Quintile-specific rates

Table 4 shows the number of person-years of follow-up,
the number of deaths, and the mortality rate for each quin-
tile. The mortality rates were similar across quintiles for the
exposed subjects but increased markedly over the quintiles
for the unexposed subjects. The relative risk of mortality for
the exposed compared with the unexposed decreased as the
propensity to be treated increased. It ranged from almost
2 for those least likely to receive treatment to 0.2 for those
most likely to receive treatment, a trend largely due to in-
creasing mortality among the unexposed subjects.

Quintile-specific weights

We have shown that the quintile-specific rate ratios were
similar between methods but that the rate ratios varied be-
tween quintiles from 0.2 to 2 and that the overall rate ratios
differed. Table 5 shows the relative weight given to each
quintile in the calculation of the rate ratio by each method.
The relative weight is the sum of the weights given to each
subject in the quintile, divided by the sum of the weights
given to all subjects in that treatment group. Stratifying and
matching without replacement gave considerable weight to
quintile 1, where the rate ratio was highest; as a conse-
quence, these methods produced the highest overall rate
ratios. The other methods gave equal weight to all quintiles
(weighting to the entire sample) or less weight to quintile 1,
producing smaller rate ratios, that is, less risk associated
with treatment compared with nontreatment.

The expected rate ratios were similar to the observed rate
ratios with each method. This observation implies that the
differences in weighting within strata are not having a major
effect because the expected rate ratios assume equal weights
for all subjects within a stratum.
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Figure 1. Effect of different methods of balancing covariates on
actual balance of covariates between exposed and unexposed sub-
jects. None, no balancing; Strat, stratification (5 strata); Wt. (All),
weighting to the distribution of covariates in the entire sample;
Wt. (Trt.), weighting to the distribution of covariates in the exposed
subsample; M. (Rep), matching with replacement; M. (No Rep),
matching without replacement; RR, rate ratio. Shaded boxes,
interquartile range; white bars, median; whiskers, the most extreme
observation less than 1.5 times the length of the shaded box beyond
the shaded box; dots, individual observations beyond the whiskers;
horizontal lines, relative change of 65%, 610%.

Table 2. Rate Ratio Estimates Using Different Methods of

Balancing

Method
Mortality Rate

Ratio
95% Confidence

Interval

Unadjusted 1.21 0.82, 1.79

5 Strata 1.33 0.79, 2.25

Weighted (to the whole sample) 0.47 0.21, 1.06

Weighted (to the exposed
subsample)

0.43 0.19, 1.01

Matched (with replacement)a 0.39 0.16, 0.91

Matched (without replacement)b 1.24 0.69, 2.25

a 8,437 exposed subjects were matched to 682 unexposed

subjects.
b 712 exposed subjects were matched to 712 unexposed subjects.
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Distribution of the linear predictor among the exposed
and unexposed

The distribution of the linear predictor of the propensity
score among exposed and unexposed subjects is shown in
Figure 2. Although there was a clear difference between the
exposed and unexposed, very few exposed subjects had
scores higher than the highest score among the unexposed,
and few unexposed subjects had scores lower than the low-
est score among the exposed. Thus, at least one untreated
subject was similar to most treated subjects, although there
were far more treated than untreated at the higher ranges.

Figure 3 shows the distribution of the linear predictor of
the propensity score among the exposed and unexposed
subjects after matching, both with and without replacement.
When matching without replacement was used, the distri-
bution was effectively that of the overlap between the ex-
posed and unexposed subjects shown in Figure 2. This
distribution did not differ much between exposed and un-
exposed subjects, so there should be no confounding by the
variables included in the propensity score when matching
without replacement is used.

When matching with replacement was used, the distribu-
tions were again the same among the exposed and un-
exposed subjects, but this time the distribution was that of
the exposed subjects shown in Figure 2. Thus, the distribu-
tion of confounders was quite different from that achieved
by matching without replacement, with more weight in the
higher propensity scores, as seen in Table 5. If the effect of
treatment differs with the propensity score (or with the po-
tential confounders), these 2 methods will both eliminate
confounding but will result in very different estimates of
the overall rate ratio.

DISCUSSION

If the effect of treatment varies with the propensity score,
different approaches to estimating it will give different re-
sults. This phenomenon has been observed by Kurth et al.
(13) and was commented on by Stürmer et al. (14). The
reason is that the different methods are effectively estimating
the effect in different populations, with different distributions
of covariates. So, which is the best estimate to use?

In fact, every estimate has the drawback that it applies to
only one particular distribution of covariates. A population
with a different distribution of covariates will have a differ-
ent treatment effect. This property implies that no single
estimate could be guaranteed to apply to any subsequent
population. In the presence of effect modification, however,
the same would be true of the effect estimate from a random-
ized trial: if the treatment were subsequently used in a popu-
lation with a different distribution of covariates, the
expected treatment effect would differ from that seen in
the trial.

Our analysis shows how a specific treatment effect varies
across propensity quintiles. In practice, it would be impor-
tant to show how the treatment effect differed according to
the variables that made up the propensity score: doing so
would enable clinicians to judge the likely effect of that
treatment in a given patient.T
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There are drawbacks to presenting an overall effect of
treatment when the effect in fact varies between different
types of individuals. Still, each overall effect estimate can be
interpreted as the effect of treatment on a particular popu-
lation. Both the standardized mortality ratio–weighted esti-
mator and that derived from matching with replacement
measure the average effect of treatment in those who are
treated, that is

Observedmortality in exposed subjects

Expectedmortality in exposed subjects had they not been exposed
:

This causal parameter may be of interest as a measure of
how the exposure affected the subjects who were exposed.

The inverse probability of treatment–weighting estimator
measures

Expectedmortality in all subjects if they are exposed

Expectedmortality in all subjects if they are not exposed
;

which may again be of some interest in a particular
population.

In contrast, the matching without replacement estimator
gives a measure of the average effect of treatment in those
exposed subjects for whom a match can be found, which is
a subpopulation of the exposed unlikely to be of any in-
terest. Equally, the weights used in the maximum likelihood
stratified estimator are chosen to maximize the precision of
the estimate, assuming that the effect is constant across
strata, and there is no reason why the average effect of
treatment in this particular population would be of interest.
An alternative would be to standardize the stratum-specific
estimates to a specified distribution of propensity scores. For
example, one could calculate a standardized mortality ratio
from the stratum-specific estimates (14).

All of the estimates have a valid interpretation as the
overall benefit of treatment in a given population. However,
they are valid only if the assumptions of the propensity score
methodology are satisfied, that is, if there are no unmea-
sured confounders, the propensity score model is correctly
specified, the study size is sufficiently large to make the
asymptotically unbiased estimator in fact unbiased, and
the standard errors are reliable.

The increasing mortality rate among the unexposed sub-
jects is extremely unusual. Although it is theoretically pos-
sible that increasing disease severity is associated with

increased mortality in the unexposed but not in the exposed,
a more likely explanation of this almost-10-fold increase in
rate is unmeasured confounding in the upper quintiles. Un-
exposed subjects in the top propensity quintiles were very
good candidates to receive anti-TNF-a, but they did not.
This situation may have arisen because they were too frail
or ill to receive treatment or had a contraindication, and this
condition was not fully captured by the comorbidity and
Health Assessment Questionnaire measures. It may, there-
fore, be that the effect of treatment does not vary across the
quintiles as much as Table 3 suggests and that the benefit of
anti-TNF-a in the upper quintiles is overestimated.

The problem was exacerbated in this instance because of
the limited amount of data on unexposed subjects with high
propensity scores. Only 2 deaths among the unexposed oc-
curred in each of the 3 highest propensity quintiles. There-
fore, few excess deaths occurred in these quintiles compared
with the expected number based on the rates among the
exposed subjects. It would take only a small number of
subjects who were excluded from the exposed group owing
to their ill health, despite being good candidates for treat-
ment, and who subsequently died, to explain all of the ex-
cess deaths among the unexposed subjects.

Although, in this instance, the most likely explanation for
the differences between quintiles in the apparent effect of
treatment is unmeasured confounding, the possibility of a
genuine effect-measure modification should be considered.
In many cases, it is reasonable to assume that treatment is
most beneficial for those subjects most suitable for treatment,
and this phenomenon may cause different treatment effects
across the range of the propensity score. This analysis sup-
ports the suggestion of Glynn et al. (15) that the interaction
between treatment effect and propensity quintile should rou-
tinely be examined to evaluate effect-measure modification.

Balance between exposed and unexposed subjects in pro-
pensity models is commonly assessed by using the standard-
ized difference (16). This statistic, however, measures the
association between only the covariate and the exposure:
a large difference in a variable weakly associated with the
outcome may cause less bias than a smaller difference in a
variable strongly associated with the outcome. So, a method
of assessing balance that depends on the strength of the
associations of each variable with both the exposure and
the outcome is preferable.

In observational studies, it is common practice to identify
a confounding variable by examining the extent to which the

Table 4. Quintile-Specific Mortality Rates

Quintilea
Exposed Unexposed

Rate Ratio
Deaths Person-Years Rate Deaths Person-Years Rate

1 36 1,819 19.8 16 1,762 9.1 2.18

2 52 4,168 12.5 5 285 17.6 0.71

3 57 4,704 12.1 2 141 14.2 0.85

4 66 5,080 13.0 2 63 31.9 0.41

5 93 5,467 17.0 2 28 71.5 0.24

Overall 304 21,237 14.3 27 2,279 11.8 1.21

a Quintile 1 is least likely to receive treatment; quintile 5 is most likely to receive treatment.
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effect estimate changes after adjusting for that variable (17).
We used this method to assess whether the baseline covar-
iates continued to confound the estimate of the treatment
effect after balancing by using one of the propensity score
methods: we are not aware of any previous use of this
method to evaluate balance.

It should be pointed out that we are not relying on adjust-
ing for a variable to remove confounding. We hope that the
variable will not be a confounder in the balanced data and
that the effect estimate will not change. If it does change, we
have to conclude that the balancing has not succeeded and
refine the propensity score until the effect estimate does not
change upon adjustment. Hence, although simply fitting the
variable as 5 categories could be criticized as being too
crude to remove all confounding, it is sufficient for our
purposes of showing the lack of balance in that variable.
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Figure 2. Distribution of the linear predictor of the propensity score
among exposed and unexposed subjects, without adjustment.
———, untreated; – – – , treated.

0.0

0.1

0.2

0.3

0.4

Pr
op

or
tio

n 
of

 S
ub

je
ct

s

–10 –5 0 5 10
Linear Predictor of the Propensity Score

Figure 3. Distribution of the linear predictor of the propensity score
among exposed and unexposed subjects, after adjustment. ———,
untreated, matched with replacement; – – – –, treated, matched with
replacement; – �� – ��, untreated, matched without replacement; ��������,
treated, matched without replacement.
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To conclude, if the effect of treatment varies between
individuals, different propensity-based methods of balanc-
ing covariates may give different answers in a given popu-
lation. Each estimate may reflect a parameter of interest in
that population. However, none of the estimates will reflect
the effect of treatment in a different population. It is there-
fore essential when using propensity-based methods to test
whether the treatment effect varies between individuals.
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