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Abstract

Although it has been documented that dynamin 1 gene (DNM1) is significantly modulated by 

nicotine in animal models, its association with nicotine dependence (ND) in human population 

remained to be unexplored. To determine whether DNM1 is associated with ND, in this study, we 

genotyped seven single-nucleotide polymorphisms (SNPs) within this gene in 602 nuclear families 

of either African-American (AA) or European-American (EA) origin. Individual SNP-based 

association analysis revealed a significant association of SNP rs3003609 with Smoking Quantity 

(SQ; P = 0.0031) and Heaviness of Smoking Index (HSI; P = 0.0042) in the EA sample. 

Furthermore, our haplotype-based association analyses indicated that haplotypes T-G-T, formed 

by rs2502731-rs2229917-rs3003609 (at a frequency of 54%), G-T-A, formed by rs2229917-

rs3003609-rs16930313 (at a frequency of 52%), and T-A-G, formed by rs3003609-rs16930313-

rs7022174 (at a frequency of 52%) are significantly associated with SQ (Z = −2.44~−2.92; P = 

0.015~0.0055) and HSI (Z = −2.52~−2.67; P = 0.012~0.0076) in the EA sample. In the AA 

sample, another haplotype, G-T-A, formed by rs7875406-rs2502731-rs2229917, at a frequency of 

12% was significantly associated with SQ (Z = −2.58; P = 0.0098). Finally, by using in vitro gene 

expression assays, we demonstrated that the T allele of rs3003609 in the exon 9 of DNM1 

significantly decreases the expression of dynamin 1, by 27.1% at the mRNA and 22.0% at the 

protein level, suggesting that rs3003609 represents a functional polymorphism affecting DNM1 

expression and may partly contributed to the observed association of the gene with ND in our 

samples. Taken together, our findings indicate that dynamin 1 is likely involved in the etiology of 

ND and represents a plausible candidate for further investigation in independent samples.
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Introduction

Smoking is the leading cause of preventable death in the United States, causing 

approximately 438,000 premature deaths and $157 billion in health-related costs annually 

(Mokdad et al, 2004; USDHHS, 2000). Numerous earlier studies have demonstrated that 

nicotine is the primary addictive substance in tobacco (Stolerman and Jarvis, 1995; 

USDHHS, 2000; WHO, 2002). Twin and family studies reveal that nicotine dependence 

(ND) is a complex trait determined by genetic and environmental factors, as well as their 

interactions (Carmelli et al, 1992; Swan et al, 2003; Swan and Lessov, 2004). A meta-

analysis of 17 reported twin studies indicates that the weighted mean heritability for ND is 

0.59 in male and 0.46 in female smokers, with an average of 0.56 for all smokers (Li et al, 

2003).

A number of plausible candidate genes has been implicated and investigated for potential 

association with ND in human studies (Li, 2006). A variety of genes and proteins has also 

been revealed in microarray and proteomic studies that are modulated in response to nicotine 

stimulation (Hwang and Li, 2006; Wang et al, 2008). Previously, using two-dimensional 

electrophoresis combined with mass spectrometry, we identified a number of proteins whose 

expressions were significantly modulated in the brain regions of nicotine-treated rats 

compared with controls. Of these proteins, dynamin 1 was modulated significantly by 

nicotine in four of five brain regions we examined, suggesting that this protein plays a 

significant role in neuronal activities responding to nicotine stimulation (Hwang and Li,, 

2006).

Dynamin 1 belongs to the GTPase superfamily that is involved in various cell processes and 

has important functions in endocytosis (Schmid et al, 1998), apoptosis, and signaling (Frank 

et al, 2001; Hislop et al, 2001; Kashiwakura et al, 2004). As one of the best-characterized 

family members, dynamin 1 is expressed exclusively in the central nervous system and is 

believed to function in synaptic vesicle recycling in nerve terminals (Powell and Robinson, 

1995; Sontag et al, 1994), a process important for neural activities and plasticity. Study of a 

temperature-sensitive mutant of dynamin in Drosophila shows a clear role of dynamin in 

synaptic-vesicle retrieval in nerve terminals (Koenig and Ikeda, 1989). Similarly, in rat, 

dynamin 1-mediated processes appear to be necessary for normal neuronal morphogenesis 

and dynamin 1 is indispensable for vesicle endocytosis at fast central nervous system 

synapses (Torre et al, 1994; Yamashita et al, 2005). Moreover, several recent studies 

revealed that reduced dynamin 1 expression may impair neuronal transport and vesicle 

trafficking by interactions with other endocytic accessory proteins in hippocampal neurons 

(Jiang et al, 2006; Kelly and Ferreira, 2006; Kitzmueller et al, 2004). Whereas a study of 

dynamin 1-knockout mice found that dynamin 1-independent mechanisms can support 

limited synaptic vesicle endocytosis, the protein is essential during high levels of neuronal 

activity (Ferguson et al, 2007).
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Given that dynamin 1 is modulated significantly nicotine in rat brain regions (Hwang and 

Li,, 2006) and plays an important role in endocytosis and neuronal activities, we 

investigated genetic association of its encoding human gene, DNM1, with ND and its 

potential involvement in the etiology of ND.

Materials and Methods

Participants and ND measures

Participants were of either African-American (AA) or European-American (EA) ancestry 

and were recruited primarily from the states of Tennessee, Mississippi, and Arkansas during 

1999–2004. Proband smokers were required to be at least 21 years old, to have smoked for 

at least five years, and to have consumed an average of 20 cigarettes per day for the last 12 

months. Siblings and parents of a proband were recruited whenever possible, regardless of 

their smoking status. Extensive data were collected on each participant, including 

demographics (e.g., sex, age, race, biological relationships, weight, height, years of 

education, and marital status), medical history, smoking history and current smoking 

behavior, ND, and selected personality traits, assessed by various questionnaires/interviews 

available at the NIDA Genetics Consortium Website (http://zork.wustl.edu/nida). All 

participants provided informed consent. The study protocol and forms/procedures have been 

approved by all participating Institutional Review Boards.

For each smoker, ND was ascertained by three measures commonly used in the tobacco 

research field: Smoking Quantity (SQ; defined as the number of cigarettes smoked per day), 

the Heaviness of Smoking Index (HSI; 0–6 scale), and the Fagerström Test for ND score 

(FTND; 0–10 scale) (Heatherton et al, 1991). The SQ provides a simple, quantified index of 

consumption (using a 0–3 point compressed format), whereas HSI includes one item 

addressing quantity (SQ) and another assessing urgency. The FTND score includes the HSI 

plus other indicators of behavioral propensity to smoke in various situations. Given the 

presence of overlap in the content of the three ND measures, there exist fairly robust 

correlations among them (r = 0.88–0.94) in both the AA and EA samples.

Of the 2,037 participants, the average age was 39.4 ± 14.4 (SD) years for the AA and 40.5 ± 

15.5 years for the EA participants. The average nuclear family size was 3.14 ± 0.75 for AAs 

and 3.17 ± 0.69 for EAs. The average number of cigarettes smoked per day, his, and FTND 

scores of smokers were 19.4 ± 13.3, 3.7 ± 1.4, and 6.26 ± 2.15 for AA smokers (N = 1053) 

and 19.5 ± 13.4, 3.9 ± 1.4 and 6.33 ± 2.22 for EA smokers (N = 515).

DNA extraction, SNP selection, and genotyping

Genomic DNA was isolated from blood sample of each participant using the QIAamp DNA 

Blood Maxi kit (Qiagen, Valencia, CA). The SNPs used for genotyping were selected from 

the NCBI dbSNP database (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=snp). Two 

SNPs (rs2229917 and rs3003609) were selected specifically because of their locations at 

exons 4 and 9, respectively. To obtain a uniform coverage of the gene, the other five were 

selected on the basis of their high heterozygosity with a minor allele frequency (MAF) > 

0.15 (Table 1). All SNPs were genotyped using the TaqMan assay in a 384-well microplate 
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format (Applied Biosystems, Foster City, CA). Briefly, 15 ng of DNA was amplified in a 

total volume of 7 μl, which contains a set of TaqMan primers and probes and 2.5 μl of 

TaqMan universal PCR master mix. The amplification procedure was 2 min at 50°C and 10 

min at 95°C followed by 40 cycles of 95°C for 25 sec and 60°C for 1 min. Allelic 

discrimination analysis was performed on the ABI Prism 7900HT Sequence Detection 

System. To ensure the quality of the genotyping, eight positive and negative controls were 

added to each microplate. Genotyping data were accepted only when all control samples 

produced consistent results; otherwise, all samples of the microplate under investigation 

were re-genotyped.

Association analyses

We used the PedCheck program (O’Connell and Weeks, 1998) to detect genotyping 

inconsistencies for Mendelian inheritance. One hundred fifty inconsistencies, with 95 in the 

AA sample and 25 in the EA sample, were detected from approximately 14,300 assays (i.e., 

0.8% genotyping error) for seven SNPs across all DNA samples and were excluded from 

subsequent statistical analysis. Pair-wise linkage disequilibrium (LD) between all possible 

SNP pairs was estimated using the program Haploview (Barrett et al, 2005). Associations 

between individual SNP and the three ND measures were determined by the PBAT program 

using generalized estimating equations (Lange et al, 2003). Associations between each ND 

measure and haplotypes from all possible haplotypes in consecutive three-SNP 

combinations were calculated using the FBAT program with the option of computing the P-

value of the Z-statistic using Monte Carlo sampling under the null distribution of no linkage 

and no association (Horvath et al, 2004). Three genetic models (additive, dominant, and 

recessive) were tested for both individual and multi-locus SNPs (i.e., haplotypes). For all 

PBAT and FBAT association tests, sex and age were used as covariates in the EA and AA 

samples and sex, age, and ethnicity as covariates in the combined sample. The three ND 

measures, SQ, HSI, and FTND, were analyzed individually. All significant associations 

were corrected for multiple testing according to the SNP spectral decomposition (SNPSpD) 

approach (Nyholt, 2004) for individual SNP analysis and using Bonferroni correction by 

dividing the significance level by the number of major haplotypes (frequency >5.0%) for 

haplotype-based association analysis.

In consideration of high correlations between the three ND measures and among the results 

under different genetic models, we chose not to correct for testing of the three highly-

correlated ND measures or genetic models to avoid being over-conservative. This is because 

there is no generally accepted methodology capable of handling the problem of highly 

correlated multiple testing. However, if one wishes to correct for multiple testing for the 

three highly-related genetic models and/or phenotypes, a justified P-value can be obtained 

by dividing the corrected P-value after correction for major multiple testing given in the note 

#1 of Table 2 by 6, i.e., 2 accounting for two independent tests for the three genetic models 

multiply by 3 ND measures.

Plasmid construction and mutagenesis

The full-length cDNA clone of human DNM1 was purchased from Open Biosystems 

(Huntsville, AL). The coding region of DNM1 was amplified with a pair of primers, 5′-

Xu et al. Page 4

Neuropsychopharmacology. Author manuscript; available in PMC 2009 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



GCCGGAATTCGGATGGGCAACCGCGGCATGGAAGATC-3′ (forward) and 5′-

CATGGCGGCCGCTCAGGGGTCACTGATAGTGATTCTG-3′ (reverse), and was 

subcloned into the pCMV-HA vector (Clontech, Mountain View, CA), using the EcoRI and 

NotI two cloning sites. The yielded construct was sequence confirmed to contain 

rs2229917G and rs3003609C and was thus designated pE4G-E9C. Allele combinations of 

SNPs rs2229917 and rs3003609 were then generated with the QuikChange II XL Site-

Directed Mutagenesis kit (Stratagene, La Jolla, CA), and designated pE4A-E9C, pE4G-E9T, 

and pE4A-E9T, separately (Figure 2A). All four constructs were verified by sequencing.

Cell culture and transfection

Human neuroblastoma SH-SY5Y cells were purchased from the American Type Culture 

Collection (Manassas, VA), and grown in the DMEM supplemented with 10% fetal bovine 

serum (Invitrogen, Carlsbad, CA) at 37°C with 5% CO2. Cells were transfected with DNM1 

constructs using Lipofectamine 2000 (Invitrogen) in accordance to the manufacturer’s 

protocol. Cells were grown for additional 24 hours after transfection and were harvested for 

RNA isolation and protein extraction, respectively.

Expression analysis of haplotype-specific DNM1

Total RNA in the transfected cells was isolated with the Trizol reagent (Invitrogene) and 

treated with RNA-free DNase I (Ambion, Austin, TX) to remove any potential remaining 

plasmid DNA prior to reverse transcription. For quantitative real-time reverse transcriptase-

polymerase chain reaction (RT-PCR), RNA was first reverse transcribed with SuperScript II 

RNase H− and random hexamer (Invitrogen). Then a TaqMan probe specifically designed to 

detect the HA-fused dynamin-1 gene: 5′-GATGTTCCAGATTACGCTCTTATGG-3′ 

(forward), 5′-CAGCGGGATGAGATCTTCCA-3′ (reverse), and 5′-FAM-

CGAATTCGGATGGGCA-MGB-3′ (probe), was applied for the standard TaqMan PCR 

procedures in the ABI Prism 7900HT Sequence Detection System. Ribosome RNA (18S) 

was used as a control for data normalization. Proteins in the transfected cells were extracted 

by the RIPA buffer, and sonicated and quantified using the Bio-Rad Protein Assay (Bio-

Rad, Hercules, CA). The same amount of total protein was applied in the SDS-PAGE 

separation. The protein expression of haplotype-specific DNM1 was detected by using a 

primary antibody against HA tag, a horseradish peroxidase-conjugated secondary antibody 

(Covance, Princeton, NJ), and the SuperSignal West Pico chemiluminescent substrate 

(Pierce, Rockford, IL) in Western blotting analysis.

mRNA stability analysis of haplotype-specific DNM1

To evaluate the effect of SNP rs3003609 alleles (C/T) on the mRNA stability, pE4G-E9C 

and pE4G-E9T were transfected separately into SH-SY5Y cells. One day after transfection, 

cells were treated with actinomycin D at a final concentration of 5 μg/ml for 0, 1, 3, 5, 7, or 

9 hours, respectively. Total RNA was then isolated for quantitative real-time RT-PCR assay.
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Results

Association analysis of individual SNPs with ND

Association of individual SNPs with the three ND measures (SQ, HSI, FTND) was 

determined with PBAT-GEE (Lange et al, 2003). We analyzed the EA and AA samples 

separately, because 1) the potential genetic differences were reported in nicotine metabolism 

and smoking behavior among racial groups (Benowitz et al, 1999) and 2) we noticed 

significant differences in the allele frequencies of several SNPs between the EA and AA 

samples (Table 2).

In the EA sample, we found significant associations under the dominant model of rs2229917 

with the HSI measure (P = 0.043), of rs3003609 with all three ND measures (P = 

0.0031~0.011), and of rs16930313 with the SQ measure (P = 0.039). However, only the 

associations of rs3003609 with SQ and HSI remained significant after correction for 

multiple testing (adjusted P-value at the 0.05 significance level = 0.007) based on the 

SNPSpD approach (Nyholt, 2004). We found no significant association of individual SNPs 

in DNM1 with any ND measure in the AA sample (Table 2). Nonetheless, we also tested 

these individual SNPs in the EA and AA combined sample. We only detected rs7022174 

that was marginally associated with the FTND measure (P = 0.05), which was no longer 

significant after correction for multiple testing.

Haplotype block structure

Figure 1 shows the pair-wise D′ values for the seven selected SNPs within DNM1 that were 

determined in the EA and AA populations using the HaploView algorithm (Barrett et al, 

2005). The haplotype block in the EA sample, a length of 5 kb extending from rs7875406 to 

rs2502731, was predicted according to the block definition proposed by Gabriel and 

colleagues (Gabriel et al, 2002). No haplotype block was found in the AA sample.

Haplotype-based association analysis

Since we found no large haplotype block within DNM1, we performed haplotype-based 

association analysis with the FBAT program for all possible haplotypes in consecutive 

three-SNP combinations and the three measures in the EA and AA samples. As shown in 

Table 3, in the EA sample, four major haplotypes showed significant associations with at 

least two of three ND measures, of which three major haplotypes remained significant for 

the SQ and HSI after Bonferroni correction. The first haplotype, T-G-T, formed by SNPs 

rs2502731, rs2229917 and rs3003609, at a frequency of 54% showed a significant inverse 

association with SQ (Z = −2.76, P = 0.0058; Global P = 0.015) and HSI (Z = −2.66, P = 

0.0079; Global P = 0.027) under the additive model. The second haplotype, G-T-A, formed 

by rs2229917, rs3003609 and rs16930313, at a frequency of 52% showed a significant 

inverse association with SQ (Z = −2.92, P = 0.0035; Global P = 0.033) and HSI (Z = −2.67, 

P = 0.0076; Global P = 0.056) under the dominant model. The last one, T-A-G, formed by 

rs3003609, rs16930313 and rs7022174, at a frequency of 52% also exhibited a significant 

inverse association with SQ and HSI under both the additive and dominant models. By 

examining the haplotype associations in the EA sample (Table 3), we found that all 

significant haplotypes contain the T allele of SNP rs3003609, which always responds to the 
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protective haplotypes. This indicates that rs3003609 may represent a functional 

polymorphism contributing to the observed association of the gene with ND in the EA 

sample.

Although we detected no significant association of individual SNPs with ND in the AA 

sample, interestingly, we did find several haplotypes that were significantly associated with 

the SQ and HSI under the recessive model. However, only the haplotype G-T-A, formed by 

SNPs rs7875406, rs2502731, and rs2229917, at a frequency of 12%, remained a significant 

association with SQ (Z = −2.58; P = 0.0098; Global P = 0.11) after correction for multiple 

testing (Table 3).

Biological effect of SNPs rs2229917 and rs3003609 on the expression of dynamin 1

To define the functional significance of exonic SNPs rs2229917 (A/G) and rs3003609 (C/T) 

for the expression of dynamin 1, we constructed four plasmids for the possible allele 

combinations (i.e., pE4G-E9C, pE4A-E9C, pE4G-E9T, and pE4A-E9T) by site-directed 

mutagenesis from a complete cDNA clone and then transfected them into human 

neuroblastoma SH-SY5Y cells. Following the transient transfection, we measured the 

mRNA and protein expression levels for each construct using the quantitative real-time RT-

PCR and Western blotting analysis, respectively (Figure 2).

After normalization to the corresponding 18S ribosome RNA of each sample, we found that 

constructs pE4G-E9C and pE4A-E9C showed significantly higher mRNA expression than 

pE4G-E9T and pE4A-E9T (~27.0%; P < 0.05). On the other hand, no difference was 

observed between pE4G-E9C and pE4A-E9C or between pE4G-E9T and pE4A-E9T (Figure 

2B). At the protein level normalized to the corresponding tubulin expression of each sample, 

almost the same expression trends were found, in that pE4G-E9T and pE4A-E9T showed 

significantly less expression than was seen from the other two constructs (−22.2~−29.2%; P 

< 0.05; Figure 2D). These results indicate that the two alleles of rs2229917 at exon 4 have 

little or no impact on the expression of DNM1 and that all differences observed among the 

four constructs were attributable primarily to rs3003609 at exon 9, of which the C allele 

caused higher expression than does the T allele, indicating that this SNP is a functional 

polymorphism contributing at least partly to the observed association of the gene with ND in 

our samples.

Regulatory effect of rs3003609 on mRNA stability of DNM1

As demonstrated above, the constructs with the T allele of rs3003609 caused significantly 

less expression of dynamin 1 than did those with the C allele. Given that the same trends 

occurred at both the mRNA and protein levels, a possible explanation is the stability 

difference of the allele-specific mRNAs. To test this speculation, we transfected SH-SY5Y 

cells with constructs pE4G-E9C and pE4G-E9T, treated cells with actinomycin D for a 

different period of time, and measured the mRNA expression level with real-time RT-PCR. 

We found that the estimated half-life of DNM1 mRNA was about 3.2 hours for pE4G-E9C 

and 3.6 hours for pE4G-E9T (Figure 3). No significant difference was detected in the 

mRNA half-life between the two constructs, although the mRNA level of pE4G-E9T was 

significantly lower at each time point than that of pE4G-E9C, implying that the expression 
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difference of DNM1 with different rs3003609 alleles may be caused at the transcription 

level.

Discussion

Previously, we reported in a proteomics study that dynamin 1 is modulated significantly by 

nicotine in several rat brain regions (Hwang and Li, 2006). By using different molecular 

approaches in independent animal experiments, we subsequently confirmed this finding (Xu 

and Li, unpublished data). Given these consistent results, we performed a genetic association 

study in two independent ethnic samples to explore whether DNM1, encoding dynamin 1, is 

associated with ND. Our individual SNP analysis revealed that SNPs rs2229917, rs3003609, 

and rs16930313 are significantly associated with at least two ND measures in the EA sample 

(Table 2). Further, our haplotype analysis revealed three major haplotypes, T-G-T, G-T-A 

and T-A-G, formed by SNPs rs2502731, rs2229917, rs3003609, and rs16930313, that have 

significant inverse associations with at least two ND measures in the EA sample (Table 3). 

Together, this indicates that DNM1 is significantly associated with ND in the EA population. 

In contrast, we found no significant association of individual SNPs with ND in the AA 

sample, but identified a haplotype, G-T-A, formed by SNPs rs7875406, rs2502731, and 

rs2229917, that has a significant inverse association with SQ in the AA sample (Tables 2 

and 3). It suggests that the association in the AA sample is potentially attributable to linkage 

disequilibrium with a more centromeric genetic variant in the near region.

Although we examined the association with three ND measures in the EA and AA combined 

sample as well, we only found marginal significant associations in the individual SNP and 

haplotype analyses. These associations were no longer significant after correction for 

multiple testing (data not shown). This, from another point of view, reflects the significant 

difference in the associations of DNM1 with ND in the two ethnic groups, which is most 

likely attributable to the ethnic-specific characteristics of some SNPs within DNM1 (Tables 

1 and 2). Also, we like to point out that our association results for both individual SNPs and 

haplotypes did not correct for testing of the three highly correlated ND measures and genetic 

models, or multiple genes that we found to be associated with ND previously in the samples. 

This is because Bonferroni correction is considered to be over-conservative and there is no 

generally accepted method for handling such highly correlated multiple testing. Regarding 

genetic models, we chose to use the three models because in some cases we found that 

dominant and/or recessive model produce better results than additive model likely due to the 

presence of heterosis that has not received much attention in almost all human genetic 

association analyses. Regardless of these rationale, we like to consider our association 

results of ND with dynamin 1, especially for the AA sample, as exploratory and suggest that 

more replication in independent samples is greatly needed in future studies.

Polymorphisms rs2229917 and rs3003609 are two exonic synonymous variants, residing at 

exons 4 and 9, respectively. Because both SNPs demonstrated consistently associations with 

ND in our individual SNP and haplotype analyses in the EA sample (Tables 2 and 3), we 

speculate that they may represent two functional polymorphisms to affect DNM1 expression. 

By expressing plasmid constructs containing different allele combinations of rs2229917 and 

rs3003609 in human neuroblastoma SH-SY5Y cells, we found that the plasmid constructs 
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bearing rs3003609T allele produced significantly lower expression levels of mRNA and 

protein than those with rs3003609C allele, whereas no significant difference was detected 

between the constructs with the G or A allele of rs2229917 (Figure 2). We thus conclude 

that SNP rs3003609, but not rs2229917, is a potential causative polymorphism involved in 

the regulation of DNM1 expression. Of note, we revealed all negative Z-value for the 

haplotypes containing rs3003609T allele (Table 3), indicating that the T allele of rs3003609 

may play a protective role against the development of ND.

Non-synonymous SNPs change amino acids in protein sequence and can directly influence 

protein function. The effects of no-synonymous polymorphisms are thus relatively easy to 

study and have been widely characterized for associations with human diseases (Yampolsky 

et al, 2005). In contrast, synonymous SNPs are more common in human genome but do not 

produce altered coding sequences. Their characterization is relatively difficult. Recently, 

studies have revealed that synonymous SNPs can also modulate gene expression by altering 

mRNA secondary structure (Nackley et al, 2006) or influence protein function by altering 

protein conformation in the presence of a rare codon marked by the polymorphism (Kimchi-

Sarfaty et al, 2007). Our data in this report thus provide the new evidence of synonymous 

SNPs as potential functional variants in human genetics. However, although we 

demonstrated the differential expression of rs3003609 allele-specific DNM1, subsequently 

we detected no significant difference in their mRNA stability or half-life. We reasoned that 

endogenous expressed dynamin 1, exclusively confined in neurons (Praefcke and McMahon, 

2004), might interfere with our results, despite that we employed an exogenous gene-

specific TaqMan probe for mRNA quantification and an antibody against HA tag for protein 

detection. Nonetheless, further study is required to determine how polymorphism rs3003609 

modulates the expression of DNM1.

In summary, we provided the first evidence that DNM1 is associated with ND, more 

significant in the EA sample than in the AA sample. Further, we demonstrated that SNP 

rs3003609 at exon 9 represents a functional variant, of which the C allele causes greater 

DNM1 expression at both the mRNA and protein levels than does the T allele. On the basis 

of these findings, along with our previous findings of nicotine-modulated dynamin 1 

expression in the brain regions (Hwang et al, 2006) and the well-known function of dynamin 

1 in neuronal activities and plasticity (Ferguson et al, 2007; Praefcke et al, 2004), we 

conclude that dynamin 1 is an important player in the etiology of ND. Further genetic 

association study of this gene in other independent samples is warranted.
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Figure 1. 
Haploview-generated LD maps of the seven SNPs within DNM1 in the EA and AA samples. 

Regions of high LD (D′ = 1 and LD >2) are shown in dark gray. Markers with LD (0.21 < D

′ < 1 and LOD >2) are shown in dark through light gray, with the color intensity decreasing 

with decreasing D′ values. Regions of low LD and low LOD scores (LOD <2) are shown in 

white. The number within each box indicates the D′ statistic between the two SNPs. 

Haplotype blocks in the two samples were produced by the HaploView program using the 

block definitions proposed by Grabiel et al.
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Figure 2. 
Expression analyses of allele combinations of SNPs rs2229917 at exon 4 and rs3003609 at 

exon 9. (A) Illustration of four plasmids constructed for dynamin 1 expression analysis. (B) 

Statistical analysis of real-time RT-PCR data for the four plasmids. 18S RNA was used to 

normalize expression of each DNM1 construct. Compared with pE4G-E9C, pE4G-E9T and 

pE4A-E9T showed lower expression of dynamin 1, by 27.1% and 26.8%, respectively. No 

significant difference was detected between constructs pE4G-E9C and pE4A-E9C. (C) 

Representative Western blotting images for dynamin 1 and tubulin. Tubulin was used to 

normalize expression of each DNM1 construct. (D) Statistical analysis of the protein 

expression levels of four DNM1 constructs. Similar to the mRNA expression data in (C), 

pE4G-E9T and pE4A-E9T showed decreased dynamin 1 protein expression, by 29.2% and 

22.2%, respectively, compared with pE4G-E9C. Data in Figures B and D are given as means 

± S.E.M. (* P <0.05; n = 3/group).
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Figure 3. 
Comparison of mRNA stability of DNM1 from pE4G-E9C and pE4G-E9T constructs. 

Measured half-life of mRNA was about 3.2 hours for the former and 3.6 hours for the latter. 

No significant difference in the half-life of DNM1 mRNA was found in the two constructs. 

Data are given as means ± S.E.M. (* P <0.05; n = 3/group).

Xu et al. Page 14

Neuropsychopharmacology. Author manuscript; available in PMC 2009 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 15

T
ab

le
 1

In
fo

rm
at

io
n 

of
 s

ev
en

 S
N

Ps
 w

ith
in

 D
N

M
1 

se
le

ct
ed

 f
or

 th
is

 s
tu

dy

SN
P

 n
um

be
r

db
SN

P
 I

D
SN

P
 lo

ca
ti

on
C

hr
om

os
om

e 
po

si
ti

on
A

lle
le

F
re

qu
en

cy
(E

A
)*

F
re

qu
en

cy
(A

A
)*

Se
qu

en
ce

s 
of

 T
aq

M
an

 p
ri

m
er

s 
an

d 
M

G
B

 p
ro

be
s 

(5
′→

3′
)

1
rs

78
75

40
6

In
tr

on
 2

13
00

10
83

9
A

/G
0.

96
/0

.0
4

0.
69

/0
.3

1
F:

 G
G

A
G

G
C

T
T

G
C

G
G

C
T

G
A

T
R

: A
G

C
C

T
C

C
T

T
C

A
A

A
A

T
A

C
A

C
G

A
C

A
A

P 1
: A

A
A

T
C

C
A

C
A

A
A

G
A

G
C

A
C

G
T

P 2
: A

T
C

C
A

C
A

A
A

G
G

G
C

A
C

G
T

2
rs

25
02

73
1

In
tr

on
 2

13
00

16
37

8
T

/C
0.

72
/0

.2
8

0.
51

/0
.4

9
F:

 T
G

C
C

C
A

G
C

A
A

G
C

T
A

T
C

G
T

T
A

T
T

T
A

T
R

: A
C

A
T

C
A

G
T

A
A

A
A

T
G

G
G

T
T

G
C

T
G

T
G

A
P 1

: T
T

C
A

G
C

C
A

T
C

A
G

T
C

T
G

T
A

T
A

P 2
: T

C
A

G
C

C
A

T
C

A
G

T
T

T
G

T
A

T
A

3
rs

22
29

91
7

E
xo

n 
4

13
00

20
75

8
G

/A
0.

91
/0

.0
9

N
/A

F:
 G

G
A

G
G

T
G

C
G

C
C

T
T

G
A

G
A

T
C

R
: G

C
G

A
G

A
T

G
C

C
C

T
T

G
T

T
G

G
T

P 1
: C

C
T

G
T

C
G

G
T

T
T

C
G

G
C

C
T

P 2
: C

T
G

T
C

G
G

T
C

T
C

G
G

C
C

T

4
rs

30
03

60
9

E
xo

n 
9

13
00

24
57

6
T

/C
0.

62
/0

.3
8

0.
01

/0
.9

9
F:

 A
C

C
A

C
T

C
T

C
C

C
A

C
C

A
G

G
A

T
R

: A
G

C
C

C
T

C
A

A
T

G
C

G
C

T
T

C
T

P 1
: C

A
A

A
G

T
C

T
A

C
G

G
C

G
A

A
C

T
P 2

: A
A

A
G

T
C

T
A

C
G

G
C

A
A

A
C

T

5
rs

16
93

03
13

In
tr

on
 1

1
13

00
33

21
8

A
/G

0.
88

/0
.1

2
0.

54
/0

.4
6

F:
 A

G
G

C
A

T
G

C
G

C
C

A
C

C
A

T
R

: C
C

T
C

C
T

T
T

T
A

G
A

C
C

A
A

A
G

C
T

T
T

C
C

T
P 1

: T
C

T
G

T
G

T
G

A
T

T
T

T
T

A
T

G
A

G
C

A
P 2

: C
T

G
T

G
T

G
A

T
T

T
T

T
G

T
G

A
G

C
A

6
rs

70
22

17
4

In
tr

on
 1

2
13

00
39

29
3

G
/C

0.
79

/0
.2

1
0.

13
/0

.8
7

F:
 T

T
G

T
C

C
C

A
T

C
T

G
G

A
A

A
G

T
C

A
T

T
C

T
C

R
: G

A
C

C
C

T
T

G
C

A
A

A
C

G
A

T
T

A
A

A
T

G
T

G
A

P 1
: A

T
C

A
C

T
A

C
T

C
A

A
T

T
C

C
P 2

: T
C

A
C

T
A

C
T

G
A

A
T

T
C

C

7
rs

10
98

79
45

In
tr

on
 1

6
13

00
45

84
7

G
/T

0.
96

/0
.0

4
0.

34
/0

.6
6

F:
 G

C
C

A
G

G
G

A
G

A
C

C
A

T
G

T
G

A
R

: C
C

C
C

T
C

C
C

C
C

A
C

A
G

T
G

T
P 1

: C
G

G
T

C
T

C
C

G
G

C
C

C
T

P 2
: C

G
G

T
C

T
C

A
G

G
C

C
C

T

* T
he

 a
lle

le
 f

re
qu

en
ci

es
 a

re
 f

ro
m

 H
ap

M
ap

 d
at

a 
in

 th
e 

N
C

B
I 

db
SN

P 
da

ta
ba

se
; N

/A
: n

ot
 a

va
ila

bl
e.

Neuropsychopharmacology. Author manuscript; available in PMC 2009 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 16

T
ab

le
 2

A
lle

le
 f

re
qu

en
cy

 a
nd

 P
-v

al
ue

 o
f 

in
di

vi
du

al
 S

N
Ps

 f
or

 a
ss

oc
ia

tio
n 

w
ith

 th
re

e 
N

D
 m

ea
su

re
s 

in
 th

e 
E

A
 a

nd
 A

A
 s

am
pl

es

E
A

 s
am

pl
e

A
A

 s
am

pl
e

db
SN

P
 I

D
A

lle
le

F
re

qu
en

cy
SQ

H
SI

F
T

N
D

F
re

qu
en

cy
SQ

H
SI

F
T

N
D

rs
78

75
40

6
A

/G
0.

63
/0

.3
7

0.
10

d
0.

10
d

0.
19

d
0.

53
/0

.4
7

0.
42

d
0.

44
r

0.
56

r

rs
25

02
73

1
T

/C
0.

63
/0

.3
7

0.
08

a
0.

11
a

0.
21

a
0.

44
/0

.5
6

0.
43

d
0.

46
d

0.
42

a

rs
22

29
91

7
G

/A
0.

94
/0

.0
6

0.
05

r
0.

04
d

0.
05

r
0.

78
/0

.2
2

0.
69

a
0.

77
d

0.
60

r

rs
30

03
60

9
T

/C
0.

55
/0

.4
5

0.
00

31
d

0.
00

42
d

0.
01

1d
0.

11
/0

.8
9

0.
07

d
0.

13
d

0.
12

d

rs
16

93
03

13
A

/G
0.

86
/0

.1
4

0.
04

d
0.

05
d

0.
14

d
0.

64
/0

.3
6

0.
22

r
0.

31
r

0.
50

r

rs
70

22
17

4
G

/C
0.

79
/0

.2
1

0.
39

r
0.

21
r

0.
32

r
0.

29
/0

.7
1

0.
10

d
0.

12
d

0.
08

d

rs
10

98
79

45
G

/T
0.

95
/0

.0
5

0.
25

a
0.

34
a

0.
32

a
0.

50
/0

.5
0

0.
43

d
0.

73
a

0.
62

d

N
ot

es
:

1)
Si

gn
if

ic
an

t P
-v

al
ue

 a
ft

er
 c

or
re

ct
io

n 
fo

r 
m

ul
tip

le
 te

st
in

g 
is

 g
iv

en
 in

 b
ol

d 
an

d 
th

e 
ad

ju
st

ed
 P

-v
al

ue
 a

t t
he

 0
.0

5 
si

gn
if

ic
an

ce
 le

ve
l i

s 
0.

00
7 

fo
r 

bo
th

 th
e 

E
A

 a
nd

 A
A

 s
am

pl
es

. G
iv

en
 th

at
 th

e 
th

re
e 

ge
ne

tic
 

m
od

el
s 

an
d 

th
re

e 
N

D
 m

ea
su

re
s 

ar
e 

so
 h

ig
hl

y 
re

la
te

d 
to

 e
ac

h 
ot

he
r,

 w
e 

fe
el

 th
at

 it
 is

 to
o 

co
ns

er
va

tiv
e 

to
 a

pp
ly

 a
 B

on
fe

rr
on

i c
or

re
ct

io
n 

to
 th

es
e 

co
m

pa
ri

so
ns

. H
ow

ev
er

, i
f 

on
e 

w
is

he
s 

to
 c

or
re

ct
 f

or
 th

em
, t

he
 

ad
ju

st
ed

 P
 v

al
ue

 a
t t

he
 0

.0
5 

si
gn

if
ic

an
ce

 le
ve

l b
ec

om
es

 0
.0

01
2 

fo
r 

bo
th

 th
e 

sa
m

pl
es

. T
hi

s 
ap

pr
oa

ch
 c

an
 b

e 
ap

pl
ie

d 
to

 T
ab

le
 3

 a
s 

w
el

l.

2)
Su

pe
rs

cr
ip

ts
 in

di
ca

te
 g

en
et

ic
 m

od
el

s 
us

ed
 f

or
 a

na
ly

si
s:

 a
 =

 a
dd

iti
ve

; d
 =

 d
om

in
an

t; 
an

d 
r 

=
 r

ec
es

si
ve

.

3)
A

ge
 a

nd
 s

ex
 w

er
e 

us
ed

 a
s 

co
va

ri
at

es
 in

 th
e 

an
al

ys
es

 f
or

 b
ot

h 
th

e 
E

A
 a

nd
 A

A
 s

am
pl

es
.

Neuropsychopharmacology. Author manuscript; available in PMC 2009 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 17

T
ab

le
 3

P
- 

an
d 

Z
-v

al
ue

s 
of

 h
ap

lo
ty

pe
s 

th
at

 a
re

 s
ig

ni
fi

ca
nt

ly
 a

ss
oc

ia
te

d 
w

ith
 th

re
e 

N
D

 m
ea

su
re

s 
in

 th
e 

E
A

 a
nd

 A
A

 s
am

pl
es

H
ap

lo
ty

pe
SQ

H
IS

F
T

N
D

1
2

3
4

5
6

F
re

q.
P

-v
al

ue
Z

-v
al

ue
G

lo
ba

l
P

-v
al

ue
N

o.
 o

f
fa

m
ili

es
P

-v
al

ue
Z

-v
al

ue
G

lo
ba

l
P

-v
al

ue
N

o.
 o

f 
fa

m
ili

es
P

-v
al

ue
Z

-v
al

ue
G

lo
ba

l
P

-v
al

ue
N

o.
 o

f
fa

m
ili

es

E
A

 s
am

pl
e

T
G

T
0.

54
0.

00
58

a
−

2.
76

a
0.

01
5a

79
a

0.
00

79
a

−
2.

65
a

0.
02

7a
80

a
0.

31
a

1.
02

a
0.

15
a

71
a

0.
01

3d
−

2.
49

d
0.

12
d

45
d

0.
03

3d
−

2.
13

d
0.

19
d

48
d

G
T

A
0.

52
0.

01
5a

−
2.

44
a

0.
11

a
82

a
0.

01
8a

−
2.

36
a

0.
13

a
83

a
0.

03
1d

−
2.

15
d

0.
09

2d
51

d

0.
00

35
d

−
2.

92
d

0.
03

3d
51

d
0.

00
76

d
−

2.
67

d
0.

05
6d

51
d

C
A

G
0.

24
0.

03
3a

2.
41

a
0.

14
a

64
a

0.
03

1a
2.

13
a

0.
10

a
65

a
0.

04
6a

1.
97

a
0.

25
a

65
a

T
A

G
0.

52
0.

00
71

a
−

2.
69

 a
0.

14
a

87
a

0.
00

78
a

−
2.

66
a

0.
10

a
88

a
0.

04
7a

−
2.

00
a

0.
25

a
88

a

0.
00

41
d

−
2.

87
d

0.
07

d
60

d
0.

01
2d

−
2.

52
d

0.
07

8d
61

d
0.

04
9d

−
1.

98
d

0.
19

d
61

d

A
A

 s
am

pl
e

G
T

A
0.

12
0.

00
98

r
−

2.
58

r
0.

11
r

16
r

0.
03

7r
−

2.
09

r
0.

31
r

16
r

0.
05

r
−

1.
96

r
0.

34
r

16
r

T
A

C
0.

15
0.

01
4r

−
2.

46
r

0.
06

2r
18

r
0.

05
2r

−
1.

94
r

0.
28

r
18

r
0.

09
0r

−
1.

69
r

0.
36

r
18

r

N
ot

es
:

1)
O

nl
y 

th
e 

m
aj

or
 h

ap
lo

ty
pe

s 
w

ith
 P

-v
al

ue
 <

 0
.0

5 
in

 a
t l

ea
st

 o
ne

 N
D

 m
ea

su
re

 a
re

 s
ho

w
n

2)
A

t t
he

 0
.0

5 
si

gn
if

ic
an

ce
 le

ve
l, 

si
gn

if
ic

an
t P

-v
al

ue
 a

ft
er

 B
on

fe
rr

on
i c

or
re

ct
io

n 
fo

r 
th

re
e 

m
aj

or
 h

ap
lo

ty
pe

s 
in

 th
e 

E
A

 s
am

pl
e 

is
 0

.0
16

7;
 f

or
 f

iv
e 

m
aj

or
 h

ap
lo

ty
pe

s 
in

 th
e 

A
A

 s
am

pl
e 

is
 0

.0
1.

3)
Su

pe
rs

cr
ip

ts
 in

di
ca

te
 th

e 
ge

ne
tic

 m
od

el
s 

us
ed

 in
 th

e 
an

al
ys

is
: a

 =
 a

dd
iti

ve
; d

 =
 d

om
in

an
t; 

an
d 

r 
=

 r
ec

es
si

ve
.

4)
A

ge
 a

nd
 s

ex
 w

er
e 

us
ed

 a
s 

co
va

ri
at

es
 in

 b
ot

h 
th

e 
E

A
 a

nd
 A

A
 s

am
pl

es
.

Neuropsychopharmacology. Author manuscript; available in PMC 2009 October 01.


