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In acute pancreatitis, initiating cellular events causing acinar cell

injury includes co-localization of zymogens with lysosomal hydrolases,

leading to premature enzyme activation and pathological exocytosis of

zymogens into the interstitial space. This is followed by processes that

accentuate cell injury; triggering acute inflammatory mediators,

intensifying oxidative stress, compromising the microcirculation and

activating a neurogenic feedback. Such localized events then progress

to a systemic inflammatory response leading to multiorgan dysfunction

syndrome with resulting high morbidity and mortality. The present

review discusses some of the most recent insights into each of these

cellular processes postulated to cause or propagate the process of acute

pancreatitis, and also the role of alcohol and genetics.
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De récents aperçus des mécanismes cellulaires
de la pancréatite aiguë

En cas de pancréatite aiguë, l’initiation d’événements cellulaires causant

des lésions cellulaires acineuses inclut la colocalisation de proenzymes

avec des hydrolases lysosomiales entraînant une activation enzymatique

prématurée et une exocytose pathologique des proenzymes dans l’espace

interstitiel. Ces phénomènes sont suivis de processus qui accentuent la

lésion cellulaire, déclenchant des médiateurs inflammatoires aigus, inten-

sifiant le stress oxydatif, compromettant la microcirculation et activant

les rétroactions neurogènes. Ces événements localisés évoluent ensuite

vers une rétroaction inflammatoire systémique provoquant un syndrome

de dysfonctionnement multiviscéral entraînant un taux de morbidité et

de mortalité élevé. La présente analyse expose certains des aperçus les plus

récents sur chacun de ces processus cellulaires qu’on pense causer ou

propager le processus de pancréatite aigu, et également le rôle de l’alcool

et de la génétique.

PREMATURE ACTIVATION OF 
PANCREATIC ENZYMES WITHIN THE 

PANCREATIC ACINAR CELL
The main role of the exocrine pancreas is to synthesize and
secrete digestive enzymes, such as trypsinogen, into the
intestinal lumen. In the lumen, trypsinogen is activated by
duodenal enterokinase into trypsin, which is then capable of
activating other pancreatic enzymes to collectively perform
nutrient digestion (1). However, in acinar cells, these
enzymes are maintained in inactive proforms (ie, trypsino-
gen) within the zymogen granules (ZGs) by inhibitors such as
serine protease inhibitor, Kazal type 1 (SPINK1) (2).
Inadvertently, activated enzymes, particularly trypsin, are
cleaved by cytosolic enzyme Y and mesotrypsin (3). Because
optimal pH levels and Ca2+ concentrations are required to
activate the enzymes, a controlled pH range within the ZG is
maintained by a ZG membrane-bound proton pump and a
vacuolar ATPase (4), and low cytosolic Ca2+ concentration is
maintained by Ca2+ sequestration into intracellular stores
within a smooth endoplasmic reticulum compartment by a
Ca2+ ATPase (5). 

The current dogma for the pathogenesis of acute
pancreatitis is the premature activation of trypsinogen within
the pancreatic cell (6,7). The major established experimental
model of mild acute pancreatitis is the hyperstimulation
(cholecystokinin [CCK] or its analogue cerulein/carbachol)

model (6,7), which leads to missorting and co-localization of
zymogens with lysosomal cathepsin B within large cytoplas-
mic vacuoles, where trypsinogen is cleaved and activated
(6,7). Within this compartment, zymogen activation is
favoured by an acidic pH that is effected by a hyperstimulation-
induced translocation of cytosolic vacuolar ATPase (4).
Hyperstimulation also causes a high and persistent rise in
cytosolic Ca2+ concentration, which facilitates enzyme
activation and large vacuole formation (8,9). Pharmacolog-
ical blockade of cathepsin B decreases necrosis in cerulein-
induced pancreatitis (10). However, genetic deletion of
cathepsin B in mice only partially prevented trypsinogen
activation and did not completely abrogate cerulein-induced
pancreatitis (11), indicating that additional factors must be
involved in the pathogenesis of acute pancreatitis. 

BASOLATERAL EXOCYTOSIS INTO THE
INTERSTITIAL SPACE

Interstitial pancreatitis is a mild stage of clinical pancreatitis,
which is due to the misdirection of pancreatic enzymes into
the interstitial space (12). It was postulated that the normal
release of enzymes into the ductal lumen from exocytosis of
ZGs located at the apical pole becomes misdirected to the
basolateral plasma membrane (PM), which then undergoes
basolateral exocytosis (13). In fact, basolateral exocytosis in
pancreatic acinar cells was demonstrated 20 years ago by
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ultrastructural studies in not only hyperstimulation rodent
models (13), but also in human pancreatitis (14). However, it
was only recently that we were able to show basolateral exo-
cytosis by real-time imaging of single ZG exocytosis in supra-
maximal CCK-stimulated rat pancreatic acinar cells (15).
We have further elucidated the molecules mediating
basolateral exocytosis (15,16). It is well established that the
fundamental mechanism controlling the fusion of
membranes in all cell types revolves around the soluble 
N-ethylmaleimide-sensitive factor attachment protein
(SNAP) receptor (SNARE) hypothesis, which proposed that
cytosolic N-ethylmaleimide-sensitive factors and soluble
SNAPs bind SNAREs on donor vesicles (v-SNAREs) and
target membranes (t-SNAREs) to form a series of
multimolecular complexes (17). The union between v- and 
t-SNAREs ultimately mediates the fusion of the two mem-
branes (17,18). Specificity of membrane fusion events is due
to the compartmental specificity of distinct sets of v-SNARE
(vesicle-associated membrane proteins [VAMPs]) and 
t-SNARE (syntaxin and SNAP-25) proteins (19), and acces-
sory proteins (particularly Munc18), which regulate the
SNARE complex assembly (20). In the pancreatic acinar
cell, we have identified the key SNARE proteins on the baso-
lateral membrane (Syntaxin 4 and SNAP-23) and ZGs
(VAMP), as well as the regulatory protein Munc18c 
(15,16,21-23). Munc18c binds Syntaxin 4 to prevent its
assembly with the other SNARE proteins (24,25), but with
supramaximal CCK stimulation, Munc18c dissociates from
the basolateral PM, relieving Syntaxin 4 to bind to SNAP-23
and VAMP (most likely VAMP-8) (26) to effect basolateral
exocytosis (15,16). In fact, we observed Munc18c displace-
ment from the basolateral PM not only in the rat model of
hyperstimulation-induced pancreatitis (15), but also in
human alcoholic chronic pancreatitis tissues (27). 

Although the SNARE proteins bring the cognate
membrane compartments in close proximity, Ca2+ is
nonetheless the final fusogenic agent. Ca2+ can be released
from different locations of the acinar cell. Physiological CCK
stimulation acts on inositol 1,4,5-triphosphate receptors of
Ca2+ stores that overlap the ZGs in the apical pole to effect
normal apical exocytosis (28,29). In contrast, hyperstimula-
tion acts on ryanodine receptors (RYR), which release a dis-
tinct Ca2+ store located at the basolateral pole (30). This site
of Ca2+ release is strategically located to effect basolateral
exocytosis. Remarkably, depletion of RYR-sensitive Ca2+

stores or RYR blockade, in vitro and in vivo, reduced
hyperstimulation-induced intracellular zymogen activation,
but did not affect enzyme secretion (30). This intriguingly
suggests that zymogens could already be activated within the
ZGs before their release, by basolateral exocytosis into the
interstitial space, which would initiate an inflammatory
response. 

ROLE OF INFLAMMATORY MEDIATORS
Acini undergoing injury release zymogens, particularly
trypsin, that induce macrophages to synthesize and release
proinflammatory cytokines, such as tumour necrosis factor-
alpha (TNF-α) and interleukin-1 (IL-1) beta, which are
capable of inducing neutrophil recruitment and activation
within the pancreatic tissue (31,32). Acinar cells themselves
can synthesize cytokines, which amplify the local inflamma-
tory response (33). TNF-α has direct actions on acini that

mimic CCK hyperstimulation, including nuclear factor-
kappa B (NF-κB) activation and disruption of the actin
cytoskeleton; but unlike CCK, TNF-α can also induce
apoptosis (34). NF-κB is a transcription factor that promotes
the expression of proinflammatory cytokines (35).
Supramaximal CCK stimulation (hyperstimulation), in vitro
or in vivo, causes NF-κB activation within acinar cells during
the early phase of pancreatitis (36) by inducing IκB, the
enzyme degrading NF-κB proteolysis. Satoh et al (36) have
revealed that CCK-induced IκB degradation is partly
mediated by novel protein kinase C isoforms delta and
epsilon, which are activated by diacylglycerol, generated by
phosphatidylinositol- and phosphatidylcholine-specific
phospholipase C. 

Zymogens and cytokines released by the inflamed pan-
creas into the ascitic fluid are absorbed into the circulation,
leading to the systemic inflammatory response syndrome
(31,32,37). These molecules induce leukocyte recruitment,
which in turn exacerbates the synthesis and release of proin-
flammatory mediators in distant targeted organs (ie, lung),
with consequent multiorgan dysfunction syndrome (38). In
fact, disease severity can be correlated to the level of these
circulating cytokines (39). Consistent with the postulate that
cytokines and NF-κB contribute to both local and systemic
inflammatory response (40), pharmacological inhibition of
NF-κB (40-42), leukocyte depletion (43) or genetic deletion
of cytokine IL-1β (44), receptors to IL-1 type I or TNF-α
type I (45) or intercellular adhesion molecule-1 (46) have
uniformly decreased the severity of pancreatitis, including
the associated lung injury (43).

Compromised pancreatic blood circulation also
contributes to the pathogenesis of acute pancreatitis (47). A
major factor modulating the pancreatic microcirculation is
nitric oxide metabolism (48), which when altered in gene
knockouts of nitric oxide synthase (49) or IL-18 (50),
profoundly influences cerulein-induced pancreatitis (50).

NEUROGENIC INFLAMMATION 
The perivaterian duodenum, the region where the pancreas
meets the duodenum, has a very rich autonomic innervation
(51). Any obstruction and/or irritative noxa in this region
(ampulla of Vater) caused by gallstones, biliary sludge or
endoscopic manoeuvres, stimulates primary sensory neurons
which trigger autonomous arc reflexes (AARs), that initiate
an acute, neurogenic inflammatory response in the
pancreatic tissue (52). The AARs integrate the perivaterian
duodenum autonomic nerve fibres with those from the celiac
ganglion and bulbar-hypothalamic nuclei (52,53). These
sensory neurons in the pancreas contain unmyelinated,
capsaicin-sensitive (type C) nerve fibres that release sensory
peptides such as substance P, neurokinin A and vasoactive
intestinal peptides (52). These peptides act on mast cells,
causing release of histamine and proinflammatory mediators,
which are responsible for vasodilation and increased vascular
permeability. This leads to edema and recruitment of
neutrophils (52,54,55). Stimulation of the AARs also
induces a local, sympathetic overstimulation that acts on 
the pancreatic microcirculation, causing vasoconstriction
and consequent ischemia-reperfusion injury (56). These
AAR-mediated events are observed using biliopancreatic
duct outlet exclusion-closed duodenal loops model (57).
Using this model, in one study (57) topical lidocaine was
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able to interrupt the AARs, which remarkably ameliorated
pancreatitis. 

FACTORS INFLUENCING RECOVERY AND
REGENERATION AFTER PANCREATITIS

A number of proteins within acinar cells act to protect the
exocrine pancreas from injury or to facilitate its recovery.
These proteins include heat shock proteins (Hsps),
pancreatitis-associated proteins (PAPs) (58) and cytoskeletal
actin (59). Hsp27, Hsp60, Hsp70 and Hsp90, present in the
exocrine pancreas (60,61), are stress-induced proteins
inducible by hyperthermia (62) and water immersion (63).
Both hyperthermia and water immersion protect against
cerulein hyperstimulation and arginine-induced pancreatitis
via their actions on Hsp27 and Hsp70 (62,64). Hsp27, when
phosphorylated, is able to inhibit trypsin activity as well as
prevent degradation and disruption of the actin cytoskeleton,
thereby hastening acini recovery after injury (65). In fact,
transgenic mice overexpressing human Hsp27 or a constitu-
tively phosphorylated mutant were resistant to cerulein-
induced pancreatitis, which correlated with reduced trypsin
activation and intact actin cytoskeleton (65). Hsp70 activa-
tion inhibits NF-κB activation in pancreatitis (66). 
PAP-1, whose levels are increased during pancreatitis (67),
exhibits antiapoptotic and anti-inflammatory actions,
primarily by reducing TNF-α-induced apoptosis in acinar
cells (68) and inhibiting TNF-α-induced NF-κB activation
in macrophages (69). PAP-1 also reduces leukocyte-induced
lung injury during acute pancreatitis (70).

The following proteins are also elevated very early in the
acinar cells during pancreatitis and can influence pancreatic
regeneration. p8 is a nuclear phosphoprotein (71), which
may act as a transcription cofactor involved in cell
proliferation (72,73). Interferon-inducible protein 15 is
induced by interferons, alpha and delta, and inhibits cell
proliferation (74). Vacuole membrane protein 1 is a proapop-
totic factor that is associated with large cytoplasmic vacuoles
(75,76), one of the earliest morphological evidences of mild
acute pancreatitis (6,7). Mitochondrial dysfunction occur-
ring during acinar injury results in ATP depletion and activa-
tion of poly (ADP-ribose) polymerase, which interferes with
caspase-9 activation (77). This proapoptotic action of poly
(ADP-ribose) polymerase is activated in cerulein-induced
pancreatitis, and its pharmacological blockade inhibits
pancreatic necrosis (77). The local inflammatory response
can activate neural release of proteinase-activated receptor 2,
which has protective effects through actions on exocrine and
duct regeneration and repair (77,78). However, proteinase-
activated receptor 2 can also induce vasoconstriction of the
microcirculation, followed by vasodilation due to its ability
to release nitric oxide from endothelial cells, which collec-
tively contributes to pancreatic ischemia-reperfusion injury
(78).

GENE MUTATIONS AND HEREDITARY
PANCREATITIS

Recurrent episodes of acute pancreatitis, particularly in the
young, indicate a genetic origin (79). The main gene
mutations associated with pancreatitis are in the following
proteins: cationic trypsinogen (PRSS 1), the pancreatic
secretory trypsin inhibitor or SPINK1, the cystic fibrosis

transmembrane conductance regulator (CFTR), alpha-1-
antitrypsin, alcohol metabolizing enzymes and the human
leukocyte antigen locus (80). Recurrent acute pancreatitis
can also result from familial disorders of lipid metabolism
(familial hypertriglyceridemia, familial hypercholesterolemia,
congenital deficits in lipase lipoprotein or apolipoprotein C-II),
calcium metabolism (hyperparathyroidism, familial hypercal-
cemia or hypocalciuria) and other disorders (homocystinuria
or acute intermittent porphyria) (81).
PRSS 1 mutations cause excessive activation of cationic
trypsinogen to occur within the acinar cell and consequent
autodigestion of the pancreas (82). These cases of autosomal
dominant hereditary pancreatitis are mostly linked to 
two missense mutations in the PRSS 1 gene on chromosome 7
(7q35), in exon 2 (N291) and exon 3 (R122H), with 80%
penetrance (78,81). These mutations also increase the risk of
developing pancreatic adenocarcinoma by 50 times,
particularly if the allele is of paternal origin and/or combined
with smoking (83).

SPINK1 blocks the active site of trypsinogen (2). Most
cases are associated with the N34S mutation in exon 3 of the
SPINK1 gene located in chromosome 5q (2). Although 6%
to 40% of patients diagnosed with idiopathic pancreatitis
have a N34S mutation (2,80), these mutations per se are not
sufficient to induce pancreatitis, and they would require
other environmental (ie, high alcohol intake) or genetic 
(ie, CFTR gene mutations) triggering factors (80,84). 

Cystic fibrosis is the most frequent autosomal recessive
disease in the Caucasian population (one in every 2500 peo-
ple) with a very high frequency of heterozygous carriers (one
in 25 people) (79). The major mutation in the CFTR gene is
situated in the long arm of chromosome 7 in 7q31 (83). The
CFTR protein is a chloride channel on pancreatic ductal
cells (85,86), which when defective, reduces pancreatic duc-
tal fluid flow, resulting in mucovisidosis and ductal obstruc-
tion, and leading to pancreatic insufficiency and episodes of
pancreatitis (86,87). 

ALCOHOL-INDUCED PANCREATITIS
Alcohol is the most common cause of pancreatitis, but the
precise mechanism of alcohol-induced pancreatic injury
remains elusive (88). In fact, animal models with administra-
tion of alcohol acutely or chronically did not lead to
pancreatitis (89). Instead, after alcohol feeding, pancreatitis
can be induced by submaximal CCK, fat and viral infections
(90-92). This suggests that alcohol either serves as a
sensitizing factor or activates undefined ‘susceptibility’
factors, which predispose the exocrine pancreas to injury by
triggering factors. As a sensitizing factor, animals that were
put on an alcohol diet exhibited increased expression of
cytokines and NF-κB activation upon low-dose CCK-8
stimulation (93). As a susceptibility mechanism, our recent
report on pancreatic tissues obtained from a patient with
mild alcoholic pancreatitis showed that exocytotic proteins
in the acinar basolateral PM are perturbed; that we propose
predisposed to pathological basolateral exocytosis that
perpetuates the inflammatory process (27).

Nonetheless, alcohol has been shown to have direct
effects on the exocrine pancreas. Alcohol metabolism in the
acinar cells is similar to hepatocytes, including oxidative
pathways generating acetaldehyde and nonoxidative pathways
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generating fatty acid ethyl esters (94,95), both of which are
toxic to acini. Reactive oxygen species are also generated,
which alter actin filament polymerization to induce
cytoskeletal disruption (96). Alcohol also causes hypoxia
(97), as well as mitochondrial dysfunction and injury (98),
which aggravates the ischemic-hypoxic injury caused by the
already compromised microcirculation. Mitochondrial
dysfunction perturbs Ca2+ release processes (99), which
activate calpains, a cytosolic cysteine protease that targets
the actin cytoskeleton (100), along with Ca2+-induced
detrimental actions on zymogen activation and pathological
exocytosis. Alcohol increases lysosome (101) and ZG fragility

(102), increases trypsinogen synthesis (103) and promotes
zymogen activation (102). Alcohol can also activate 
‘neurogenic’ mechanisms, specifically by increasing the sym-
pathetic tone, which may result in chronic alteration in
vagal-vagal tone, inducing cholinergic hyperstimulation of
the pancreas (52), and spasms and dysfunction of the sphinc-
ter of Oddi (52).
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