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Abstract
Severe pain syndromes reduce quality of life in patients with inflammatory and neoplastic diseases,
partly because reduced analgesic effectiveness with chronic opiate therapy (i.e., tolerance) leads to
escalating doses and distressing side effects. Peroxynitrite mediated nitroxidative stress in the dorsal
horn of the spinal cord plays a critical role in the induction and development of antinociceptive
tolerance to morphine. This provides a valid pharmacological basis for developing peroxynitrite
scavengers as potent adjuncts to opiates in the management of pain. The cationic Mn(III) ortho N-
alkylpyridylporphyrins, MnTE-2-PyP5+ and MnTnHex-2-PyP5+, are among the most potent
peroxynitrite scavengers with nearly identical scavenging rate constants (≫107 M−1 s−1). Yet,
MnTnHex-2-PyP5+ is significantly more lipophilic, more bioavailable, and in turn, was 30-fold more
effective in blocking the development of morphine antinociceptive tolerance than MnTE-2-PyP5+

using the hot plate test in a well characterized murine model. The hydrophilic MnTE-2-PyP5+ and
the lipophilic MnTnHex-2-PyP5+ were 10-fold and 300-fold, respectively, more effective in
inhibiting morphine tolerance than hydrophilic Fe(III) porphyrin, FeTM-4-PyP5+. Both Mn
porphyrins decreased levels of TNF-α, IL-1β, and IL-6 to normal values. Neither of them affected
acute morphine antinociceptive effect nor caused motor function impairment. Also neither was able
to reverse already established morphine tolerance. We have recently shown that anionic porphyrin,
Mn(III) tetrakis(4-carboxylatophenyl)porphyrin, MnTBAP is selective in removing ONOO− over
O2

•−, yet at ~ 2 orders of magnitude lower efficacy than MnTE-2-PyP5+ and MnTnHex-2-PyP5+,
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which in turn parallels up to 100-fold lower ability to reverse morphine tolerance. These data (1)
support the role of peroxynitrite rather than superoxide as a major mechanism in blocking the
development of morphine tolerance, and (2) show that lipophilicity is a critical parameter in
enhancing the potency of such novel peroxynitrite scavengers.
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pain management; morphine tolerance; peroxynitrite; nitrotyrosine; Mn porphyrins; MnTBAP;
MnTE-2-PyP; MnTnHex-2-PyP; peroxynitrite scavenging; cytokines

Introduction
Chronic, severe pain is a significant health problem [1]. One third of Americans suffer from
some form of chronic pain, and in over 30% it is resistant to analgesic therapy [1]. The economic
impact of pain is equally large at approximately $100 billion annually [1]. Opiate/narcotic
analgesics, typified by morphine sulfate, are the most effective treatments for acute and chronic
severe pain but their clinical utility is often hampered by the development of analgesic tolerance
as well as by de novo painful hypersensitivity to innocuous and noxious stimuli, phenomena
observed in both animal and human studies [2–4]. With respect to morphine in particular,
tolerance necessitates escalating doses to achieve equivalent pain relief [5], even as morphine-
induced hypersensitivity subverts the therapeutic impact of such dose increases [2–4]. This
complex pathophysiological cycle contributes to decreased quality of life in the growing
population of subjects with chronic pain because of oversedation, reduced physical activity,
respiratory depression, constipation, potential for addiction, and other side-effects [5].
Accordingly, there is major interest in new approaches to maintain opiate efficacy during
repetitive dosing for chronic pain, without engendering tolerance or unacceptable side-effects.

The mechanisms by which prolonged opiate exposure induces tolerance and hypersensitivity
remain unclear, although a role for peroxynitrite (ONOO−), the product of the interaction
between superoxide (O2

•−) and nitric oxide (•NO) has been demonstrated [6]. To this end,
repeated administration of morphine in mice promotes the nitration and enzymatic inactivation
of spinal manganese superoxide dismutase (MnSOD) which provides a critical source of spinal
ONOO− in turn contributing to the development of morphine antinociceptive tolerance through
three well defined biochemical pathways within the dorsal horn of the spinal cord: (1) post-
translational nitration of proteins involved in glutamate homeostasis, (2) neuroimmune
activation (release of proinflammatory cytokines such as tumor necrosis factor-α (TNF-α),
interleukin-1β (IL-1β), and interleukin-6 (IL-6)), and (3) apoptosis [6].

Due to the increasing importance of oxidative stress in a number of diseases, redox able
compounds have been actively thought such as Mn cyclic polyamines [7–9], Mn salen
derivatives [10], nitroxides [11], mitochondrially targeted drugs such as MitoQ [12] and others.
Among them metalloporphyrins have the highest rate constants for scavenging O2

•− and
ONOO− and were shown to ameliorate all conditions that have oxidative stress in origin such
as diabetes, cancer, radiation injury, central nervous system injuries, including morphine
antinociceptive tolerance [6,13–22]. Incidentally, the most potent ONOO− scavengers and
SOD mimics reported so far are cationic Mn(III) N-alkylpyridylporphyrins (Figure 1) [23–
26]. Originally metalloporphyrins, both Fe and Mn ones have been developed as catalysts for
O2

•− dismutation based on structure-activity relationship between the kcat for O2
•− dismutation

and redox property of the metal site [23–25]. It was later shown that the ONOO− reduction by
metalloporphyrin is governed by the similar relationships as O2

•− dismutation, as the ability
of the metalloporphyrin to reduce ONOO− parallels their ability to catalyze the O2

•−

dismutation [27,28]. Given that •NO reacts with O2
•− to yield ONOO− very rapidly with rate
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constant higher (2 × 1010 M−1s−1 [29]) than that of the self (log k ~5.7 [30]) or enzymatic (log
kcat ~ 8.84–9.3 [31–36]) dismutation of O2

•−, it is, thus, likely that in the presence of •NO the
predominant mode of action of metalloporphyrins in vivo will be the decomposition of
ONOO− rather than dismutation of O2

•−. Importantly, scavenging ONOO− in vivo is coupled
with cellular reductants and is thus catalytic in nature [37]. Of note, Mn porphyrins were also
found to be able to efficiently remove CO3

•−, which is the degradation product of the
ONOO− adduct with CO2 [27]. Finally, by removing reactive species cationic ortho Mn(III)
N-alkylpyridylporphyrins have been shown to suppress not only the primary oxidative event
but also the cellular transcriptional activity (inhibiting HIF-1α, NF-κB, AP-1) [13,22–26,38–
43] and thereby the secondary inflammatory and immune responses and levels of related
cytokines as well.

Salvemini et al [6] have already shown that Fe(III) cationic para N-methylpyridylporphyrin,
FeTM-4-PyP5+ (Figure 1) is able to block the development of morphine antinociceptive
tolerance. Yet, the use of Fe porphyrins has limitations due to the high likelihood of Fenton-
related toxicity, as well as due to their lower ability to reduce ONOO− (Table 1). Further, their
richer axial coordination chemistry in comparison with Mn porphyrins enables them to exert
more efficiently other in vivo functions, such as cyt P450-like actions [44].

Another critical parameter for the in vivo efficacy of Mn porphyrins is their bioavailability
[21,45]. We have developed more lipophilic porphyrins while maintaining the same antioxidant
potential, which is defined by the catalytic rate constants [44,46]. A convenient strategy was
to extend the alkyl side chain length to increase lipophilicity, while keeping the positively
charged nitrogens in ortho positions of the meso pyridyl groups to maintain the thermodynamic
and electrostatic facilitations [24–26,46]. MnTnHex-2-PyP5+ (Figure 1), a hexyl analogue of
the lead compound MnTE-2-PyP5+ was found to be considerably more lipophilic than
MnTE-2-PyP5+ [46] and ~30-fold more effective in protecting aerobic growth of SOD-
deficient E. coli [45]. The effect parallels the significantly increased uptake of MnTnHex-2-
PyP5+ by E. coli [45]. MnTnHex-2-PyP5+ was also up to 120-fold more efficacious in other
models of oxidative stress injuries [21,47; Spasojević et al., 2008, unpublished; Batinić-
Haberle et al., 2007, unpublished; Crow and Batinić-Haberle, 2006, unpublished]. In a stroke
model our most recent data indicate an enhanced distribution of MnTnHex-2-PyP5+ in central
nervous system; the blood to brain partition ratio is 1:8 with MnTnHex-2-PyP5+ and 1:100
with MnTE-2-PyP5+ [Spasojević et al., 2008, unpublished]. We thus hypothesized that
MnTnHex-2-PyP5+ would be superior to the less lipophilic porphyrins in blocking the
development of morphine antinociceptive tolerance. This study aimed at assessing the impact
of lipophilicity on the efficacy of Mn porphyrins in blocking the development of morphine
antinociceptive tolerance.

Materials and methods
Mn porphyrins

MnTE-2-PyP5+ and MnTnHex-2-PyP5+ were synthesized and characterized as previously
described [23,46,48].

Induction of morphine-induced antinociceptive tolerance in mice
Male CD-1 mice (24–30g, Charles River) were housed and cared for in accordance with the
guidelines of the Institutional Animal Care and Use Committee of the St. Louis University
Health Science Center and in accordance with the National Institute of Health Guidelines on
Laboratory Animal and the University of Messina, in compliance with Italian regulations on
protection of animals used for experimental and other scientific purposes (D.M. 116192) as
well as with the EEC regulations (O.J. of E.C. L 358/1 12/18/1986). Mice were housed 5–7
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per cage and maintained under identical conditions of temperature (21±1°C), humidity (60
±5%) with a 12-hr light-dark cycle and allowed food ad libitum. Nociceptive/pain thresholds
were determined by measuring latencies (in seconds, s) of mice placed in a transparent glass
cylinder on a hot plate (Ugo Basile, Italy) maintained at 52°C. Responses indicative of
nociception included intermittent lifting and/or licking of the hindpaws or escape behavior.
Determination of antinociception/pain relief effects was assessed between 7:00 and 10:00 AM.
All injections were given by intraperitoneal (ip) or subcutaneous (sc) means in a 0.1 mL volume
at approximately 7 AM and 4 PM. Drugs or their vehicle (saline) were given before each dose
of morphine. Hot plate latencies were taken in mice from all groups on day five before (baseline
latency) and 40 min after an acute dose of morphine (0.3–3 mg/kg) or its vehicle (saline)
(response latency). Baseline values from all groups as measured on day five before injection
of the acute dose of morphine or its vehicle, were statistically insignificant and ranged between
6–8 s. Results are expressed as percent maximal possible antinociceptive effect (% MPE)
calculated as follows: (response latency − baseline latency)/(cut off latency − baseline latency)
× 100. A cut-off latency of 20 s was employed to prevent tissue damage. Six to twelve mice
per group were used and all experiments were conducted with the experimenters blinded to
treatment conditions. Unless specified, all drugs were purchased from Sigma. The following
experimental groups were used.

Naïve group—In this group, mice were injected twice a day with an ip injection of saline
(the vehicle used to deliver the drugs used in this study over four days) and an sc injection of
saline (vehicle used to deliver morphine over four days). On day five, mice received an ip
injection of saline followed fifteen minutes later by an sc injection of saline.

Naïve + drug group—In this group, mice were injected twice a day with an ip injection of
the highest dose of MnTE-2-PyP5+ (3 mg/kg/day) or MnTnHex-2-PyP5+ (0.1 mg/kg/day) and
sc injection of saline. On day five, mice received an ip injection of MnTE-2-PyP5+ (1.5 mg/
kg/day) or MnTnHex-2-PyP5+ (0.05 mg/kg/day) followed fifteen minutes later by an sc
injection of saline.

Vehicle group—In this group, mice were injected twice a day with an ip injection of saline
and an sc injection of saline. On day five, mice received an ip injection of saline followed
fifteen minutes later by an sc injection of acute morphine eliciting near-to-maximal
antinociception (3 mg/kg).

Vehicle + drugs group—In this group, mice were injected twice a day with an ip injection
of the highest dose of MnTE-2-PyP5+ (3 mg/kg/day) or MnTnHex-2-PyP5+ (0.1 mg/kg/day)
and an sc injection of saline. On day five, mice received an ip injection of MnTE-2-PyP5+ (1.5
mg/kg/day) or MnTnHex-2-PyP5+ (0.05 mg/kg/day) followed fifteen minutes later by sc doses
of acute morphine giving between 10 and 95% antinociceptive responses within 40 minutes of
administration (0.1–3 mg/kg).

Morphine (Mor) group—In this group, mice were injected twice a day with an ip injection
of saline and sc injection of morphine (20 mg/kg/day). On day five, mice received an ip
injection of saline followed fifteen minutes later by an sc dose of acute morphine (3 mg/kg).

Morphine + drugs group—In this group, mice were injected twice a day with an ip injection
of varying doses of MnTE-2-PyP5+ (0.3–3 mg/kg/day) or MnTnHex-2-PyP5+ (0.01–0.1 mg/
kg/day) followed by the sc injection of morphine (20 mg/kg/day). On day five, mice received
an ip dose of MnTE-2-PyP5+ (1.5 mg/kg/day) or MnTnHex-2-PyP5+ (0.05 mg/kg/day)
followed fifteen minutes later by the sc dose of acute morphine (3 mg/kg).
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In another set of experiments, and in order to address whether MnTE-2-PyP5+ or MnTnHex-2-
PyP5+ reverse the expression of tolerance, mice were treated twice a day with morphine as
described above and on day five they received a single intraperitoneal dose of MnTE-2-
PyP5+ (3 mg/kg/day) or MnTnHex-2-PyP5+ (0.1 mg/kg/day) followed fifteen minute later by
the acute dose of morphine (3 mg/kg).

On day five and after the behavioral tests, spinal cord tissues from the lumbar enlargement
segment of the spinal cord (L4-L6) and dorsal horn tissues were removed and tissues processed
for immunohistochemical, Western blot and biochemical analysis.

Rotarod test
Mice (n=4 per group) were trained before experimentation for their ability to remain for 120
sec on a revolving Rotarod apparatus (accelerating units increase from 3.5 to 35 rpm in 5 min).
Mice were injected with an intraperitoneal injection of the highest dose of MnTE-2-PyP5+ or
MnTnHex-2-PyP5+ (3 mg/kg and 0.1 mg/kg respectively) found to fully block antinociceptive
tolerance or its vehicle (saline) and subsequently tested and examined for motor impairments
on the Rotarod at 15, 30 and 60 minutes after drug administration. The latency time to fall off
the Rotarod was determined (cut-off time used was 120 seconds).

Cytokines
The TNF-α, IL-1β and IL-6 were measured by ELISA using commercially available kits as
described previously [49].

Statistics
For paired group analysis Student’s t-tests were performed. For paired multiple groups,
analyses of variance followed by Student-Newman-Keuls test were employed to analyze the
data. Results are expressed as mean±sem for n animals. A statistically significant difference
was defined as a P value <0.05.

Results
The development of morphine-induced tolerance is blocked by Mn porphyrin-based
peroxynitrite decomposition catalysts, MnTE-2-PyP5+ and MnTnHex-2-PyP5+

When compared to animals receiving an equivalent injection of its vehicle (naïve group), acute
injection of morphine (3 mg/kg) in animals that received saline over four days (vehicle group)
produced a significant and near-to-maximal antinociceptive response [percent maximal
possible antinociceptive effect (%MPE) ranging between 90–95%] (Fig. 2A, B). On the other
hand, when compared to the antinociceptive response to acute morphine in animals that
received saline over four days, repeated administration of morphine over the same time course
(Morphine group) led to the development of antinociceptive tolerance as evidenced by a
significant loss of its antinociceptive response (Fig. 2A, B). Baseline latencies in groups treated
with saline or morphine over four days before acute administration of morphine on day five
were statistically insignificant from each other and ranged between 6–8 seconds (n=6).

Co-administration of morphine with MnTE-2-PyP5+ (Fig. 2A) or MnTnHex-2-PyP5+ (Fig. 2B)
inhibited in a dose-dependent manner, the development of antinociceptive tolerance to
approximately the same degree. Given that MnTnHex-2-PyP5+ (0.01–0.1 mg/kg/day, n=6) was
administered at ~30-fold lower doses than MnTE-2-PyP5+ (0.3–3 mg/kg/day, n=6), this shows
that the hexyl analogue is ~30-fold more potent than the ethyl analogue. Although both drugs
have nearly identical intrinsic catalytic activity in decomposing ONOO− (rate constant of log
k = 7.53 and 7.11 for MnTE-2-PyP5+ and MnTnHex-2-PyP5+) (Table 1), the effective increase
in potency of MnTnHex-2-PyP5+ in vivo is most likely due to its higher lipophilicity (i.e.,
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relative accumulation) when compared to MnTE-2-PyP5+. This behavior is reminiscent of the
relative bioavailability of these compounds to E. coli [45]. The remarkable difference in the
lipophilicity of ethyl and hexyl analogues was determined by TLC [46].

When tested alone at the highest dose used, MnTE-2-PyP5+ (3 mg/kg/day, n=6) or
MnTnHex-2-PyP5+ (0.1 mg/kg/day, n=6) had no antinociceptive effects. Thus, on day five,
hot plate latencies following a subcutaneous (sc) injection of saline in animals that received
saline over four days or in animals that received MnTE-2-PyP5+ or MnTnHex-2-PyP5+ were
statistically insignificant and ranged between 6–7 s (n=6, not shown). The inhibitory effects
of MnTE-2-PyP5+ or MnTnHex-2-PyP5+ were not attributable to acute antinociceptive
interactions between MnTE-2-PyP5+ or MnTnHex-2-PyP5+ and acute morphine since the
response to acute morphine given at three different doses (0.3–3 mg/kg, n=6) in animals treated
with the highest dose of MnTE-2-PyP5+ or MnTnHex-2-PyP5+ (3 and 0.1 mg/kg/day
respectively, n=6) or their vehicle over four days was statistically insignificant (Fig. 3).

MnTE-2-PyP5+ or MnTnHex-2-PyP5+ do not reverse established morphine tolerance
Loss of the antinociceptive effect of morphine observed on day 5 in animals that received
repeated administration of morphine over 4 days was not restored by a single administration
of MnTE-2-PyP5+ (3 mg/kg, n=4) or MnTnHex-2-PyP5+ (1 mg/kg, n=4) given by ip injection
15 min before the acute dose of morphine (3 mg/kg). Thus, the %MPE was 95±2%, 8±2%, 10
±3%, 7±2% mean±sem for the vehicle, morphine, morphine+ MnTE-2-PyP5+ and morphine+
MnTnHex-2-PyP5+ groups respectively (P<0.5 for all). Such results suggest that these
pharmacological agents inhibit the development and not the expression of tolerance.

The development of morphine-induced tolerance is associated with increased cytokine
formation which is inhibited by MnTE-2-PyP5+ or MnTnHex-2-PyP5+

On day five, and when compared to animals receiving an injection of saline (naïve group),
acute injection of morphine (3 mg/kg, n=6) in animals that received saline over four days
(vehicle group) did not increase dorsal horn tissue levels of TNF-α, IL-1β and IL-6 (Fig. 4A–
C). On the other hand, acute injection of morphine in animals that received repeated
administration of morphine (Morphine group) led to a significant increase in TNF-α, IL-1β
and IL-6 (n=6) (Fig. 4A–C) in dorsal horn tissues. This increase was attenuated by co-
administration of morphine over four days with MnTE-2-PyP5+ (3 mg/kg/day, n=6) and
MnTnHex-2-PyP5+ (0.1 mg/kg/day, n=6) (Fig. 4A–C).

Lack of effect of MnTE-2-PyP5+ or MnTnHex-2-PyP5+ on the Rotarod test
In order to establish whether these inhibitors used to block antinociceptive tolerance cause
motor function impairment, mice were treated with the highest dose of MnTE-2-PyP5+ (3 mg/
kg) or MnTnHex-2-PyP5+ (0.1 mg/kg, n=4) used to block antinociceptive tolerance and then
tested on the Rotarod for potential motor function deficits at 15, 30 and 60 min after drug
administration. When compared to the vehicle-treated group, these drugs did not show signs
of Rotarod deficits over the observed time frame (120±0, 120±0 and 120±0 latency on rotarod
in sec±sem for vehicle, MnTE-2-PyP5+ and MnTnHex-2-PyP5+ treated mice respectively,
n=4).

Discussion
Chronic administration of morphine promotes neuroimmune activation as evidenced by
activation of spinal cord glial cells, production of proinflammatory cytokines such as TNF-α,
IL-1β and IL-6 and spinal sensitization [50–52]. Thus, inhibitors of glial cell metabolism and/
or anti-cytokine approaches block morphine-induced antinociceptive tolerance and
hyperalgesia [50–52]. The possible mechanisms for chronic morphine-induced glial cell
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activation are not known with certainty. The μ-opiate receptors are present on microglia and
astrocytes [53] but acute administration of morphine does not activate these cells [50]. On the
other hand, morphine primes glial cells for enhanced production of proinflammatory cytokines
[54]. We have recently reported that formation of spinal ONOO− is critical to the development
of morphine antinociceptive tolerance and that ONOO− as a signaling molecule is involved in
the increased formation of TNF-α, IL-1β and IL-6 that is typically observed during tolerance
[6]. A mechanism by which ONOO− leads to the generation of such proinflammatory cytokines
is through activation of redox-sensitive transcription factors such as NF-κB and AP-1 as well
as activation of MAPK kinases such as p38 kinase [55–57]. An iron porphyrin-based
superoxide and peroxynitrite scavenger, FeTM-4-PyP5+ [58,59], inhibits the development of
antinociceptive tolerance with IC50 of approximately 5 mg/kg [6].

The roles of ONOO− in nociception are emerging. We now know that direct intraplantar
injection of O2

•−, or ONOO− itself in rats evokes potent thermal hyperalgesia [60,61]. Removal
of ONOO− with peroxynitrite scavengers blocks hyperalgesia associated with: (1)
inflammation [60,62]; (2) spinal activation of the N-methyl-D-aspartate (NMDA) receptor
[63]; and (3) repeated administration of morphine administration (morphine induced
antinociceptive tolerance) [6–8]. In these settings, central sensitization is sustained by the
nitration and enzymatic inactivation of spinal MnSOD, which provides a source for ONOO−

[6,60]. In addition, ONOO− is an important component of hyperalgesia associated with arthritis
[64] and O2

•− is also increased in dorsal horn neurons during neuropathic pain induced by
spinal nerve ligation [65] and neurogenic induced hyperalgesia induced by capsaicin [66].
Furthermore, the use of non-selective pharmacological probes such as phenyl N-tert-
butylnitrone (PBN) and 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL), for
ameliorating nitroxidative stress in inflammatory pain [62] and neuropathic pain also have been
documented [67–71]. These agents as well as other antioxidants have also been reported to be
effective against trigeminal pain, fibromyalgia and temporomandibular joint dysfunction [72,
73], chronic pancreatitis [74], post-irradiation of breast cancer fibrosis [75] and neurogenic
hyperalgesia [66]. Collectively these data clearly point to the prominent role of nitroxidative
stress in pain of many etiologies. Recognizing that the role of ONOO− and nitroxidative stress
in pain has been recent, limited data are available to help us decipher the molecular and
biochemical pathways engaged by ONOO− and related nitroxidative species. ONOO−

contributes to peripheral and central sensitization by (1) increasing production of pro-
inflammatory cytokines, (2) activating poly-ADP-ribose polymerase (3) activating and/or
inducing cycloooxygenases (COX-1 and COX-2) and (4) by post-translational nitration and
modification of key proteins that are themselves involved in central and peripheral sensitization
such as glutamate transporters [6,60,62,63]. Additionally, species arising from nitroxidative
stress may be involved more subtly in central sensitization at least in part by sensitizing wide
dynamic range neurons in the dorsal horn [76].

Here we have shown that co-administration of morphine MnTE-2-PyP5+ and MnTnHex-2-
PyP5+ blocked antinociceptive tolerance with the latter being approximately 30-fold more
potent than the former (Fig. 2); the reminiscence of the difference in protecting E. coli. The
increase in efficacy of MnTnHex-2-PyP5+ in comparison with MnTE-2-PyP5+, is most likely
due to its higher lipophilicity (and thus its increased ability to cross blood brain barrier
[Spasojević et al., 2008, unpublished]), as both have nearly identical catalytic activity in
decomposing ONOO− (rate constant of log k = 7.53 and 7.11 for MnTE-2-PyP5+ and
MnTnHex-2-PyP5+, Table 1). Neither porphyrin interferes with the ability of morphine, if
given acutely, to exert antinociceptive effect (Fig. 3). Also, neither of them alone causes
impairment of mouse motor function. Also neither porphyrin was able to reverse already
established morphine tolerance. The inhibition of antinociceptive tolerance by both porphyrins
was associated with the full normalization of the levels of inflammatory cytokines, TNF-α,
IL-1β, and IL-6 (Fig. 4) at the dose where maximal antinociceptive effects was observed. Our
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findings confirm our previous observations suggesting that attenuation of morphine tolerance
by ONOO− decomposition catalysts is secondary to the suppression of repeated morphine-
induced spinal neuroimmune activation promoted by ONOO− [6].

We have already shown that MnTE-2-PyP5+ distributes into heart mitochondria at levels high
enough to protect it against peroxynitrite-based damage [37,77]. MnTnHex-2-PyP5+ given at
single intravenous dose of 0.05 mg/kg prevented inactivation of MnSOD in a rat renal ischemia/
reperfusion model [21], which is indicative of its localization in mitochondria. We have further
shown that MnTE-2-PyP5+ distributes in all organs; brain included. The accumulation in brain
proceeded after its levels in all other organs started to decline, presumably being driven by the
negatively charged phospholipids [78]. MnTnHex-2-PyP5+ distributes in brain at more than
10-fold higher levels than does MnTE-2-PyP5+ [Spasojević et al., 2008, unpublished] (see
Introduction). Based on all above said, along with the data obtain in this study, we can safely
assume that MnTnHex-2-PyP5+ distributes at a higher extent in spinal cord mitochondria than
does MnTE-2-PyP5+ protecting its constituents and antioxidant systems from oxidative
damage resulting from chronic morphine.

Although direct comparisons between the in vitro rate constants and the therapeutic doses
(Table 1) of the cationic Mn porphyrins with the anionic MnTBAP (Figure 1) and the iron
complex FeTM-4-PyP5+ are tempting, these are not as straightforward cases as the comparison
within the cationic Mn porphyrin group. These three groups of porphyrins vary greatly with
respect to their overall chemical reactivity, steric demands, and electrostatics, which are expect
to influence significantly their in vivo recognition patterns, cellular uptake and biodistribution.
Despite these obvious limitations, some very qualitative guidance for understanding the
biological chemistry of metalloporphyrins in vivo and the mechanistic aspects of morphine
tolerance may emerge from this study.

Salvemini et al have shown that the anionic porphyrin, MnTBAP is able to block the
development of morphine antinociceptive tolerance [6]. We have recently improved the general
understanding of the frequently reported beneficial effects of MnTBAP (Fig. 1) in decreasing
oxidative stress-related injuries [79], which have often been wrongly assigned to its SOD-like
activity. Due to the lack of both electrostatic and thermodynamic facilitation for O2

•−

dismutation, MnTBAP possesses no SOD activity [79]. Yet it has modest ability to decompose
ONOO− (kcat = 1.04 × 105 M−1 s−1) and can thus serve for mechanistic purposes to distinguish
between these two pathways [28]. The present data on the cationic Mn porphyrins and those
previously reported on MnTBAP [6] show that all these compounds share a common
mechanism, which is, therefore, conceivably through peroxynitrite scavenging pathways [28].
Such findings further shed some light on the nature of MnTBAP effect in vivo, support the key
role of ONOO− rather than O2

•− in morphine tolerance and justify the advance of potent
ONOO− scavengers as adjuvant in pain treatment.

The ability of FeTM-4-PyP5+ to dismute O2
•− and scavenge ONOO− is comparable to that of

the cationic Mn(III) porphyrins at pH 7.8 (Table 1) [23]. Yet, it is 10 or 300-fold less efficient
in the reversal of morphine tolerance than MnTE-2-PyP5+ and MnTnHex-2-PyP5+ (Table 1).
The reasons for this has not been investigated in details, as Fe porphyrins may be a source of
iron, which may, in turn, result in the Fenton-related production of deleterious hydroxyl radicals
[80,81]. The axial coordination requirements of Fe(III) porphyrins may also impose some
restrictions regarding the cell recognition and uptake, which may differ greatly from those of
Mn porphyrins. Additionally, intercalation/conjugation of FeTM-4-PyP5+ to RNA/DNA in
close resemblance to that observed with MnTM-4-PyP5+ [82] may result in cellular toxicity.
Conversely, it is worth noting that ortho substitution in MnTE-2-PyP5+ and MnTnHex-2-
PyP5+, and the peripheral negative charges in MnTBAP minimize strong interactions of these
porphyrins with nucleic acids.

Batinić-Haberle et al. Page 8

Free Radic Biol Med. Author manuscript; available in PMC 2010 January 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Concluding remarks
In summary, we have: (1) provided evidence that ONOO− rather than O2

•− is a predominant
player in the development of morphine antinociceptive tolerance; (2) pointed to the
lipophilicity as a critical parameter that determines the efficacy of the drug in reversing
morphine tolerance and decreasing level of inflammatory cytokines, TNF-α, IL-1β and IL-6.
With high ability to eliminate ONOO− along with enhanced lipophilicity, MnTnHex-2-
PyP5+ (0.1 mg/kg/day) is 300-fold more effective in blocking the development of morphine
antinociceptive tolerance than Fe porphyrin, FeTM-4-PyP5+, 100-fold better than MnTBAP
and 30-fold better than its hydrophilic ethyl analogue, MnTE-2-PyP5+. Consequently it appears
to be the most promising candidate as adjuvant in the opioid-based clinical management of
pain.

The potential use of novel non-narcotic peroxynitrite-targeted approaches in pain alone or in
combination with opiates or non-selective COX-1/COX-2 inhibitors or selective COX-2
inhibitors [6,59,61] needs also to be pursued aggressively, as these studies will provide a more
comprehensive scientific foundation for an issue of major clinical and socio-economic
importance, while laying the basis for interventions with strong therapeutic potential. Of note,
Mn porphyrins will be valuable in assuring pain relief with cancer patients also as they do not
protect tumors; in fact they were shown to suppress tumor growth [14,15,83].
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Abbreviations
SOD  

superoxide dismutase

MnP  
MnIIITE-2-PyP5+, Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin
(AEOL-10113)

MnTnHex-2-PyP5+ 
Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin

FeTM-4-PyP5+ 
Fe(III) meso-tetrakis(N-methylpyridinium-4-yl)porphyrin

MnTBAP  
[MnIIITCPP]3−, Mn(III) meso-tetrakis(4-carboxyphenyl)porphyrin (also
[MnIIITBAP]3−)

HIF-1α  
hypoxia inducible factor-1, NF-κB, nuclear factor κB

AP-1  
activator protein-1

TNF-α  
tumor necrosis factor-α
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IL-1β  
interleukin 1β

IL-6  
interleukin 6
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Figure 1.
Structures of the complexes relevant to this study: MnTE-2-PyP5+, MnTnHex-2-PyP5+,
MnTBAP and FeTM-4-PyP5+.
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Figure 2.
Inhibition of morphine antinociceptive tolerance with MnTE-2-PyP5+ or MnTnHex-2-PyP5+.
On day five, acute injection of morphine (3 mg/kg) in animals that received saline over four
days produced a significant antinociceptive response when compared to responses observed
in animals that received an equivalent volume of saline (A,B, Vehicle, V vs Naïve, N). On the
other hand, a significant loss to the antinociceptive effect of the acute injection of morphine
was observed in animals that received repeated administration of morphine over four days
(Morphine group) (A,B). Co-administration of morphine over four days with MnTE-2-
PyP5+ (0.3–3 mg/kg/day, n=6; A) or MnTnHex-2-PyP5+ (0.01–0.1 mg/kg/day, n=6; B)
inhibited the development of tolerance in a dose-dependent manner. Results are expressed as
mean ± s.e.m for six animals. °P<0.001 for Vehicle, V vs Naïve, N; *P<0.001 for Morphine
alone vs Vehicle; †P<0.001 for Morphine + drug treated vs Morphine alone.
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Figure 3.
On day five, acute injection of different doses of morphine (0.3–3 mg/kg) in animals that
received saline over four days produced a dose-dependent significant antinociceptive response
when compared to responses obtained in animals receiving an equivalent volume of its vehicle.
The antinociceptive response to morphine was not altered in animals that were treated over
four days with MnTE-2-PyP5+ or MnTnHex-2-PyP5+ (3 and 0.1 mg/kg/day respectively, n=6)
indicating lack of acute interaction between morphine and these compounds. Results are
expressed as mean ± s.e.m for six animals. *P<0.001 for the vehicle group when compared to
values obtained in the absence of morphine.
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Figure 4.
Acute injection of morphine (3 mg/kg) on day five in animals that received saline over four
days (Vehicle group) did not increase dorsal horn tissue levels of TNF-α (A), IL-1β (B) and
IL-6 (C) when compared to animals that received an equivalent volume of its vehicle (naïve
group). On the other hand, acute administration of morphine in animals that received repeated
administration of morphine (Morphine group, Mor) led to a significant increase in TNF-α,
IL-1β and IL-6 in dorsal horn tissues (A–C). This increase was attenuated by co-administration
of morphine over four days with MnTE-2-PyP5+ or MnTnHex-2-PyP5+ (3 and 0.1 mg/kg/day
respectively, n=6) (A–C). Results are expressed as mean ± s.e.m for 6 animals. *P<0.001 for
Morphine alone vs Vehicle; †P<0.001 for Morphine + drug-treated vs Morphine alone.

Batinić-Haberle et al. Page 18

Free Radic Biol Med. Author manuscript; available in PMC 2010 January 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Batinić-Haberle et al. Page 19

Table 1
The catalytic rate constant for the dismutation of O2

•− and ONOO− decomposition at pH 7.4 and 37°C and the
therapeutic dose needed to reverse morphine tolerance at ≥ 80%. Morphine was given ip chronically for 4 days along
with compounds.

Compounda log kcat(O2
•−) log kcat(ONOO−) Therapeutic dose, mg/kg/day,

ip

MnTnHex-2-PyP5+ 7.48b 7.11c 0.1

MnTE-2-PyP5+ 7.76d 7.53c 3

MnTBAP 3.16e 5.02f 10

FeTM-4-PyP5+ 7.20b ~7g 30

a
axial ligation is not specified. At pH 7.4 Mn porphyrins likely have aqua and Fe(III) porphyrins have hydroxo species as axial ligands.

b
Ref. [46];

c
Ref. [27];

d
Ref. [23];

e
Ref. [79];

f
Ref. [28];

g
Ref [58,84,85].
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