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Abstract
An automatic, simple, and image intensity standardization-based strategy for correcting background
inhomogeneity in MR images is presented in this paper. Image intensities are first transformed to a
standard intensity gray scale by a standardization process. Different tissue sample regions are then
obtained from the standardized image by simply thresholding based on fixed intensity intervals. For
each tissue region, a polynomial is fitted to the estimated discrete background intensity variation.
Finally, a combined polynomial is determined and used for correcting the intensity inhomogeneity
in the whole image. The above procedure is repeated on the corrected image iteratively until the size
of the extracted tissue regions does not change significantly in two successive iterations. Intensity
scale standardization is effected to make sure that the corrected image is not biased by the fitting
strategy. The method has been tested on a number of simulated and clinical MR images. These tests
and a comparison with the method of non-parametric non-uniform intensity normalization (N3)
indicate that the method is effective in background intensity inhomogeneity correction and may have
a slight edge over the N3 method.

Keywords
MRI; field inhomogeneity; standardization; image filtering; image segmentation

1. INTRODUCTION
Background image intensity variations caused by imperfections in imaging devices pose major
challenges for further processing, segmentation, and analysis of acquired images. In magnetic
resonance imaging (MRI), such effects originating from imperfections in the radio frequency
field and from the human body are well known [1]. A variety of techniques have been developed
over the past 15 years to address this problem [2-13]. While many of these methods have
provided an effective solution in MRI, there is room for improvement in the sense of developing

Address for correspondence: Jayaram K. Udupa, Medical Image Processing Group, Department of Radiology, University of Pennsylvania,
Fourth Floor, Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104-6021, Phone: (215) 662-6780, Fax: (215) 898-9145, E-mail:
jay@mipg.upenn.edu.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Comput Med Imaging Graph. Author manuscript; available in PMC 2010 January 1.

Published in final edited form as:
Comput Med Imaging Graph. 2009 January ; 33(1): 7–16. doi:10.1016/j.compmedimag.2008.09.004.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



a general method that fulfills the following requirements: (R1) no need for user help especially
on a per-scene basis; (R2) no need for accurate prior segmentation of objects in the image;
(R3) no need for prior knowledge of intensity distribution.

Early methods for intensity inhomogeneity estimation and correction used phantoms to
empirically measure the inhomogeneity [6]. Wells et al. [8] proposed an expectation
maximization (EM)-based algorithm consisting of interleaved voxel classification and
inhomogeneity correction steps. Guillemaud and Brady [9] introduced a modified EM
algorithm that replaced the distribution of the class other, which included all tissues not
explicitly modeled, by a uniform probability density function. The correction was claimed to
be more robust and to overcome some limitations of Wells′ original method. Similar to these
works [8], [9], Leemput et al. [10] proposed a model-based method that also employed an
iterative EM strategy that interleaved voxel classification with estimation of class distribution
and inhomogeneity parameters. However, they used a priori information from a digital brain
atlas to initialize the expected location and parameters of tissue classes, and claimed yielding
more objective and reproducible results. Sled et al. [11] described a non-parametric non-
uniform intensity normalization (N3) method. The method is independent of MRI pulse
sequences and is claimed to be insensitive to pathological data that may otherwise violate model
assumptions. An iterative approach was employed to estimate both the multiplicative
inhomogeneity and the distribution of the true tissue intensities. Styner et al. [12] developed
a correction method called PABIC based on a simplified method of the imaging process, a
parametric model of tissue class statistics, and a polynomial model of the inhomogeneity field.
Likar et al. [13] described a model-based correction method that made the assumption that an
image corrupted by intensity inhomogeneity contains more information than the corresponding
uncorrupted image. The image degradation process was described by a linear model consisting
of a multiplicative and an additive component which were modeled by a combination of
smoothly varying basis functions.

It is clear that some object information is vital in order to estimate (and, therefore, to correct)
the background variation component of the intensities in the image. This, however, we argue,
need not come in the form of explicit object segmentation or by way of prior tissue intensity
distribution. To liberate a solution to inhomogeneity correction from the vagaries of image
segmentation will be a good idea, since the latter itself is a difficult problem which has defied
a solution fulfilling (R1) – (R3) up till now. What is needed is sample (not necessarily complete)
object regions constituting the same object material (tissue in medical imaging). In this paper,
we present a significant body of evidence that a solution fulfilling (R1)–(R3) is indeed feasible
through the use of intensity standardization techniques, introduced in [14], [15].

A major problem in MR images is the non-standardness of the MR image intensity gray scale,
which implies the lack of a tissue-specific numeric intensity meaning, even within the same
MRI protocol, for the same body region, for images obtained on the same scanner, and for the
same patient. The intensity standardization method described in [14] offers a simple way of
transforming the MR images nonlinearly so that there is a significant gain in similarity of the
resulting images. We have demonstrated that this technique is very useful in segmentation and
tissue characterization [16], and that the same segmentation methods perform better after
standardization than before [17]. The purpose of this work is to demonstrate how
standardization can be employed to reduce background inhomogeneity in MR images. Our
method, described in Section 2, consists of first standardizing the MR images to the standard
intensity scale, then obtaining different tissue sample regions from simply thresholding by
using fixed intensity intervals, and then estimating and correcting for intensity variations based
on the thresholded regions, which constitute the sample regions mentioned earlier but not
complete or accurate segmentations. The process is iteratively repeated on the resulting images.
We demonstrate in Section 3 both qualitatively and quantitatively the effectiveness of the
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method in correcting even severe inhomogeneities coming from surface coils. Our concluding
remarks are stated in Section 4. An early version of this paper was presented at the SPIE Medical
Imaging 2006 conference whose proceedings contained an abbreviated version of this paper
[18].

2. THE STANDARDIZATION-BASED METHOD
2.1 Preamble

We refer to a volume image as a scene and represent it by a pair C = (C, f), where C, called the
scene domain, is a rectangular array of cuboidal volume elements, usually referred to as
voxels, and f is the scene intensity function which assigns to every voxel c ∈ C an integer called
the intensity of c in C in a range [L, H ]. We will use the following notations throughout.

C: a given scene corrupted by background variation (such as the one produced by an imaging device).

Cbt = (C, fbt): a scene representing the true background variation component in C.

Cu = (C, fu): C without the background variation component Cbt.

Cc = (C, fc): the scene resulting from applying a correction algorithm α to C to suppress background variation in C.

Cbe = (C, fbe): a scene representing the background variation component in C estimated by a correction algorithm α.

|C|: the number of voxels in C.

SPR the set of all scenes acquired as per a given MRI protocol P and for a given body region R.

We make the following assumptions in designing our method.

(A1): fbt is sufficiently slow varying such that there exist homogeneous regions in the foreground of C that represent
the same object material.

(A2): C with its background variation results from a known invertible operation Τ between Cu and Cbt.

(A1) reflects the core spirit of our approach. It says that, even in the presence of background
inhomogeneity, if contiguous homogeneous regions can be found in the foreground, then they
must represent regions containing the same object material. Such sample homogeneous regions
are enough for our method to estimate and correct for the background variation component.
The background variation introduced by MRI scanners is generally considered to be due to a
multiplicative phenomenon. Along with the background variation, any MRI scene C embodies
several other artifacts including blur, statistical noise, and acquisition-to-acquisition scene
intensity gray scale variation [14]. The exact nature of these component artifacts and variations
and how they interact among themselves and with Cbt are not known, and there do not seem
to have been any attempts to study these interactions. (A2) reflects the fact that, in the absence
of such knowledge, we rely on Cbe to correct for background variation, but in the process,
expect not to significantly amplify the effects due to other artifacts. The influence of the effect
of the validity/violation of (A2) on the output of a correction algorithm α cannot be ascertained
theoretically at the present state of knowledge, but can be assessed through properly designed
evaluation strategies. If α can achieve better homogeneity of scene intensity within the same
object region without amplifying other artifacts, that is what matters. We shall come back to
the issue of other artifacts vis-a-vis background variation in Section 4.

2.2 Key ideas and outline of the method
The procedure for correcting background variation, which we name SBC (for Standardization-
Based Correction), consists of the following steps. The method has no parameters to be
specified by the user on a scene-by-scene basis. It is an iterative procedure, which proceeds
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until the change found in two successive iterations is sufficiently small to consider the method
to have converged.

Procedure SBC

Input: A scene C.

Output: Corrected scene Cc.

begin

S0. set Cc= C;

S1. standardize Cc to the standard intensity gray scale for the particular imaging Protocol P and body region
R under consideration and output scene Cs;

S2. determine tissue regions CB1, CB2, …, CBm by using fixed threshold intervals on Cs that are specific to
P and R;

S3. if CBi s determined in the previous iteration are insignificantly (< 0:1%) different from the current CBi s,
stop;

S4. else, estimate background variation in Cs as a scene Cbe, compute corrected scene Cc, and go to S1;

end

In the next section, the individual steps in the above procedure are described in detail.

2.3 Description of Steps in SBC
S1: Standardizing MRI scene intensities—As demonstrated in [14], MRI scenes in
SPR do not have scene intensity gray scales that can be considered to be nearly the same, even
for scenes obtained on the same scanner, for the same subject. The method described in [14],
and enhanced in [15], offers a way of transforming the scenes in SPR so that there is a significant
gain in the similarity of the resulting scenes in terms of their intensity-wise tissue
characterizability. This is achieved in two steps – a training step that is executed only once for
a given P and R, and a transformation step that is executed for each given scene in SPR. In the
training step, certain landmarks of a standard histogram are estimated from a given subset of
SPR. In the transformation step, the actual intensity transformation from the intensity scale of
the input scene to the standard scale is computed by mapping the landmarks determined from
the histogram of the given scene to those of the standard scale. The standardization process is
illustrated in Figure 1 wherein histograms of the white matter (WM) region in a set of 10 PD-
weighted MRI scenes are shown before and after standardization. The effect of intensity
standardization is readily seen by comparing Figures 1(a) and (c), and 1(b) and (d). We use the
method of [15] to produce the standardized scene Cs corresponding to given scene C to be
corrected.

S2: Determining object regions—After MRI scene intensity standardization, the scene
intensity intervals for different tissues for the specific P and R are determined and fixed once
for all, and used throughout the subsequent background inhomogeneity correction steps for all
scenes in SPR. Figure 2(a) shows a slice of a given standardized scene Cs, which is a simulated
PD-weighted MRI scene of the head [19], and Figures 2(b) and (c) show the gray matter (GM)
and WM regions obtained by thresholding via fixed intensity intervals. The largest connected
component of each thresholded result is extracted, and produced as a binary scene CB. This
binary scene gives us the sample object region (although not with a perfect segmentation by
any means) containing roughly the same object material for each object/tissue. Let CB1, CB2,
…, CBm be m binary scenes produced in this manner for m object/tissue regions in Cs.

S3: Stopping criterion—The basic premise of this method is that, as correction is effected,
the object region represented in each CBi will change gradually. When this change is
insignificant (< 0:1%), the iterative procedure stops. From our numerous experiments, we have
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observed that the iterative procedure stops within 20 iterations. The variations of CBi and Cc
with iteration within SBC are illustrated in Figure 3 for the scene example used in Figure 2.
The effect of inhomogeneity correction with iteration is shown via intensity histogram of the
foreground only of the corrected scene in Figure 3(d), where the overlap between the intensity
distributions of GM and WM caused by background variations is reduced gradually with
increasing number of iterations.

S4: Estimation of inhomogeneity map—In this step, the background variation is
estimated first and then corrected. We treat every tissue region from Step S2 as an independent
entity with its own local, best fit polynomial to the background variation component. We then
combine these independent polynomials into a single unified function and use it for correcting
inhomogeneities in the whole scene. We explain our implementation below in detail.

For any tissue region CBi, 1 ≤ i ≤ m, let Oi be the set of all 1-valued voxels in CBi, and μi be
the mean intensity within Oi. Without loss of generality, let |O1| ≥ |O2| ≥ ⋯ ≥ |Om|. The
background variation in each CBi is then estimated as a discrete function βdi : Oi → [0, ∞)
defined as follows. For any c ∈ Oi,

(1)

where Τ is the operation (mentioned in assumption (A2)) between Cu and Cbt that yields C.
We denote this operation by C = Cu Τ Cbt, which equivalently means, for any c ∈ C, f(c) =
fu(c) Τ fbt(c). In MRI, Τ is usually considered to be multiplication. A 2nd order polynomial βi
is then estimated from the discrete function βdi by using a least-squares-error fit.

As per assumption (A1), the background variation in a scene is slow varying. However, the
inhomogeneity functions βi, 1 ≤ i ≤ m, are separately estimated for different homogeneous
regions (corresponding to different tissues/objects) in an independent manner. Consequently,
the continuity between the inhomogeneity map βi estimated over Oi and βj over Oj, j ≠ i, cannot
be guaranteed, as illustrated in Figure 4. This discontinuity is caused by the fact that the
expected intensity μi for region Oi is corrupted independent of Ojs, 1 ≤ j ≤ m, and i ≠ j. At this
stage, it is impossible to determine the bias in the mean intensity μi in the context of global
inhomogeneity. The situation is exacerbated by the presence of intensity non-standardness
itself. Since MRI intensities do not have absolute tissue-specific meaning, it becomes
impossible to make assumptions about the relative shifts (biases) among the estimated βis. This
points out the arbitrariness that exists in determining the overall level of the correcting function.
This also clarifies as to how inhomogeneity correction itself can introduce non-standardness
[20]. Our approach to fit an overall correcting function to estimated maps βi is as follows, and
also illustrated in Figure 4.

At first we combine the inhomogeneity maps β1 and β2 over the largest and the second largest
regions O1 and O2, respectively, as follows:

1.
Find a weight factor λ to minimize . Essentially, this step
computes the bias λ to be applied to β2 so that the difference between β1 and λβ2 is
minimized;

2. Combine the two inhomogeneity maps β1 and λβ2 to obtain a new discrete
inhomogeneity map βd: C → [0, ∞) such that, for any c ∈ C,
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(2)

where δ (c, Oi) is the minimum distance between c and a voxel in Oi.

3. Determine a 2nd degree polynomial β that constitutes a least-squares-error fit to βd.

After merging O1 and O2 as above, we now have m−1 distinct regions O1∪O2, O3, O4, ⋯,
Om and m − 1 inhomogeneity maps β, β3,β4, ⋯, βm. The above steps are then repeated until we
have only one region O1 ∪ O2 ∪ O3 ∪ ⋯ ∪ Om and a single unified inhomogeneity map β.
This unified inhomogeneity map β is represented as a scene Cbe = (C, fbe), where fbe = β.

Since Τ is invertible, Cu = CΤ−1Cbt, and therefore, by (A2),

(3)

In MRI, Τ is generally considered to be a multiplication operation, and therefore, Τ−1 becomes
division. In general, if Τ is known and invertible, (i.e., Τ−1 is known), then from Equation 3,
we can determine Cc. In Figures 2(d) and (e), we display Cbe and Cc for the running example
after the first iteration.

After scene correction, we go to the standardization step and repeat the procedure. We note
that, the parameters of the standardizing transform are determined by training only once and
then fixed for a given P and R (and so also the threshold intervals). The standardization step
(actually the transformation step) S1 in each iteration uses these same parameters for effecting
standardization. Therefore our strategy of using fixed threshold intervals in the standardized
scene is perfectly legitimate. Since inhomogeneity correction methods introduce some non-
standardness of their own [20], as described above, in each iteration of SBC, the standardization
step S1 becomes necessary.

3. RESULTS AND EVALUATION
In Section 3.1, to demonstrate qualitatively how effective SBC is in correcting background
variation, we present a set of examples showing scenes before and after applying the SBC
correction procedure. We present the results of a quantitative evaluation procedure in Section
3.2 based on twelve simulated MRI scenes obtained from the BrainWeb database [19] and on
10 PD- and 10 T2-weighted clinical MRI scenes with Multiple Sclerosis (MS) lesions obtained
from our own database. Information about the scene data sets used in our evaluation is listed
in Table 1. We compare the SBC method with the N3 method [11]. The main reasons for
selecting N3 for comparison are: (i) it seems to be commonly used, (ii) it comes closest to
SBC in its spirit of not requiring any user input or a priori information, and (iii) following the
results of the comparative study among six algorithms for correcting intensity inhomogeneity
reported by Arnold et al. [21], the N3 method generally outperformed other methods. Briefly,
the basic idea of the N3 method is to find a smooth, slowly varying, multiplicative field that
maximizes the frequency content of the probability density function of the logarithm of scene
intensities. It is an iterative process in which, in addition to the intensity inhomogeneity, the
non-parametric model of the scene intensities is also derived directly from the data. The
implementation of the N3 method available at ftp://ftp.bic.mni.mcgill.ca/pub/mni_n3 is
utilized in our comparison. In our experiments, the parameters of the N3 method were set to
the default values.
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3.1 Qualitative
In Figure 5, we present five examples constituting data sets D1-D5 of Table 1 involving
different P and R. One slice from the original scene, and the same slice of the corrected scene
produced by N3 and SBC methods are shown for each data set. In all displays, the same gray
level window settings were used. The corresponding intensity histograms (for the whole 3D
scene) are displayed under each scene. These figures give a qualitative indication of the
effectiveness of SBC in suppressing background variation. In all examples, SBC worked
automatically requiring no specific setting or adjustment of parameters, and so did N3. Since
SBC has no parameters whose values are to be adjusted or ascertained for different situations
by user interaction or by using priors, this automatic mode became feasible on scenes listed in
Table 1 and on a variety of others. From the histograms displayed, SBC seems to have
performed better than N3 in all cases yielding a better definition of the modes in the histogram.

3.2 Quantitative
We assess the performance of the correction methods by comparing the percent coefficients
of variations (cυ) of intensity within individual tissue regions in the original and corrected
scenes. After the scene is segmented, cυ(K) of tissue class K is computed as

(4)

where σ(K) and μ(K) are the standard deviation and mean intensity of class K, respectively.
The quantity cυ, which represents the normalized standard deviation in a given tissue class, is
invariant to uniform multiplicative intensity transformation.

(1) Simulated Data—Twelve (four T1, four T2, and four PD-weighted) MRI scenes from
the BrainWeb database were used [19] (D6 in Table 1). All scenes had 3% noise. Six scenes
each with 20% and 40% inhomogeneity were used, three of each were normal and three with
MS lesions. Table 2 lists the results. The corrected scenes indicate that both N3 and SBC can
effectively minimize the intensity variations within GM and WM. Generally, the cυ values of
all corrected scenes for 40% inhomogeneity are similar to the cυ of the scenes for 20%
inhomogeneity for both methods. One slice of a T2-weighted MRI scene with MS lesions
before and after applying the N3 and SBC methods and the corresponding (3D) intensity
histograms are shown in Figure 6. Generally the cυ values for SBC seem to be as good as those
for N3. Since multiple data sets with multiple anatomies are not available in this database under
each protocol, we cannot conduct a statistical comparison.

(2) Clinical Data—Clinical MRI scene data (D7 in Table 1) used in our evaluation
experiments came from 10 different MS patients and each had T2- and PD-weighted scenes.
These data sets were randomly selected from our database, and were acquired on the same GE
Signa 1.5T scanner with a FOV of 22 cm, and TR of 2500 ms and TE of 18 ms/90 ms. Again
the tissues considered were GM and WM. Figure 7 shows one slice of one PD-weighted scene
and its corrected scenes created by using the N3 and SBC methods. The GM and WM regions
were obtained by using the fuzzy connectedness-based segmentation method [22] implemented
in 3DVIEWNIX [23], and by correcting the results when necessary under the guidance of an
expert. Table 3 lists the mean and standard deviation (in parenthesis) of cυ values for both T2-
and PD-weighted scenes, and for GM and WM regions. We observe that, for both tissue regions
and for both protocols, the two methods achieve smaller cυ values than before correction.
Further, the cυ values for the SBC method are smaller than those for the N3 method, and this
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difference has been found to be statistically significant under a paired t-test for each protocol
at a level of p < 0:001.

3.3 Implementation
The SBC method has been implemented within the 3DVIEWNIX software system [23] which
is available at http://www.mipg.upenn.edu. In its current implementation, the SBC procedure
requires 50 seconds for a typical MRI scene of size 256 × 256 × 60 for running 20 iterations
on a 1.7GHZ Pentium IV PC under RedHat 9.0. For the same scene, the N3 method takes about
65 seconds on the same platform.

4. CONCLUDING REMARKS
Background variation in MRI scenes due to imperfections in imaging devices is a problem
commonly encountered in image analysis in many areas. Although many solutions have been
proposed in the past, they all had varying degrees of dependency on the particular protocol,
body region, application domain, and the type of variation. In an attempt to liberate this
dependency, we have devised a method based on MRI intensity standardization. The method
has no parameters whose values are to be determined or to be provided by the user on a per
scene basis. Our qualitative and quantitative evaluation experiments indicate that its
performance and behavior match our intuitive expectation. Its performance seems, at the least,
to be comparable to that of the state-of-the-art N3 method, and our experiments indicate a slight
edge for the proposed SBC method over N3. The N3 method assumes that the bias field is
normally distributed, which may not be true for some clinical MRI data. In addition, the N3
method treats all voxels alike for inhomogeneity estimation. This is somewhat unnatural, since
it is obvious that the WM voxels in a brain MRI scene, which have a narrow intensity histogram,
are much more suited for inhomogeneity estimation than, for instance, the tissues surrounding
the brain or ventricular CSF [10]. Other advantages of SBC are its simplicity, intuitive nature,
and standardization of the scene as a byproduct of the method.

As related to assumption (A2), some comments are in order. There are basically the following
three types of operations commonly done on MRI scenes before further carrying out other
image processing and analysis operations on them: correction of background variation, filtering
to suppress noise [24], and intensity scale standardization. There is perhaps some interaction
among the effects of these operations, which, to our knowledge, has not been studied. To what
extent the order in which these operations are carried out influences the results is also unknown.
Given the importance of these operations, it is worthwhile to study the above issues. We have
done some preliminary work along these lines [20], [24].
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Fig. 1.
(a) Histograms of WM regions in 10 original PD-weighted MRI scenes. (b) A histogram
obtained by combining the 10 histograms of (a) which represents WM intensity distribution in
PD scenes. (c) Histograms of WM regions in the 10 corresponding standardized scenes. (d)
Similar to (b) but obtained from the 10 histograms in (c).
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Fig. 2.
(a) One slice of the original PD-weighted MRI. (b) GM region and (c) WM region resulting
from thresholding this slice with fixed intensity intervals; (d) corresponding slice of Cbe; (e)
corresponding slice of corrected scene Cc.
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Fig. 3.
The improvement in Cc observed with increasing number of iterations (left to right: 3,5,10,
and 20) illustrated through the examples of Fig.2. (a), (b) thresholded scenes corresponding to
GM and WM threshold intervals. (c) Cc. (d) The intensity histogram of Cc. The improved
definition of the two modes corresponding to WM (larger mode) and GM with iteration is clear.
For clarity of display, the histograms shown do not include the background.
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Fig. 4.
Illustration of the possibility of existence of discontinuity between inhomogeneity maps
estimated independently from different tissue regions Oi and Oj, and how to combine them
into a single unified inhomogeneity map. For the convenience of presentation, the scene is
considered to be 1D in this illustration, and only two objects are considered. (a) Original
discrete inhomogeneities are estimated independently from different tissue regions, and two
smooth inhomogeneity maps β1 and β2 are fitted for two objects O1 and O2 in an independent
manner. (b) β2 is shifted by a weight factor λ so that the difference between β1 and λβ2 is
minimized. (c) A new discrete inhomogeneity map βd is estimated by combining β1 and λβ2.
(d) A single smooth unified inhomogeneity map β is fitted to βd.
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Fig. 5.
A slice of MRI scenes of different body regions acquired by using different MRI protocols is
shown on the left in (a) to (e). The corresponding slices of the scenes after inhomogeneity
correction by using the N3 (middle) and SBC procedures (right). For each of (a)-(e), the
corresponding intensity histogram (of the whole 3D scene) is shown under each scene. The
data sets in (a)-(e) correspond to D1-D5 in Table 1.
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Fig. 6.
(a) A slice of a simulated T2-weighted MRI scene with MS lesions and with 40%
inhomogeneity. The corresponding slice of the scene corrected by using (b) N3 method, and
(c) SBC method. The scene intensity histograms are shown in the second row.
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Fig. 7.
(a) A slice of a MRI PD scene of the head of a patient with Multiple Sclerosis. The
corresponding slice of the corrected scene output by (b) N3, and (c) SBC methods, and the
respective histograms (bottom).
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TABLE 1
Information about scene data utilized in evaluation.

Data Set Body region Number of scenes Scene domain Voxel size (mm3)

D1 Head-Coronal 1 128 × 128 × 56 1.0 × 1.0 × 3.0

D2 Head-Transverse 1 181 × 217 × 181 1.0 × 1.0 × 1.0

D3 Abdomen 1 256 × 256 × 21 1.56 × 1.56 × 6.0

D4 Hips 1 256 × 256 × 15 1.56 × 1.56 × 7.5

D5 Foot 1 256 × 256 × 60 0.55 × 0.55 × 1.7

D6 Simulated Brain MRI 12 181 × 217 × 60 1.0 × 1.0 × 3.0

D7 Clinical Brain MRI 10 T2 + 10 PD 256 × 256 × 60 0.86 × 0.86 × 3.0
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