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ABSTRACT

Profiling miRNA levels in cells with miRNA microarrays is becoming a widely used technique. Although normalization methods
for mRNA gene expression arrays are well established, miRNA array normalization has so far not been investigated in detail. In
this study we investigate the impact of normalization on data generated with the Agilent miRNA array platform. We have
developed a method to select nonchanging miRNAs (invariants) and use them to compute linear regression normalization
coefficients or variance stabilizing normalization (VSN) parameters. We compared the invariants normalization to normali-
zation by scaling, quantile, and VSN with default parameters as well as to no normalization using samples with strong
differential expression of miRNAs (heart–brain comparison) and samples where only a few miRNAs are affected (by p53
overexpression in squamous carcinoma cells versus control). All normalization methods performed better than no normali-
zation. Normalization procedures based on the set of invariants and quantile were the most robust over all experimental
conditions tested. Our method of invariant selection and normalization is not limited to Agilent miRNA arrays and can be
applied to other data sets including those from one color miRNA microarray platforms, focused gene expression arrays, and
gene expression analysis using quantitative PCR.
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INTRODUCTION

Micro-RNAs (miRNAs) are regulators of mRNA trans-
lation and stability that play key roles in a variety of
processes, including development, cell proliferation, and
differentiation (Alvarez-Garcia and Miska 2005; Pasquinelli
et al. 2005; Fabbri et al. 2008). They are derived from long
RNA precursors (pri-miRNA) that are first processed into
hairpin miRNA precursors (pre-miRNA) of z70 nucleo-
tides (nt), then into mature 19- to 25-nt-long single-stranded
RNAs (Bartel 2004; Kim and Nam 2006). Release 11.0 of
the miRBase database cataloged 678 human miRNAs
(http://microrna.sanger.ac.uk) (Griffiths-Jones 2006). In
order to quantify the expression of different mature
molecules simultaneously, DNA microarray technology,
originally developed for messenger RNA (mRNA) profiling,
has been adapted to miRNAs (Krichevsky et al. 2003). In

contrast to mRNA profiling, miRNA profiling must dis-
tinguish between mature miRNAs and their precursors and
must also distinguish between miRNAs that differ in
sequence by as little as a single nucleotide (Shingara et al.
2005). Commercial miRNAs microarrays are manufactured
with a variety of design strategies. One approach uses
locked nucleic acid (LNA)-modified capture probes that
increase the stability of the hybrids and allow the discrim-
ination between single nucleotide differences (Castoldi
et al. 2006). These arrays are hybridized with two samples
labeled with two different fluorescent colors (Cy3 and Cy5).
Other approaches use a single-color array format with only
one sample hybridized per array. Among those, Agilent
Technologies has developed a miRNA profiling assay that is
based on a highly efficient labeling method and a novel
microarray probe design (Wang et al. 2007). This system’s
simple direct-labeling method has little sequence bias and
normally requires only 100 ng of total RNA. Furthermore,
the probe design strategy used with Agilent arrays provides
both sequence and size discrimination for mature miRNAs.

An important goal of microarray data analysis is to
remove systematic differences between samples that do not
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represent true biological variation. This is usually done at
the data normalization stage of the analysis process.
Different normalization methods have been used on
miRNA microarray expression profiling data sets, but there
is currently no clear consensus about their relative per-
formances. Some have even chosen to omit normalization
(Baskerville and Bartel 2005; Liang et al. 2005; Wang et al.
2007). The first normalization methods to be used with
miRNA array data employed centering to median values
(Sun et al. 2004; Castoldi et al. 2006; Garzon et al. 2006) or
scaling based on total array intensities (Miska et al. 2004;
Tian et al. 2008). Recently, quantile normalization, a
popular method for large-scale mRNA array expression
data, has also been used with miRNA data (Laurent et al.
2008; Sengupta et al. 2008). Another method developed for
mRNA array data analysis—variance stabilizing normali-
zation (VSN)—has also been applied to miRNA array data
(Davison et al. 2006; Pan et al. 2008). VSN was developed
for mRNA arrays and is based on a parameterized arsinh
transformation (instead of a logarithmic transformation)
that calibrates sample-to-sample variations and renders
variance approximately independent of the mean intensity
(Huber et al. 2002). VSN assumes that most genes are
not differentially expressed (i.e., are invariant). This con-
cept was used by Garzon et al. (2008), who based their
normalization on a set of small noncoding ‘‘housekeeping’’
RNAs, and by Perkins et al. (2007), who used rank
invariants. Overall, the normalization methods cited above
were developed for the analysis of large-scale mRNA
profiling data sets, and no assessment of their relative
performances exists for miRNA data sets. Hua et al. (2008)
investigated the effect of different normalization methods
on data from a custom two-color microarray that does not
differentiate between precursor and mature miRNAs. They
evaluated the effectiveness of the methods by compar-
ing the normalized microarray data to QPCR data. The
correlation between the microarray and QPCR data tended
to be low.

The objective of this study is to apply different normal-
ization methods to miRNA profiling data sets generated
using the one-color Agilent platform and to assess the
impact on sensitivity, specificity, and fold-change measure-
ment relative to QPCR. There are very significant differ-
ences between miRNA and mRNA data sets: the number of
measurements is much smaller (a few hundred versus
10,000–50,000), and the majority of the miRNAs are either
not expressed or are expressed at very low levels. Therefore,
normalization methods used for mRNA expression array
may not be appropriate for miRNA arrays. Considering the
unique characteristics of miRNA profiling data, we have
developed a method based on the minimal assumption that
there exists a set of miRNAs whose expression is constant
across all the arrays in the experiment (i.e., are invariant).
The ‘‘invariant’’ probes are those that have medium-high
mean intensity and low variance across arrays, and these

probes are identified using mixture models of the mean and
variance distributions (Fig. 1). Once these invariant probes
are identified, we use robust linear regression to estimate
scale and offset. In short, the method is a way to select
stable expression miRNAs from the data, in contrast to an a
priori preselection of ‘‘housekeeping’’ RNAs as described
by Garzon et al. (2008) and the method of Perkins et al.
(2007) that uses all probes. The performance of this
normalization method was compared to that of no nor-
malization as well as VSN, scaling, and quantile normali-
zation.

RESULTS

Technical variability

We first evaluated the ability of the different normalization
procedures to reduce the variability between technical
replicates. Standard deviations and means were measured
for the 100% brain and 100% heart samples separately (Fig.
2A,B). Data were split per quartiles (Q1–Q4) based on
nonnormalized, nonlogged data in order to distinguish
effects on weakly and strongly expressed miRNAs. The
Agilent platform called 51%–52% of the miRNAs in the
brain and 39%–43% of the miRNAs in the heart as

FIGURE 1. Example of invariant probes selection. Removal of
standard deviation (SD)-versus-mean trend is done by fitting loess
(red line) to the scatter plot of SD versus mean (inset scatter plot). The
invariant probes are identified from the mean and corrected standard
deviation (main scatter plot). Probes with high mean are indicated in
color, probes with low mean are in black. (Green) high mean probes
belonging to the lowest SD component (‘‘invariants’’). (Blue and
magenta) High mean probes belonging to higher SD components.
(Open red circle) Positive control probes. (Open red triangle)
Negative control probes. (Dashed line) Mean and SD cutoffs.
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undetected (signal standard deviation larger than signal
mean). Therefore, the first quartile contains only unde-
tected miRNAs and, as a result, should not be considered.
The second quartile, which contains mostly undetected
miRNAs (detection calls of between 9% and 11% and 1%
and 2% for brain and heart RNA, respectively), allows
assessment of the effect of the different methods on very
weak expression signals. Except for VSN, the quartile mean
distributions for the different preprocessing methods have
similar distributions (Fig. 2A). As VSN uses an arsinh
transformation instead of a log transformation, the spread
of the means of Q2–Q4 are increased compared to the log
transformed means. As shown in Figure 2B, the technical
variability increases with the absolute expression when no
normalization is applied. All four normalization methods
decrease the technical variability for expressed miRNAs
(Q4) with scaling being the least effective and invariant-
based regression the most effective. The effects on Q2 and
Q3 depend on the normalization method: VSN shows a
very large increase in variability, quantile performs well for

the brain samples, but not for the heart samples, and
invariant-based regression as well as scaling slightly de-
crease the technical variability.

Sensitivity and specificity

To evaluate gains in sensitivity and specificity after nor-
malization, a set of 59 miRNAs differentially expressed
between brain and heart (true positives) were monitored in
mixed brain–heart samples. True positives were defined as
miRNAs in Q3 and Q4 (considering heart and brain
samples together) with a minimum threefold change and
a P value < 0.01 using all four normalization methods. We
compared a 50% brain–50% heart mixture (Mixture 1)
with a 75% brain–25% heart (Mixture 2) or a 95% brain–
5% heart (Mixture 3) using a t test. The number of true
positive miRNAs identified in these mixtures was plotted
against the theoretical false discovery rate (FDR) (Benjamini
and Hochberg 1995) as performed previously by Naef
and Huelsken (2005). We obtained plots similar to stan-
dard receiver operating characteristic (ROC) plots where
the area under the curves can be used to compare the
sensitivity and specificity of the different methods (Fig.
3A,B). All the normalization improved sensitivity and
specificity compared to no normalization (Fig. 3A,B).
Quantile and invariants-based regression are best for
Mixture 1 versus Mixture 3 (Fig. 3A). VSN performs as
well as quantile and invarianst-based regression when the
FDR is below 5%; the performance of VSN deteriorates as
the FDR rises above 5%. This phenomenon is also observed
for Mixture 1 versus Mixture 2 (Fig. 3B). VSN assumes
that only a minority of features are differentially expressed.
Since a large fraction of miRNAs are differentially expressed
between the heart–brain mixtures, true differentially
expressed miRNAs will be considered as invariants by VSN
and their expression difference minimized. VSN allows
computation of the transformation parameters on a subset
of features that are known to be nondifferentially expressed
before applying the transformation to the entire data set.
Therefore, we used the set of invariants selected with our
method to calculate the VSN transformation (VSN-Inv).
The performance of the VSN-Inv normalization is much
improved over standard VSN (Fig. 3A,B, magenta dashed
line).

Correlation with QPCR

When data from mRNA microarray experiments are
compared with data generated with TaqMan assays, the
microarray results, typically, show a compression of fold-
change measures (Shi et al. 2006). In order to assess if
miRNA microarray data have the same bias, we selected 17
miRNAs (16 from Q4 and 1 from Q3) covering the entire
fold-change range observed in the microarray experiments
and performed QPCR experiments with the same brain and

FIGURE 2. Effect of normalization on technical reproducibility. Data
from brain and heart tissue samples were separated by quartile (Q1,
Q2, Q3, Q4) based on the mean of unlogged unnormalized expression
signal of the three technical replicates. Q1 corresponds to the bottom
quartile and Q4 to the top quartile. Mean of log2 signal intensity (A)
and standard deviation (B) of technical replicates were calculated for
each normalization method, in each tissue and each quartile. VSN
expression signals (in base e) were converted to base 2. (White) no
normalization, (red) quantile, (blue) invariants, (cyan) scaling,
(green) VSN.
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heart RNA samples (Supplemental Table 1). We then
compared the fold changes determined by microarray using
the different normalization methods with the fold changes
determined by QPCR (Fig. 4). A fold-change compression
is observed for all methods. VSN is the method with the
least compression. This reflects a deviation from the slopes
obtained with the other methods. Each method, including
no normalization, shows a very high correlation with the
TaqMan results, thereby validating the quality of micro-
array data.

Squamous carcinoma cell line data set

Comparing miRNA gene expression in brain and heart may
not reflect accurately the type of experiment in which
microarrays normally will be used. To do this, we tested the
different normalization methods on microarray results
from a system where fewer miRNA expression differences
are expected. We chose to focus on a system involving p53,
as several studies have been published that implicate
miRNAs targets like miR-34a in the regulation of pathways

affected by this protein (Xi et al. 2006; Chang et al. 2007;
He et al. 2007; Tarasov et al. 2007). MiR-34a expression is
induced by p53 both in mice and humans, and its over-
expression induces cell cycle arrest (Chang et al. 2007; He
et al. 2007). In the present study, we compared the miRNA
profiles of the human squamous carcinoma cell line SCC13
infected with recombinant adenoviruses expressing either
p53 or GFP (Ad-p53, Ad-GFP). As observed for the brain–
heart data set, all normalization methods reduced the
variability between technical replicates for expressed probes
(Q4) with scaling being the least effective (data not shown).
To assess the gain in power that normalization provides, we
performed t tests on all the 556 miRNAs. The results are
displayed in Q–Q plots with the number of significant
miRNAs using an FDR cutoff of 5% (Fig. 5A). VSN-Inv
is the method that identified the largest number of signif-
icant miRNAs. The six miRNAs identified as differentially

FIGURE 3. Sensitivity and specificity of the normalization methods.
(A,B) Fraction of positives recovered plotted against the FDR for a
50% brain–50% heart RNA mixture compared to a 95% brain–5%
heart RNA mixture (A) or a 50% brain–50% heart RNA mixture
compared to a 75% brain–25% heart RNA mixture (B). Positives were
defined as miRNAs among the 50% most strongly expressed in
comparison to the pure heart and brain RNA samples with at least
a threefold expression difference and a P < 0.01 as measured using any
normalization methods. VSN expression signals (in base e) were
converted to base 2. (Black) No normalization, (red) quantile, (blue)
invariants, (cyan) scaling, (green) VSN, (magenta dashed line) VSN
using invariants selected as in our invariants normalization method.

FIGURE 4. Fold-change concordance between QPCR assays and
microarrays. Seventeen miRNAs spanning the entire fold-change
range between heart and brain samples were selected for validation
with TaqMan assays. All expression signals were converted into log2
and the differences in means (M values) measured with the different
normalization methods (y-axis) were plotted against those determined
by TaqMan assays (x-axis). Dashed lines represent the 45° lines of
complete concordance. The solid lines represent the results of the
regression analysis. Correlation coefficient (r), slope (a), and intercept
(b) of regression lines are indicated. Ninety-five percent confidence
intervals are indicated in square brackets. Confidence intervals for
correlation coefficients were calculated using Fisher’s transformation.
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expressed without normalization are found with all nor-
malization methods. The invariants, quantile, VSN, and
VSN-Inv methods identify 13 miRNAs in common, includ-
ing 11 miRNAs also identified with scaling normalization
(Supplemental Table 2). All miRNAs significant with
invariants are also significant with VSN-Inv, and 20/23
significant miRNAs with VSN are significant with VSN-Inv.
When the difference in mean (M value) is plotted as a
function of the average expression (A value), we observe
that a majority of the miRNAs have low fold changes (<1.5-
fold) and that the VSN methods tend to identify more
miRNAs with low A values. Micro-RNAs with low M values
may be false positives and would be difficult to confirm by
QPCR. Therefore, before proceeding to QPCR validation,
we filtered the list of miRNAs for those for which at least
one normalization method shows a significant differential

expression with an absolute fold change of at least 1.5. We
also filtered out miRNAs exhibiting an A value without
normalization of below 4.5 (cut off to separate high mean
from low mean miRNAs probes). Six up-regulated and four
down-regulated miRNAs pass the filter. Among those, six
were available as TaqMan assays and gave a detectable
QPCR signal. Hsa-miR-34a, hsa-miR-149 (identified by all
methods) and hsa-miR-200b (identified by Invariants,
VSN, and VSN-Inv) were confirmed (Fig. 5C).

DISCUSSION

In the present study, we have developed a novel miRNA
profiling data normalization approach based on the selec-
tion of unchanged or invariant probes. We have compared
this invariant-based normalization method with other

FIGURE 5. Biological assessment of normalization methods using p53-induced miRNAs in human squamous carcinoma cell line SCC13. (A) Q-
Q plots comparing the t statistics of Ad-p53 versus Ad-GFP samples (Sample Quantiles) against a t10 distribution (Theoretical Quantiles). T
statistics were calculated for the six Ad-p53 versus the six Ad-GFP samples (three biological replicates with two technical replicates) using data
produced by each of the different normalized methods. Number of miRNAs and P values for a FDR cutoff of 5% are indicated. (B) Mean
difference (M value) versus average expression (A value) plot for the different normalization methods. Probes with a FDR < 5% are indicated in
open circles. (C) TaqMan QPCR validation of miRNAs. SCC13 cells were infected in biological triplicate with either Ad-GFP (white bars) or Ad-
p53 (gray bars). Expression was calculated relative to the Z30 reference assay. Mean and standard error of four technical replicates are indicated.
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normalization methods using two miRNAs expression
profiling data sets with different characteristics: a compar-
ison of two tissues where a large fraction of the miRNAs are
differentially expressed and a data set from a cell line
transfected with two different constructs where a much
smaller number of miRNAs are affected. Similar conclusions
can be drawn from the two data sets: (1) all normalization
methods improve the data compared to nonnormalized data;
(2) scaling normalization does not perform as well as VSN,
quantile, and invariant-based normalization; and (3) VSN
with default parameters may not perform as well as quantile
and invariant-based normalization when a majority of
miRNAs are differentially expressed, but VSN transforma-
tion parameters can be computed from a set of preidentified
invariants to improve its performance.

Variability between samples can be generated from three
sources: the true biological difference, the systematic
variation that can be corrected through normalization,
and the stochastic variation (noise). The normalization
methods compared in this study make different assump-
tions about the true biological difference and the random
noise in order to be able to estimate the systematic
variation. Scaling assumes that the overall signal intensity
does not change. This implies that the down-regulated
miRNAs should equal the up-regulated miRNAs in mag-
nitude of signal intensity or that the majority of miRNAs
are unchanged. It also implies that the noise and the
stochastic variations of miRNAs are proportional to the
signal intensity. Although scaling normalization is a signif-
icant improvement compared to nonnormalized data, it
does not perform as well as the other methods, particularly
invariant-based regression, which also uses a linear
approach. Invariant-based regression, by only taking into
account the less-variable probes, will be less affected by
large stochastic variations and large biological effects.
Quantile normalization assumes that the overall distribu-
tion of signal intensity does not change. Whereas this
assumption likely holds true for the comparison between
p53 overexpressing versus control cells where few probes
are affected, it may not be true for the brain–heart
comparison where the distributions of expression profiles
are significantly different. Under these conditions, although
quantile normalization reduces the technical variability of
the brain samples (Q2–Q4), it increases the technical
variability of heart samples in Q2 and Q3 (Fig. 2B).
Nevertheless, dilution experiments show that quantile
normalization still has very good sensitivity and specificity
when an FDR cutoff below 20% is used (Fig. 3). VSN and
invariant-based regression assume that there is a subset of
unchanged features (invariants). VSN used with default
parameter settings assumes that most genes do not change,
whereas the invariant-based regression presented in this
study only assumes that a subpopulation of expressed genes
does not change. This approach for selecting invariant
miRNAs is particularly appropriate when one expects

a significant fraction to be differentially expressed. In order
to exploit the benefits of VSN (variance stabilization, arsinh
function permissive to negative values), we have presented
a method where VSN parameters are calculated from the
invariant probes selected in the invariant-based regression
procedure. However, one should note that VSN strongly
affects the distribution of the large fraction of miRNAs
whose expression is near or at background, resulting
in a large increase of variability for those miRNAs (Fig.
2A,B).

Invariant-based methods were among the first approaches
used to normalize mRNA gene microarray data (Li and
Wong 2001; Tseng et al. 2001). In those applications,
nondifferentially expressed genes are selected such that
they occur in the same rank order on each chip. The
intuitive justification for this is that the measured expres-
sion signal of a truly differentially expressed probe is more
likely to have different rank relative to the other probes.
Micro-RNA profiling platforms have many less features
than mRNA gene expression profiling platforms (z500
versus 10,000–50,000). Therefore, the probe for a truly
differentially expressed gene may have a large difference in
intensity without appreciably altering its rank order, and,
therefore, it could be classified as invariant. Normalization
based on predefined housekeeping genes, popular in
QPCR, has also been used for miRNA profiling, where
noncoding genes such as tRNA, U2, U4, and U6 small
noncoding RNA as well as GAPDH mRNA were selected as
invariants (Garzon et al. 2008). However, many house-
keeping genes have been reported to exhibit considerable
variability under different experimental conditions (Lee
et al. 2002), and their expression levels are often relatively
high, making them unrepresentative of the entire expres-
sion intensity range.

Our normalization approach based on invariant genes is
data driven and requires no a priori selection of probes. It
also has the advantage of avoiding the large proportion of
probes near or at the background signal level. The only
assumption of our procedure is a distinguishable low-SD/
high-mean population as determined by a mixture model.
This assumption is satisfied in the examples presented here.
In some cases, it might not be possible to fit the data, for
instance, if all probes have low mean and low SD. However,
this will be obvious from diagnostic plots, such as Figure 1,
which are indicative of the quality of the data set. For
example, the standard deviation of the positive control
probes before and after removal of the SD versus mean
trend should be low and these probes should be among or
close to the population of invariant probes. The loess curve
before removal of the SD versus mean trend is indicative of
the between-array variability. After invariants selection, if
the variability between arrays is too high, a majority of the
probes and the positive controls may not be found in the
SD component with the lowest SD (low-SD/high-mean
group).
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With an increasing number of studies addressing the role
of miRNAs in various physiological processes, miRNA
profiling is becoming a standard bioanalytical technique.
However, to our knowledge, no study has yet addressed the
impact of normalization on mature miRNA profiling data.
Here, we show that normalization is an important step in
miRNA microarray data preprocessing. Since assumptions
that are valid for messenger RNA profiling normalization
may not hold for miRNA profiling, we propose to calculate
the normalization parameters from a set of invariant
probes. This method of invariant probe selection is not
limited to Agilent miRNA profiling data, but can be
generalized to other types of one-color arrays and other
data types such as QPCR as well as medium-scale mRNA
profiling (e.g., focused gene content DNA microarrays),
which interrogate a few hundred probes.

MATERIALS AND METHODS

RNA samples and experimental design

Human heart and brain total RNA were from Stratagene (MVP
human normal adult tissue RNA; Stratagene). Micro-RNA pro-
filing of cell cultures was performed on the human keratinocyte-
derived squamous cell carcinoma SCC13 cell line infected with
either p53 overexpressing adenovirus (Adp53) or the control
(AdGFP) for 24 h as previously described (Lefort et al. 2007). Cells
were collected in Tri-Reagent (Sigma), and total RNA was
extracted following the manufacturer’s instructions (with the
exception that three rounds of chloroform extraction were
performed instead of one). To assess technical reproducibility,
three technical replicates from brain and heart RNA were
hybridized on Agilent human miRNA microarrays (Wang et al.
2007). To determine sensitivity and specificity, heart and brain
RNA were mixed in the following ratios: 50% heart 50% brain,
25% heart 75% brain, and 5% heart 95% brain. Each of the
dilutions was hybridized in a technical duplicate on Agilent human
miRNA arrays (Human miRNA Microarray Kit #G4470A; Agilent
Technologies, Inc.). To assess the effect of p53 expression on
miRNA levels in the human SCC cell line, RNA from three
biological replicates of p53-expressing versus control cells was
hybridized in technical duplicates on the microarrays, resulting in
a total of 12 hybridizations.

Target preparation and hybridization

Each sample was prepared according to the Agilent’s miRNA
Microarray System protocol. Total RNA (100 ng) was dephos-
phorylated with calf intestine alkaline phosphatase (GE Healthcare
Europe GmbH), denatured with dimethyl sulfoxide, and labeled
with pCp-Cy3 using T4 RNA ligase (GE Healthcare Europe
GmbH). The labeled RNAs were hybridized to Agilent human
miRNA microarrays for 20 h at 55°C with rotation. After
hybridization and washing, the arrays were scanned with an
Agilent microarray scanner using high dynamic range settings as
specified by the manufacturer. Agilent Feature Extraction Soft-
ware was used to extract the data. Data are accessible through
NCBI GEO (Series record GSE12085).

Normalization

All normalization methods were performed on the Total Gene
Signal from Agilent ‘‘GeneView’’ data files in R, an open source
statistical scripting language (http://www.r-project.org). Except for
VSN, data were log2 transformed after adding a small constant (16
for the SCC13 cell line data set, 28 for the brain/heart data sets)
such that the smallest value of the data set was 1 before taking the
log. Scaling normalization was performed by dividing each array
by its mean signal intensity and then by rescaling to the global
mean intensity of all arrays. Quantile normalization was per-
formed using the ‘‘normalize.quantiles’’ function from R package
‘‘affy’’ from the Bioconductor project (http://www.bioconductor.
org) (Bolstad et al. 2003). VSN uses an arcsinh value trans-
formation that is tolerant to negative numbers; therefore, it was
applied directly to the raw signal data using the ‘‘vsn’’ function
with default parameters from the Bioconductor package ‘‘vsn’’
(Huber et al. 2002). For invariant-based normalization, we
proceeded as follows:

1. The log transformed signal data of each array was centered on
the mode value of its data density distribution. The density
estimation was performed with the function ‘‘density’’ in R
with default parameters. Roughly half of the miRNAs are not
expressed or have a very low expression level. The distribution
of these unexpressed miRNAs is narrow compared to the entire
distribution, and its modal value corresponds to the modal
value of the distribution of all miRNAs on the array. Therefore,
the modal value is a good estimate of the background signal,
and centering on this value allows for the correction of a
difference in background intensity level.

2. Invariants were selected. The procedure is described in the
following section.

3. Normalization coefficients were computed by robust regres-
sion using an M estimator with Huber influence function with
default tuning constant (function ‘‘rlm’’ in R MASS package):
Y i ¼ ajY ij þ bj where j indexes arrays and i indexes probes, Yi

is the vector of the mean expression of the invariants probes,
and (aj,bj) are the regression coefficients. For each array,
intensity values were scaled according to the regression
coefficients.

Invariant selection

Invariant miRNAs were selected in two steps: (1) removal of SD
versus mean trend and (2) identification of invariant probes from
the mean and corrected standard deviation (Fig. 1).

Removal of SD versus mean trend is done by fitting a loess
curve to the scatter plot of SD-versus-mean (function ‘‘loess’’ in R
with default parameters). The fitted curve corresponds to the
trend of SD as the function of the mean. Ideally, it should be flat
so that when a curvature is observed, the expression measures
have to be rescaled so that there is no trend using the formula

Y�ij =
Yij � Yi

SðYiÞ+ l
+ Y i

where i indexes all probes and SðYiÞ is the fitted loess curve and l

is a small constant of 0.1 to avoid division by a value that is close
to 0. This transformation removes the trend in the SD versus
mean scatter plot.
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Invariant probes are those that have high mean expression
across arrays and low SD (i.e., constitutive expression across
arrays). Normal mixture models are fitted separately to the
distribution of mean and corrected SD, using ‘‘mclust’’ package
in R (Fraley and Raftery 2002). First, a mixture model with two
components (i.e., expressed and nonexpressed miRNA) was fitted
to the distribution of mean. The posterior probability of class
membership is used to decide whether a probe is in a high
expression or low expression group. Then, a mixture model was
fitted to the standard deviations of the probes from the high
expression group only. We ran the ‘‘Mclust’’ function of the
‘‘mclust’’ package with default parameters and let it find the
model with the optimal number of components. The probes with
more probability of being in the first component (smallest SD)
were selected as invariants. Details of implementation of invari-
ants normalization are described in the R script available at http://
www.unil.ch/dafl/page58744.html.

miRNA expression profiling using TaqMan MicroRNA
assays

Total RNA was reverse transcribed with looped microRNA-
specific RT primers (Applied Biosystems) contained in the Taq-
Man MicroRNA Assays Human Panel Early Access Kit (Applied
Biosystems, PN 4,365,381) and TaqMan microRNA Human
Assays. Briefly, single-stranded cDNA was synthesized from 10 ng
total RNA in 15-mL reaction volume with TaqMan MicroRNA
Reverse Transcription Kit (Applied Biosystems), according to the
manufacturer’s protocol. The reaction was incubated at 16°C for
30 min followed by 30 min at 42°C and inactivation at 85°C for
5 min. Each cDNA was amplified with sequence-specific TaqMan
microRNA Assays from Applied Biosystems. PCR reactions were
performed on an Applied Biosystems 7900HT Sequence Detection
system in 10 mL volumes in a 384-well plate at 95°C for 10 min,
followed by 45 cycles of 95°C for 15 sec and 60°C for 1 min. All
samples were tested in quadruplicate. The threshold cycle (Ct)
values obtained with the SDS software (Applied Biosystems) were
exported into qBase version 1.3.5, a Visual Basic Excel based
script for the management and automated analysis of qPCR
data (Hellemans et al. 2007). Ct values were transformed to
relative quantities (RQ) and analyzed with geNorm 3.4 software
(Vandesompele et al. 2002). This application for Microsoft Excel
allows determination of the most stable reference gene from a set
of candidate normalization genes (RNU24, RNU43, and Z30) in a
given panel of cDNA samples. The small nucleolar RNA Z30
(AJ007733) was found to be the most stable and was subsequently
used for normalization.

SUPPLEMENTAL MATERIAL

Supplemental material can be found at http://www.rnajournal.org.
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