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Abstract
The two-process model of sleep regulation makes accurate predictions of sleep timing and duration
for a variety of experimental sleep deprivation and nap sleep scenarios. Upon extending its
application to waking neurobehavioral performance, however, the model fails to predict the effects
of chronic sleep restriction. Here we show that the two-process model belongs to a broader class of
models formulated in terms of coupled non-homogeneous first-order ordinary differential equations,
which have a dynamic repertoire capturing waking neurobehavioral functions across a wide range
of wake/sleep schedules. We examine a specific case of this new model class, and demonstrate the
existence of a bifurcation: for daily amounts of wakefulness less than a critical threshold,
neurobehavioral performance is predicted to converge to an asymptotically stable state of
equilibrium; whereas for daily wakefulness extended beyond the critical threshold, neurobehavioral
performance is predicted to diverge from an unstable state of equilibrium. Comparison of model
simulations to laboratory observations of lapses of attention on a psychomotor vigilance test (PVT),
in experiments on the effects of chronic sleep restriction and acute total sleep deprivation, suggests
that this bifurcation is an essential feature of performance impairment due to sleep loss. We present
three new predictions that may be experimentally verified to validate the model. These predictions,
if confirmed, challenge conventional notions about the effects of sleep and sleep loss on
neurobehavioral performance. The new model class implicates a biological system analogous to two
connected compartments containing interacting compounds with time-varying concentrations as
being a key mechanism for the regulation of psychomotor vigilance as a function of sleep loss. We
suggest that the adenosinergic neuromodulator/receptor system may provide the underlying
neurobiology.
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1. Introduction
Sleep deprivation causes a wide range of neurobehavioral performance deficits (Dinges and
Kribbs, 1991; Banks and Dinges, 2007). Various mathematical “fatigue and performance
models” have been developed to predict such performance impairment (Mallis et al., 2004).
However, scientific progress in this area has been limited by difficulties predicting performance
under chronic conditions of partial sleep loss (Van Dongen et al., 2003; Van Dongen, 2004).

Most of the available fatigue and performance models are based on the seminal two-process
model of sleep regulation (Borbély, 1982; Daan et al., 1984). This model posits that sleep and
wakefulness are governed by two primary biological mechanisms: a homeostatic process that
builds pressure for sleep during wakefulness and dissipates this pressure during sleep (Borbély
and Achermann, 1999), and a circadian process that modulates sleep pressure as a function of
time of day (Edgar et al., 1993). The two-process model has been successful in predicting
various aspects of sleep and of waking neurobehavioral functions across a range of sleep and
sleep deprivation paradigms (Borbély and Achermann, 1999; Achermann, 2004). For instance,
it was shown that waking neurobehavioral functions could—in many instances—be predicted
by the arithmetic difference between the homeostatic pressure for sleep and the circadian
pressure for wakefulness (Achermann and Borbély, 1994).

Extending the two-process model from its original focus on sleep (Borbély, 1982) to include
predictions of waking functions has been a goal for some time (Borbély and Achermann,
1999; Dinges and Achermann, 1999), but efforts to achieve this goal have not been universally
successful. Several studies have shown that chronic sleep restriction leads to cumulative
increases, progressing over days for a week or more, in sleep propensity and neurobehavioral
impairment (Carskadon and Dement, 1981; Dinges et al., 1997; Belenky et al., 2003; Van
Dongen et al., 2003)—see Fig. 1a. The two-process model does not accurately capture these
increasing deficits, predicting instead a stabilization of waking neurobehavioral functions
across days after just a few days of chronic sleep loss (Van Dongen et al., 2003)—see Fig. 1b.
Other fatigue and performance models have similarly failed to predict the cumulative effects
of chronic sleep restriction (Van Dongen, 2004).

Van Dongen et al. (2003) proposed a different model, shifting the emphasis from sleep loss to
cumulative wake extension or “excess wakefulness”. This subtle conceptual difference
provided a parsimonious explanation for the effects on waking functions of both acute total
sleep deprivation and chronic partial sleep deprivation (Van Dongen et al., 2003; Van Dongen
and Dinges, 2003b). Nevertheless, the excess wakefulness model is not useful for
computational predictions of neurobehavioral impairment, because it does not explicitly state
how recovery from the effects of prior sleep loss would be achieved.

Alternative solutions were introduced by Hursh et al. (2004) and by Johnson et al. (2004), who
each included an additional regulatory process modulating their versions of the homeostatic
process, in order for their models to account for the cumulative effects of chronic sleep
restriction. Based on the approach proposed by Johnson et al. (2004), Avinash et al. (2005)
then extended the original two-process model. Their objective was to capture the effects of
chronic sleep restriction on waking neurobehavioral performance (Van Dongen et al., 2003)
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while retaining the successes of the original two-process model in predicting other aspects of
waking functions and sleep (Achermann, 2004). As the present paper builds upon this work,
the mathematical basis is briefly reiterated here.

The homeostatic process of the original two-process model is typically represented as a pair
of difference equations (Borbély and Achermann, 1999):

(1a)

(1b)

Here S is the homeostatic sleep pressure as a function of time t; Δt is the time step; and τr > 0
and τd > 0 are time constants for the rise and decay of the homeostatic process during
wakefulness and sleep, respectively. The reason the two-process model predicts excessively
rapid stabilization of performance across days of sleep restriction is related to the asymptotic
properties of Eqs. (1). Specifically, the wake equation tends to a steady state represented by
an upper asymptote U = 1, while the sleep equation tends to a steady state represented by a
lower asymptote V = 0. This asymptotic behavior can be demonstrated by rewriting Eqs. (1):

(2a)

(2b)

The extension of the two-process model by Avinash et al. (2005) involved modulating the
homeostatic process through manipulation of the asymptotes U and V in Eqs. (2), as follows:

(3a)

(3b)

(3c)

Here μr > 0 represents the slope of a linear rise of the asymptotes during wakefulness, and μd
> 0 represents the time constant of an exponential decay of the asymptotes during sleep.

The model proposed by Avinash et al. (2005) performed better at capturing the cumulative
deficits in neurobehavioral performance across days as induced by chronic sleep restriction,
but at the cost of reduced accuracy in describing the magnitude of the effects across days of
acute total sleep deprivation—see Fig. 1c. However, it can be shown that the model of Eqs.
(3) belongs to a broader class of homeostatic models based on the same principles, which may
offer further improvements in predicting performance impairment across days of sleep loss.
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In this paper, we introduce this new model class—which to our knowledge has not been
previously proposed in the published literature—and investigate its general dynamic
properties. We do this first by examining, across wake/sleep cycles, the predicted levels of
performance at the onset of wakefulness and at the onset of sleep. These predictions are notional
—the predictions at wake onset do not account for transient performance impairment due to
sleep inertia (e.g., Dinges et al., 1981; Dinges, 1990), and the predictions at sleep onset have
no real meaning because the person is asleep. However, they completely describe the model
behavior across wake/sleep cycles, and as such serve as useful anchor points to examine the
pattern of neurobehavioral performance changes over consecutive days.

Next, for a specific case of the new model class, we compare model predictions to actual
laboratory observations of lapses of attention on a psychomotor vigilance test (PVT; Dinges
and Powell, 1985; Dorrian et al., 2005; Lim and Dinges, 2008), across consecutive days of
acute total sleep deprivation or chronic partial sleep restriction. Finally, based on the modeling
results for PVT lapses of attention, we infer a possible neurobiological mechanism underlying
the dynamic effects of sleep and sleep loss on neurobehavioral performance.

2. A New Class of Models Formulated in Terms of Coupled Non-
Homogeneous First-Order Ordinary Differential Equations
2.1. Defining the new model class

Beginning with the original two-process model (Achermann and Borbély, 1994), we can write
model equations for neurobehavioral performance as:

(4a)

(4b)

The variables wn and sn denote the homeostatic pressure during wakefulness and sleep,
respectively, in the nth wake/sleep cycle (i.e., day; n = 0, 1, …). The function c(t) is the original
circadian process (see Borbély and Achermann, 1999). Further, tn denotes the time of the
beginning of the nth wake/sleep cycle, Tn is the total duration of the nth cycle (such that tn+1 =
tn + Tn), and Wn is the duration of wakefulness in the nth cycle. We require that 0 < Wn ≤ Tn,
where Wn = Tn corresponds to total sleep deprivation. Finally, pn and qn are the predictions for
performance during wakefulness and sleep, respectively, in the nth wake/sleep cycle. The
predictions during sleep are notional; they are included strictly for continuity between
consecutive wake/sleep cycles. Here pn and qn are coupled as follows:

(5a)

(5b)

The homeostatic process of Eqs. (1) may be written in the form of a system of first-order
ordinary differential equations (ODEs):

(6a)
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(6b)

Note that wn and sn are still functions of time t, but to reduce clutter in later differential equations
this is no longer indicated explicitly. From Eqs. (6) it follows that Eqs. (4) can also be written
as a system of first-order ODEs:

(7a)

(7b)

where pn and qn are again coupled as per Eqs. (5). The non-homogeneities β(t) and γ(t) represent
the circadian process, and may be generalized to include other non-homeostatic influences on
performance.

The system of Eqs. (7) is an exact representation of the original two-process model (Borbély
and Achermann, 1999). In the same manner, the extended two-process model of Avinash et
al. (2005) can be written as a system of coupled non-homogeneous first-order ODEs:

(8a)

(8b)

Here un and vn are the levels of the upper and lower asymptotes, respectively, in the nth wake/
sleep cycle. The non-homogeneities β1(t) and γ1(t) are bounded, oscillatory functions
representing the circadian process and other non-homeostatic influences on performance.
Likewise, β2(t) and γ2(t) are bounded, oscillatory functions representing any circadian or other
non-homeostatic effects there might be on the levels of the upper and lower asymptotes. Note
that in this notation, β1(t) and β2(t) have absorbed the parameter μr (i.e., the slope of the linear
rise of the upper asymptote during wakefulness). Analogous to Eqs. (5), Eqs. (8) are coupled
as follows:

(9a)

(9b)
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where δ > 0 is the distance between the two asymptotes. For the extended two-process model,
δ =1 (Avinash et al., 2005).

When we write Eqs. (8) in generalized form, it becomes clear that there is an asymmetry in the
extended two-process model of Avinash et al. (2005):

(10a)

(10b)

Namely, Eq. (10b) for sleep has one more parameter than Eq. (10a) for wakefulness. Adding
the corresponding coefficient α22 in Eq. (10a) generates a useful new model with a bifurcation,
which we will examine in detail in the next section.

Eqs. (10a) and (10b) also each have room for another parameter in their 2 by 2 coefficient
matrices (i.e., α21 and σ21, respectively). As such, we may define our new class of models,
formulated in terms of coupled non-homogeneous first-order ODEs, by the following
generalized equations (which incorporate the original and extended two-process models):

(11a)

(11b)

The coupling of these equations is given by Eqs. (9). Of the non-homogeneities β1(t), β2(t),
γ1(t) and γ2(t) we only require that they are bounded, oscillatory functions. They co-determine
the profiles of performance changes within wake/sleep cycles, in part through the circadian
process, but this is beyond the focus of the present paper. Of primary interest are the α and σ
coefficient matrices, as they determine the dynamic behavior of the system across wake/sleep
cycles.

2.2. Dynamic properties of the new model class
For constant values of the α and σ coefficients, the general solution of the ODE system of Eqs.
(11) is of the form (Derrick and Grossman, 1997):

(12a)

(12b)
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where ψn(t) and φn(t) are the respective fundamental solutions of the homogeneous parts of
Eqs. (11). These fundamental solutions depend on the eigenvalues λi and the eigenvectors
[ki1 ki2] of the α and σ coefficient matrices. The eigenvalues λ1 and λ2 and the corresponding
eigenvectors of the coefficient matrix are found by solving:

(13a)

(13b)

The process is analogous for the eigenvalues λ3 and λ4 and the corresponding eigenvectors of
the σ coefficient matrix.

The fundamental solution ψn(t) depends on the real and distinct eigenvalues λ1 and λ2 found
by solving Eqs. (13); and the fundamental solution φn(t) depends on the likewise derived real
and distinct eigenvalues λ3 and λ4, as follows (Derrick and Grossman, 1997):

(14a)

(14b)

Note that while Eqs. (14) are sensitive to shifting of the origin of the time variable t, the
functions ψn(t) and φn(t) end up being used only in products with their respective inverses, and
these so-called principal matrix solutions are invariant to time translation.

Having found the general solution of the ODE system of Eqs. (11), difference equations can
be derived for the predicted level of performance at the onset of each wake period and at the
onset of each sleep period. Although these predictions for wake onset do not account for
transient effects of sleep inertia (Dinges, 1990), and the predictions for sleep onset are notional
(since the person is asleep), they completely describe the model behavior across wake/sleep
cycles. They therefore serve as useful anchor points to examine the pattern of neurobehavioral
performance changes across days.

Using Eqs. (9) and (12), the difference equations for performance at wake onset pn(tn), and for
performance at sleep onset qn(tn + Wn), can be shown to be given by:

(15a)

(15b)
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(15c)

(15d)

Changes in neurobehavioral performance across wake/sleep cycles depend entirely on this
system of difference equations for performance at the onsets of wakefulness and sleep.

Of particular interest is whether the pattern of changes in neurobehavioral performance across
wake/sleep cycles can display a steady state or equilibrium—that is, whether the performance
profile within days can be found to repeat itself across days or across clusters of days when a
particular wake/sleep schedule is maintained. This condition of fixed wake duration W and
fixed wake/sleep cycle duration T is described by:

(16a)

(16b)

where m = 1, 2, … is the number of wake/sleep cycles after which the performance pattern
repeats itself. If the oscillation period τ of the non-homogeneities β1(t), β2(t), γ1(t) and γ2(t)
equals the wake/sleep cycle duration T, as is the case under conditions of circadian entrainment,
then the steady state performance pattern would be expected to repeat itself every day (i.e.,
m = 1). If τ ≠ T, then a beat phenomenon could occur in which the performance pattern repeats
itself every m days. Forced desynchrony protocols (e.g., Dijk and Czeisler, 1994) are based on
this latter idea.

Indeed, for fixed wake duration W and fixed wake/sleep cycle duration T, and assuming that
the non-homogeneities oscillate with period τ = T, Eqs. (14), (15c) and (15d) may become
repetitive across wake/sleep cycles n (where m = 1). The equilibrium state for this case, which
we denote as [p(tn) u(tn)] and [q(tn + W) v(tn + W)] for wakefulness and for sleep, respectively,
can be derived by solving Eqs. (15), which results in:

(17a)

(17b)
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(17c)

(17d)

Because of the matrix inversions embedded in Eqs. (17a) and (17b), a state of equilibrium can
only occur if:

(18a)

(18b)

We will examine this condition for a specific case of the models defined by Eqs. (11), later in
this paper.

Provided a state of equilibrium is shown to exist, the question arises whether it is stable, that
is, whether the model predictions would converge to this state for a repetitive wake/sleep
schedule. We can say that the model is asymptotically stable (for m = 1) or asymptotically
periodic (for m > 1), if (Kelly and Peterson, 2001):

(19a)

(19b)

even if the starting values [p0(t0) u0(t0)] and [q0(t0) v0(t0)] are not already at equilibrium.

Because Eqs. (15) are linear in [pn(tn) un(tn)] and [qn(tn + W) vn(tn + W)], it can be shown
(Kelly and Peterson, 2001) that states of equilibrium are asymptotically stable or periodic if
all eigenvalues Λi of the system of Eqs. (15), whether real or complex, are inside the unit circle
(i.e., |Λi| < 1). For fixed wake duration W and fixed wake/sleep cycle duration T, and assuming
again that the non-homogeneities oscillate with period τ = T (so that m = 1), these eigenvalues
are found by solving the characteristic equations:

(20a)
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(20b)

The eigenvalues derived from Eq. (20a) are identical to those derived from Eq. (20b); and the
equilibrium states [p(tn) u(tn)] and [q(tn + W) v(tn + W)] are either both asymptotically stable,
or both unstable. When both are asymptotically stable, it means that the predicted levels of
performance at wake onset, at sleep onset, and by extension at all points in between, converge
across days to a steady state repeated from day to day. When both are unstable, it implies that
the predicted levels of performance at wake onset, at sleep onset, and in between, diverge across
days toward infinity. Note that over days it grows progressively more difficult to maintain a
wake/sleep schedule that induces diverging increases in performance deficits. In practice, sleep
tends to break through into scheduled wakefulness (e.g., Doran et al., 2001) before performance
becomes catastrophically impaired.

3. A Model with a Bifurcation
We now consider a particular case of the model of Eqs. (11):

(21a)

(21b)

where α11 < 0 and σ11 < 0, and where α11 ≠ α22 and σ11 ≠ σ22. The coupling of these equations
is given by Eqs. (9). As before, we require that the non-homogeneities β1(t), β2(t), γ1(t) and
γ2(t) are bounded, oscillatory functions. Expediently, we also assume that the non-
homogeneities oscillate with period τ = T.

Per Eqs. (13), the (real and distinct) eigenvalues of the α and σ coefficient matrices are: λ1 =
α11 < 0; λ2 = α22; λ3 = σ11 < 0; and λ4 = σ22. Through Eqs. (14), these eigenvalues determine
the existence of states of equilibrium as assessed using Eqs. (18). Under conditions of fixed
wake duration W and fixed wake/sleep cycle duration T, Eqs. (18) reduce to the following sole
inequality: (1−eα11W eσ11(T−W))(1−eα22W eσ22(T−W)) ≠ 0. If both α parameters and both σ
parameters are negative, this inequality is satisfied and thus states of equilibrium exist for all
0 < W ≤ T (both for performance at wake onset and for performance at sleep onset). If either
α22 ≥ 0 or σ22 ≥ 0, however, there may be a critical amount of daily wakefulness Wc, with 0 <
Wc ≤ T, for which no equilibrium exists:

(22)

To assess the stability of the states of equilibrium when they do exist, we solve Eqs. (20), which
results in the following eigenvalues:

(23a)
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(23b)

If all α and σ parameters in Eqs. (23) are negative, then 0 < Λi < 1 for both eigenvalues, meaning
that the equilibrium states (which then exist for all 0 < W ≤ T) are always asymptotically stable.
Since the model system considered here is linear, this stability is global (i.e., the predictions
converge to equilibrium regardless of initial conditions) (Verhulst, 2000).

If α22 (the key parameter distinguishing the model given by Eqs. (21) from the extended two-
process model) is positive, there are three possibilities for Λ2. In order of increasing amount
of wake extension (i.e., greater sleep restriction), these possibilities are:

• For W < Wc, we find that 0 < Λ2 < 1, which implies globally asymptotically stable
states of equilibrium;

• For W = Wc, no equilibrium exists (see above);
• For W > Wc, we find that Λ2 > 1, which implies that the states of equilibrium are

unstable.

Thus, for α22 > 0, the model behavior is such that if the amount of wakefulness W in each wake/
sleep cycle exceeds a critical threshold Wc, the model flips from a state in which performance
predictions converge toward an asymptotically stable equilibrium, to a state in which
performance predictions diverge away from an unstable equilibrium. This qualitative change
in dynamic behavior implies a bifurcation, as illustrated in Fig. 2.

It is instructive to study the model behavior when daily wakefulness is kept constant at the
bifurcation value: W = Wc. Here, the generalized iterative system of Eqs. (15) assumes the
following specific form:

(24a)

(24b)

(24c)

(24d)

The solution of this system tends to a straight line as n → ∞. The change across days for
performance at wake onset and sleep onset is defined, respectively, by slopes Mp and Mq:
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(25a)

(25b)

where F2 and G2 are the second element of vectors F and G in Eqs. (15). From Eqs. (25) it
follows that the slopes of change across days are not necessarily the same for performance at
wake onset and performance at sleep onset.

4. Model Simulations
4.1. Comparison to data from sleep restriction experiments

To compare the model given by Eqs. (21) to actual performance observations under conditions
of sleep loss, we fit it to group-average data of performance lapses on a psychomotor vigilance
test (PVT; Dinges and Powell, 1985; Dorrian et al., 2005; Lim and Dinges, 2008) from a study
of healthy young adults exposed to chronic sleep restriction or total sleep deprivation—with
W = 16h, 18h, 20h, or 24h (Van Dongen et al., 2003). These data are shown in Fig. 1a.

For the non-homogeneities, we make use of the circadian process c(t) defined by Borbély and
Achermann (1999), applied to the performance predictions pn and qn (but not the asymptotes
un and vn), as follows:

(26a)

(26b)

Here γ and μ are parameters scaling the circadian process, and θ is a phase parameter shifting
it in time. For the initial conditions [p0(t0) u0(t0)] we estimate the values corresponding to the
equilibrium state at W = 16h, which characterizes the baseline condition in the study. Further,
t0 = 7.5h (i.e., 07:30), and T and τ are fixed at 24h.

Using least-squares regression on all 404 data points shown in Fig. 1a, we find the following
parameter estimates:
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(27)

The resulting PVT performance predictions are shown in Fig. 1d, and the predictions for the
total sleep deprivation condition (W = 24h) are explored in more detail in Fig. 3. With the
parameter estimates of Eqs. (27), the model explains 72.4% of the variance in the group-average
data of Fig. 1a. It fits substantially better to the data than the original two-process model (Fig.
1b, explained variance 22.6%) and the extended two-process model (Fig. 1c, explained
variance 38.4%).

Evaluation of Eq. (22) given the parameter estimates in Eqs. (27) indicates that there must be
a bifurcation at Wc = 20.2h. That is, the model should flip from a state of convergence to a state
of divergence when daily wakefulness is increased to more than 20.2h (i.e., when daily sleep
is reduced to less than 3.8h).

This property can be verified by comparing model predictions to the group-average
observations of PVT performance in another study of chronic sleep restriction, with W = 15h,
17h, 19h or 21h (Belenky et al., 2003). These data are shown in Fig. 4a. We use the model of
Eqs. (21) again, apply the non-homogeneities defined in Eqs. (26), set t0 = 7.0h (i.e., 07:00) in
accordance with the study design (Belenky et al., 2003), and fix all model parameters at their
previously estimated values given in Eqs. (27). Applying linear scaling to account for any
irrelevant differences in absolute performance outcomes (e.g., due to variations in population
characteristics or performance testing conditions), we find the scaling factor to be 1.17—
suitably close to 1. The corresponding performance predictions are shown in Fig. 4b. They
explain 72.2% of the variance in the data, and fit well to the observed performance changes
across days.

Note that the W = 21h condition shows a divergent profile in both observations and predictions
(Figs. 4a and 4b), which is not seen in the W ≤ 19h conditions in this study. This qualitative
difference indicates the presence of a bifurcation. Indeed, on the basis of fitting the model to
the data in Fig. 1a, we had predicted that a bifurcation should occur at Wc = 20.2h (see above).
The goodness-of-fit of our model to the data in Fig. 4a is consistent with this prediction, and
provides a first validation of the model introduced in this paper.

4.2. New predictions for chronic sleep restriction and recovery
The value of a new model is determined, in part, by any falsifiable new predictions it makes.
Here we present three specific predictions that can be tested in laboratory experiments, and
that will have considerable theoretical and/or practical impact if confirmed.

The first new prediction focuses on the effectiveness of nap sleep as a means to sustain
performance across days. It has previously been shown that a single 2h nap can mitigate
performance impairment across extended periods of wakefulness (Dinges et al., 1988), but it
is not known whether a 2h nap taken every day (i.e., W = 22h) can maintain performance at
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reasonable levels across days. Our new model defined by Eqs. (21) and (26) with the parameter
values given by Eqs. (27) predicts that since daily wake duration exceeds the bifurcation
threshold (Wc = 20.2h), performance deficits should escalate, and thus a daily 2h nap would
not suffice to maintain reasonable levels of performance.

As shown in Fig. 5, which compares the predicted effects of the 2h nap schedule to those of
total sleep deprivation, the daily nap would mitigate performance impairment substantially in
the first few days (cf. Van Dongen and Dinges, 2003b), but in later days this beneficial effect
would increasingly diminish. After 8 days with a 2h nap each day, the predicted level of
performance impairment approaches that of 3 days with total sleep deprivation; and if it were
possible to continue the nap schedule much longer, the effectiveness of the 2h daily nap would
essentially be lost. Thus, our prediction is that a daily 2h nap is not effective as a means to
sustain performance across days.

The second new prediction pits the new model defined by Eqs. (21) against the only other
quantitative, sleep/wake physiology-based model of the effects of chronic sleep restriction on
neurobehavioral performance: the excess wakefulness model (Van Dongen et al., 2003). In
that model, performance impairment across days is posited to be proportional to the cumulative
amount of wakefulness exceeding a maximum period of stable wakefulness ξ (where ξ ≈ 16h
if prior sleep duration exceeds ~4h). This is similar to the concept of “cumulative sleep
debt” (e.g., Dement, 2006), but conceptually distinct from the modeling framework introduced
in the present paper.

Our prediction involves the important question of how much sleep is needed to recover from
performance impairment induced by prior chronic sleep restriction (e.g., Lamond et al.,
2007). The excess wakefulness model would predict that as long as wake duration exceeds ξ,
performance will continue to deteriorate. On the contrary, the new model defined by Eqs. (21)
and (26) with the parameter values given by Eqs. (27) would predict that when wake duration
is less than the bifurcation threshold Wc, performance levels should converge to a state of
equilibrium, and thus some recovery could occur if wake duration is shorter than what was
maintained in the prior days of chronic sleep loss.

As a specific example, consider a scenario involving 5 days of wake extension to 20h per day
(i.e., 4h sleep daily), followed by a day with wake extension to just 18h (i.e., 6h sleep). The
opposing model predictions are illustrated in Fig. 6. The excess wakefulness model predicts
that performance deteriorates progressively across the 5 days with 20h wakefulness, and
continues to deteriorate—albeit at a slower rate—following the day with only 18h wakefulness.
Our new model also predicts progressive performance degradation across the 5 days with 20h
wakefulness. However, the state of equilibrium for 18h awake occurs at a lower level than the
performance degradation reached after 5 days with 20h wakefulness. Therefore, the new model
forecasts some degree of recovery after the 18h wakefulness day. This prediction may seem
counterintuitive considering that staying awake for 18h following multiple baseline days with
16h wakefulness (8h sleep) actually leads to performance degradation (Van Dongen et al.,
2003). Yet, preliminary evidence from an ongoing laboratory study (Banks et al., 2005)
suggests that some recovery does occur with 18h wakefulness (6h sleep) in this chronic sleep
restriction scenario, supporting the new model over the excess wakefulness model.

The third new prediction concerns the “recycle” issue, which derives from the question of
whether or not there is any carry-over of performance impairment from past sleep restriction
when beginning a new period of sleep restriction following limited time for recovery. Let’s
consider a laboratory study currently underway (Banks et al., 2007b), which involves a period
of 5 days with wake extension to 20h per day (i.e., 4h sleep daily), followed by a day with only
14h of wakefulness (i.e., 10h time for recovery sleep), followed by another period of 5 days
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with wake extension to 20h per day. Initial experimental evidence would suggest that the
intervening 14h wake/10h sleep day should provide (near-)complete recovery to baseline
performance (Banks et al., 2007a), effectively undoing the impairment incurred by the prior
sleep loss. Thus, the performance profile seen during the second 5-day period of wake extension
might be expected to be similar to that seen during the first 5-day period of wake extension.

The dynamics of the new model, however, imply that the single 14h wake/10h sleep day should
be seen as an intermittent perturbation in an extended series of days with wake extension to
20h per day. Thus, the model predicts that the 10h recovery sleep confers only a short-lasting
performance improvement, after which performance further deteriorates as it continues to
converge to the asymptotically stable equilibrium associated with W = 20h. This prediction is
illustrated in Fig. 7. Preliminary evidence from the laboratory study examining the scenario at
hand suggests that indeed there is substantial carry-over of performance impairment from the
first 5-day period with daily wake extension to the second (Banks et al., 2007b), providing
tentative support for the new model.

5. Discussion
5.1. Model implications

The regulation of sleep, wakefulness and performance involves an array of possible
neurobiological mechanisms (e.g., Porkka-Heiskanen et al., 1997; Krueger and Obál, 2003;
Fuller et al., 2006), and is not fully understood. Nonetheless, at the behavioral level, the
circadian component has been captured by models with relatively few degrees of freedom (see
Indic et al., 2006). We believe the same may be possible for the sleep homeostatic component.
Using evidence from laboratory studies with multiple days of sleep loss (Figs. 1a, 4a), we
showed that the homeostatic regulation of neurobehavioral performance can be described by
means of a system of coupled non-homogeneous first-order ODEs with only a few additional
degrees of freedom relative to the homeostatic process postulated in the original two-process
model (Borbély and Achermann, 1994, 1999).

Our new model does include an additional component, modulating the homeostatic process
across days and weeks, as prompted by findings from chronic sleep restriction experiments
demonstrated to be incongruent with the original two-process model (Van Dongen et al.,
2003; Van Dongen, 2004). Yet, the model structure introduced in this paper is essentially still
composed of a homeostatic process and a circadian process. Conceptually, therefore, the new
model remains compatible with the principles of sleep regulation instantiated in the original
two-process model (Borbély, 1982). The dynamics of the new model across days are
principally governed by the α and σ coefficient matrices in the homogeneous part of the
differential equations (the homeostatic process), while the changes within days are primarily
governed by the non-homogeneities (the circadian process). These model components also
interact, in agreement with laboratory observations of a nonlinear interaction between the
homeostatic and circadian processes (Dijk et al., 1992; Van Dongen and Dinges, 2003a).

Two seminal laboratory studies first highlighted the need for fundamentally new model
development beyond the two-process model in order to account for the waking neurobehavioral
consequences of chronic sleep loss (Belenky et al., 2003; Van Dongen et al., 2003). However,
these two studies previously drew markedly different conclusions about the dynamics of
neurobehavioral impairment across days of sleep restriction. In their study with 7 days of
systematic sleep restriction, Belenky et al. (2003) reported a plateau of cognitive impairment
when sleep was restricted to 7h or 5h per day, as well as incomplete recuperation at the end of
the study after 3 days with 8h time in bed for recovery sleep. They hypothesized that chronic
sleep loss induces long-lasting adaptive changes in the brain’s response to sleep loss, leading
to stabilized reduced performance under conditions of sleep restriction at the cost of diminished
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maximal performance capacity following recovery sleep. In contrast, in their study with 14
days of sleep restriction, Van Dongen et al. (2003) noted that performance continued to degrade
when sleep was restricted to 6h or 4h per day, with no evidence of adaptation across the study
period.

In the present paper, the two data sets (Figs. 1a and 4a) are examined in a single analytical
framework. Using PVT performance lapses as a well-validated outcome measure (Dorrian et
al., 2005) for both studies, no convincing evidence of an impairment plateau is found in either
data set. Yet, our modeling results indicate that stabilization of performance impairment would
occur eventually, beyond the duration of the two experiments. Furthermore, the modeling
outcomes suggest that several days with recovery sleep would be needed to restore performance
to baseline levels. Experiments currently underway (Wesensten et al., 2005;Banks et al.,
2007a,2007b) will shed further light on the time course of post-deprivation recovery.

Mathematical examination of the dynamics of the new model defined by Eqs. (21) revealed an
unanticipated emergent model property: a bifurcation involving a critical amount of
wakefulness which, if exceeded, changes the model behavior from a state of convergence
toward an asymptotically stable equilibrium, to a state of divergence away from an unstable
equilibrium (as illustrated in Fig. 2). This feature, previously alluded to (Belenky et al.,
2003; Van Dongen and Dinges, 2003b) but as yet not considered explicitly, turned out to
capture an essential aspect of the nature of performance impairment due to sleep loss. Using
data from the chronic sleep restriction and total sleep deprivation experiments documented by
Van Dongen et al. (2003) (Fig. 1a), we estimated the critical wakefulness threshold to occur
at 20.2h (i.e., at 3.8h daily sleep). This estimate was supported by data from the chronic sleep
restriction study of Belenky et al. (2003), who observed escalating performance impairment
when wakefulness was extended to 21h per day (3h daily sleep condition in Fig. 4a).

The significance of the bifurcation in the new model implies that other two-process-based
models of performance impairment due to chronic sleep loss (Hursh et al., 2004; Johnson et
al., 2004; Avinash et al., 2005), which do not possess the bifurcation property, must have a
more limited range of applicability than the new model. The excess wakefulness model (Van
Dongen et al., 2003), which is based on the fundamentally different conjecture that performance
impairment across days is proportional to the cumulative amount of wakefulness in excess of
a ration determined by the preceding sleep period, does not a priori have this same limitation
of scope (Van Dongen and Dinges, 2003b). However, the excess wakefulness model and the
model introduced in the present paper make contradictory predictions for performance
impairment after a period of chronic sleep restriction followed by a limited amount of recovery
sleep (Fig. 6). This juxtaposition entails one of three testable new predictions by which our
present model can be validated.

Another new prediction we made is that a daily 2h nap by itself, despite being effective to
mitigate performance impairment from sleep deprivation on the short term (Dinges et al.,
1988), cannot maintain reasonable levels of performance across multiple days (Fig. 5). The
third new prediction, which also has real-life relevance, concerns the longevity of the
performance improvement conferred by a single prolonged recovery night (“sleeping in”)
preceded and followed by periods of chronic sleep restriction (Fig. 7). Our model predicts that
a single recovery night interrupting a series of consecutive wake extensions to, say, 20h per
day constitutes a mere temporary perturbation, after which performance levels continue to
decline and converge to an asymptotically stable equilibrium. Confirmation of this prediction
by experimental evidence currently being obtained (Banks et al., 2007b) will have significant
implications—both theoretically, for our understanding of sleep and performance regulation,
and practically, with regard to sleep/wake/work scheduling in operational settings.
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The relationship between sleep and wakefulness on the one hand and neurobehavioral
performance on the other hand is often conceptualized as involving depletion of performance
capability by wakefulness and replenishment of performance capability by sleep (e.g., Hursh
et al., 2004). This would imply that performance levels can be estimated by keeping a running
tally of prior sleep and wakefulness (weighted for recency)—and that perhaps this also reflects
the underlying brain mechanisms. Our examination of model system dynamics has revealed
that this latter idea may need to be refined.

In our new model class (which encompasses the original two-process model and other models
based upon it), performance is actually a function of the prevailing wake/sleep ratio. Provided
the duration of wakefulness does not exceed the critical threshold Wc, performance predictions
converge across days from the present performance level to the applicable steady state (i.e.,
asymptotically stable equilibrium). Sleep/wake history is fully represented by the current
performance level (p or q) and the current level of the asymptote (u or v), and past amounts of
sleep and wake have no further impact beyond the present. In this view, the brain does not need
to maintain a running tally of sleep and wakefulness—it does not need to keep track of a “sleep
debt” (cf. Dement, 2006).

Rather, based on the dynamic behavior of our new model, it seems that the effects of sleep loss
and the effects of recovery sleep on waking neurobehavioral performance should be interpreted
in the context of underlying physiologic balance shifts. The time constants for convergence to
homeostatic balance appear to be in the order of weeks (Figs. 1d and 4b), and a state of
equilibrium may seldom be achieved in practice. Still, conceptualizing the effects of sleep and
sleep loss on waking performance in terms of physiologic balance shifts renders irrelevant the
ostensibly irresolvable question of which components of sleep are most important for
recuperation (e.g., Lubin et al., 1974).

5.2. Possible underlying neurobiological mechanisms
The dynamics of the model defined by Eqs. (21) may provide insight into the nature of the
underlying neurobiological mechanisms. Conceptually, the model resembles a system of two
connected compartments containing interacting substances with time-varying concentrations
—one with longer time constants than the other. In this regard, our model could be a
mathematical representation of the interaction between a neurotransmitter or neuromodulator
and its receptor, with the density of both changing dynamically across time awake and time
asleep. However, the model’s dynamic behavior and the parameter estimates we obtained
(notably the finding that α12 > 0 and σ12 > 0) point to positive feedback regulation in the system,
which is not typical in neurotransmitter/neuromodulator mechanisms. Yet, such a regulatory
process may be taking place in the adenosinergic system.

Adenosine is a (by)product of brain energy metabolism (Porkka-Heiskanen et al., 2002), and
has been reported to induce sleepiness and impair waking functions, particularly through the
cholinergic system in the basal forebrain (Basheer et al., 2000). Hence, the adenosinergic
system might be a final pathway in the homeostatic regulation of sleep and waking
neurobehavioral functions (Benington and Heller, 1995), and could be the temporal bottleneck
that determines the time constants across days in our model. In accordance with the dynamic
structure of the model, it has been observed that both extracellular adenosine level and
adenosine A1 receptor density change dynamically in response to sleep loss (Yanik and
Radulovacki, 1987; Basheer et al., 2004, 2007; Elmenhorst et al., 2007; Porkka-Heiskanen et
al., 2000). Moreover, sleep deprivation-induced increases in extracellular adenosine lead to
concomitant increases in A1 receptor expression, implicating positive feedback regulation
(Basheer et al., 2007)—in agreement with the present model.
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Based on these considerations, we propose an explanation for the effects of sleep loss on PVT
performance lapses in particular, and on neurobehavioral performance in general, in terms of
adenosine binding to receptors that are up- and downregulated dynamically across wake/sleep
cycles. We postulate that wakefulness and sleep induce adenosine receptor upregulation and
downregulation, respectively, as represented in the model by increases and decreases of the
asymptotes (u and v). Thus, increased adenosine production during extended wakefulness
would cause both increased sleep homeostatic pressure, inducing waking neurobehavioral
impairment, and receptor upregulation. This would effectively enhance sensitivity to sleep loss
on subsequent days (Basheer et al., 2007), which would serve a protective function by
restraining further sleep restriction. Should additional sleep loss occur anyway, physiologic
balance would shift as the rates of adenosine receptor upregulation during wakefulness and
downregulation during sleep establish a new equilibrium.

However, if wakefulness is extended to more than the critical amount Wc, which we estimated
here to be 20.2h, then a physiologic balance may no longer be achievable. This bifurcation,
observed in both the model predictions and the experimental observations, may suggest a role
for slow wave activity (SWA; ~0.5–4.5 Hz) observed in the EEG of non-REM sleep. SWA
during sleep is substantially preserved when wake duration is no greater than ~20h per day
(Brunner et al., 1993; Van Dongen et al., 2003). However, when daily wakefulness is extended
beyond ~20h, then insufficient time for sleep remains to fully express SWA (see Van Dongen
and Dinges, 2003b). The reduction in SWA could be related to the qualitative change in the
effects of sleep loss on neurobehavioral performance when wakefulness is extended beyond
the critical wake duration Wc.

Also, a connection between SWA and adenosinergic mechanisms has been noted (see Landolt,
2008). For instance, stimulation of adenosine A1 receptors affects SWA expression in the same
manner as does acute total sleep deprivation (e.g., Benington et al., 1995). Here, we hypothesize
more specifically that SWA is a physiological correlate of adenosine receptor downregulation
during sleep. This could explain why homeostatic balance can be achieved when wake duration
is no more than approximately 20h per 24h day, as it allows enough time for sleep to preserve
SWA. However, if daily wakefulness is extended beyond the bifurcation threshold, then despite
SWA intensification, the overall expression of SWA is curtailed. The hypothesized adenosine
receptor downregulation may thus no longer be sufficient to counter the upregulation during
prior wakefulness, and a physiologic balance may no longer be achievable. As a result,
adenosinergic sensitivity to sleep loss would escalate, which in turn would cause the
accelerating neurobehavioral impairment that has been observed under such extreme sleep
restriction conditions (Belenky et al., 2003; Van Dongen et al., 2003; Van Dongen and Dinges,
2003b).

Our proposed account of the waking neurobehavioral effects of sleep deprivation across days,
postulated to be governed by dynamic changes in both adenosine production and adenosine
receptor expression, may have noteworthy implications for the role of caffeine as a
countermeasure for neurobehavioral impairment due to sleep loss. Caffeine’s main mode of
action is as an adenosine receptor antagonist (e.g., Biaggioni et al., 1991). As such, in addition
to mitigating the neurobehavioral consequences of sleep loss (e.g., Penetar et al., 1993), it might
also block the sleep deprivation-mediated adenosine receptor upregulation. It may thus be
hypothesized that regular consumption of moderate amounts of caffeine could help to prevent
increasing sensitivity to sleep loss across days of sleep restriction, which would offer a strategy
for managing chronic sleep loss. Although this may already be practiced by millions of
individuals around the world, how this could be effective had not really been understood
mechanistically (and still needs to be confirmed through direct experimental evidence).
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At higher doses, caffeine may interfere with the expression of SWA (e.g., LaJambe et al.,
2005), which by extension of our hypothesis could hamper the sleep-related downregulation
of adenosine receptors. Thus, depending on dose (and timing), caffeine may also be
counterproductive in mitigating the waking neurobehavioral consequences of sleep
deprivation. In that sense, effective use of caffeine as a countermeasure for sleep loss may not
be straightforward. In safety-critical scenarios, therefore, it may be advisable to target caffeine
administration with the help of a biology-based model of its physiological effects. Such a model
could be developed using the mathematical framework introduced in the present paper.

5.3. Further work
We have put forth a new model formulated in terms of coupled non-homogeneous first-order
ODEs, with a dynamic repertoire capturing sleep homeostatic changes in waking
neurobehavioral functions across a wide range of wake/sleep schedules. Further work is needed
to integrate our model with a state-of-the-art mathematical model of the circadian component
(e.g., Jewett et al., 1999; St. Hilaire et al., 2007), and to deal with sleep inertia (e.g., Åkerstedt
and Folkard, 1997; Jewett and Kronauer, 1999). In addition, trait-like individual differences
in vulnerability to sleep loss (Van Dongen et al., 2004a) have yet to be accounted for in the
new model. This will be resolved in a follow-up project using modern statistical modeling tools
(e.g., Van Dongen et al., 2004b), which can also yield improved model parameter estimates
(and their standard errors) as well as confidence intervals for model predictions (see Van
Dongen et al., 2007; Smith et al., in press).

Finally, it should be recognized that the effects of sleep loss on waking neurobehavioral
performance depend in part on which aspects of cognitive functioning are considered (Durmer
and Dinges, 2005). Our present focus on PVT performance lapses entails a well-validated
(Dorrian et al., 2005; Lim and Dinges, 2008) but incomplete account of neurobehavioral
responses to sleep loss (e.g., see Van Dongen et al., 2004a). Ongoing efforts to connect fatigue
and performance models with computational models of cognition (Gunzelmann et al., 2007)
represent a promising strategy to address this issue.
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Fig. 1.
Neurobehavioral performance observations and predictions by different models. A total of 48
healthy young adults were subjected to one of four laboratory sleep deprivation protocols (Van
Dongen et al., 2003). Each protocol began with several baseline days involving 16h scheduled
wake time (SWT)/8h time in bed (TIB); the last of these baseline days is labeled here as day
0. Subsequently, 13 subjects were kept awake (24h SWT/0h TIB) for three additional days, for
a total of 88h awake (left panels), after which they received varied amounts of recovery sleep
(not shown). The other subjects underwent various doses of sleep restriction for 14 consecutive
days, followed by two recovery days with 16h SWT/8h TIB (right panels). The sleep restriction
schedule involved 20h SWT/4h TIB per day for 13 subjects (circles; red); 18h SWT/6h TIB
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per day for another 13 subjects (boxes; yellow); and 16h SWT/8h TIB per day for the remaining
9 subjects (diamonds; green). Awakening was scheduled at 07:30 each day. Neurobehavioral
performance was tested every 2h during scheduled wakefulness using the PVT, for which the
number of lapses (reaction times greater than 500ms) was recorded.
(a) Observed neurobehavioral performance (PVT lapses) for each test bout (dots represent
group averages). The first two test bouts of each waking period are omitted in order to avoid
confounds from sleep inertia. Gray bars indicate scheduled sleep periods.
(b) Corresponding performance predictions according to the original two-process model
(Borbély and Achermann, 1999), linearly scaled to the data. Data points represent performance
predictions at wake onset. Thin curves represent predictions within days, but the focus here is
on changes across days (dashed lines). Note the rapid stabilization across days predicted to
occur in the chronic sleep restriction conditions (right panel), which does not match the
observations shown in (a).
(c) Corresponding predictions according to the extended two-process model (Avinash et al.,
2005), linearly scaled to the data. Note the under-prediction of performance impairment in the
total sleep deprivation condition (left panel) and the over-prediction of the impairment build-
up across days in the 20h SWT/4h TIB condition (right panel), relative to the actual data shown
in (a).
(d) Corresponding predictions according to the new model introduced in this paper as defined
by Eqs. (21) and (26). Note the improved fit to the experimental observations across days for
total sleep deprivation (left panel), which is explored in more detail in Fig. 3, as well as for the
20h SWT/4h TIB condition (right panel). Performance impairment in the 18h SWT/6h TIB
and 16h SWT/8h TIB conditions (right panel) is under-predicted. However, the group-average
impairment levels observed for these conditions are inflated due to a few outliers (Van Dongen
et al., 2003).
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Fig. 2.
Illustration of the model given by Eqs. (21) using parameter values selected to illustrate its
bifurcating dynamic behavior. The figure shows model predictions at wake onset (data points)
for 16 days (n = 0, 1, …, 15) of fixed duration T = 24h, assuming a constant period τ = 24h for
the non-homogeneities. The thin curves represent the predictions within days using the non-
homogeneities given by Eqs. (26)—but the profile of changes across days (dashed lines) as
determined by the α and σ coefficient matrices in Eqs. (21) is of primary interest here. Each
prediction curve corresponds to a different amount of daily wakefulness: W = 16h (diamonds;
green), W = 18h (boxes; yellow), W = 20h (circles; red), W = 22h (downward triangles; gray),
and W = 24h (i.e., total sleep deprivation) (upward triangles; black). Light gray areas indicate
nocturnal sleep periods. In this illustration, the model parameter values are intentionally
selected such that the bifurcation threshold occurs at Wc = 20h (i.e., 4h daily sleep). For daily
wake durations below this bifurcation threshold (green and yellow), the model converges to
an asymptotically stable equilibrium, meaning that performance impairment ultimately levels
off. For daily wake durations beyond the bifurcation threshold (gray and black), the model
diverges from an unstable equilibrium, meaning that performance impairment tends to escalate.
At exactly the bifurcation value W = Wc (red), there is no equilibrium state, resulting in an
asymptotically linear build-up of performance impairment across days.
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Fig. 3.
Detailed examination of the performance predictions under conditions of total sleep
deprivation. The new model defined by Eqs. (21) and (26) with the parameter estimates given
by Eqs. (27) has a bifurcation at Wc = 20.2h, implying that predictions for performance in the
total sleep deprivation condition (i.e., W = 24h > Wc; see Fig. 1a, top left panel) should exhibit
diverging (i.e., escalating) performance impairment across days. However, the actual
predictions (see Fig. 1d, bottom left panel) would seem to suggest a converging pattern. This
can be explained by simultaneously considering the performance predictions pn (black dashed
curve), the level of the unstable equilibrium state p (dotted horizontal line), and the upper
asymptote un (gray dashed curve). Since α22 > 0, the upper asymptote un increases
exponentially across days. Thus, within waking episodes, performance pn is increasingly drawn
upwards. On the other hand, the equilibrium level p is located above the initial performance
value p0(t0). Thus, divergence from this unstable equilibrium would entail a drive downwards.
Here, the net result is that performance impairment is predicted to increase across days, but in
a decelerating manner (cf. Van Dongen et al., 2003). If wakefulness were maintained for
additional days, though, the performance predictions would cross the unstable equilibrium state
and then diverge from it upwards, exposing the typical escalating behavior for W > Wc in this
model (see the illustration in Fig. 2, black upward triangles).
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Fig. 4.
Experimental observations and predictions by our new model for neurobehavioral performance
impairment. A total of 66 healthy young adults were subjected to one of four laboratory sleep
deprivation protocols (Belenky et al., 2003). Each protocol began with several baseline days
involving 16h scheduled wake time (SWT)/8h time in bed (TIB); the last of these baseline days
is labeled here as day 0. The subjects subsequently underwent various doses of sleep restriction
for seven consecutive days, followed by three recovery days with 16h SWT/8h TIB. The sleep
restriction schedule involved 21h SWT/3h TIB per day for 13 subjects (circles; purple); 19h
SWT/5h TIB per day for 13 subjects (boxes; orange); 17h SWT/7h TIB per day for 14 subjects
(diamonds; brown); and 15h SWT/9h TIB per day for 16 subjects (triangles; blue). Awakening
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was scheduled at 07:00 each day. Neurobehavioral performance was tested daily at 09:00,
12:00, 15:00 and 21:00 using the PVT. In the 19h SWT/5h TIB condition an additional test
bout occurred at midnight, and in the 21h SWT/3h TIB condition yet another one took place
two hours after midnight.
(a) Observed neurobehavioral performance (PVT lapses) for each test bout (dots represent
group averages). The first test bout of each waking period is omitted in order to avoid confounds
from sleep inertia. Gray bars indicate scheduled sleep periods.
(b) Corresponding performance predictions according to the new model defined by Eqs. (21)
and (26). Parameter estimates are fixed at the values of Eqs. (27), as previously estimated using
the data in Fig. 1a. Data points represent predictions at wake onset; thin curves represent
predictions within days. The focus here is on changes across days (dashed lines). Note that the
model predictions across the seven days of sleep restriction accurately capture the qualitative
change from convergence (i.e., leveling off of performance impairment) in the 15h, 17h and
19h SWT conditions, to divergence (i.e., disproportionately rapid escalation of performance
impairment) in the 21h SWT/3h TIB condition.
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Fig. 5.
Prediction of the effectiveness of a single 2h nocturnal period of nap sleep each day for
maintaining performance across days. The figure shows predicted performance at wake onset
(boxes) and within each of the days (thin curve) across 8 days with a nap scheduled from 02:45
until 04:45 daily (gray bars). For comparison, predicted performance across 4 days of total
sleep deprivation is shown as well (triangles represent performance at 04:45, which is the same
time as scheduled wake onset in the nap condition). Both conditions are initiated after
awakening from 8h baseline sleep at 07:30 (dashed vertical lines indicate 07:30 at 24h
increments). The performance predictions, derived from the new model given by Eqs. (21),
(26) and (27) and expressed in terms of the number of lapses on the PVT, indicate that a daily
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2h nap is not effective at maintaining reasonable levels of performance across multiple days.
(For a discussion of the predictions for the total sleep deprivation condition, see Fig. 3, but
note that the timing of wake onset is not the same.)
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Fig. 6.
Opposing predictions from two models regarding recovery following chronic sleep restriction.
The figure shows performance predictions at wake onset (boxes) for five days with 20h
wakefulness and 4h sleep per day, followed by one day with 18h wakefulness and 6h recovery
sleep. Gray areas indicate nocturnal sleep periods.
(a) Predictions for performance changes across days according to the excess wakefulness model
(Van Dongen et al., 2003). This model predicts that performance deteriorates progressively
across the five days with 20h wake/4h sleep, and continues to deteriorate at a slower rate
following the day with 18h wake/6h sleep.
(b) Predictions for performance changes across days according to the model defined by Eqs.
(21), (26) and (27). This new model also predicts that performance deteriorates progressively
across the five days with 20h wake/4h sleep, but forecasts a modest relative performance
improvement following the day with 18h wake/6h sleep. (Note that sleep inertia is not
accounted for in these predictions.)
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Fig. 7.
New prediction for rapid recycling after a period of chronic sleep restriction. The figure shows
predicted performance at wake onset (boxes) over days, during a period of five days with wake
extension to 20h per day (i.e., 4h sleep daily), followed by one day with 14h scheduled
wakefulness (i.e., 10h for recovery sleep), followed by recycling into a second period of five
days with wake extension to 20h per day (4h sleep daily). Gray areas indicate nocturnal sleep
periods. The performance predictions, derived from the new model given by Eqs. (21), (26)
and (27), indicate that the intermittent recovery sleep should confer only a short-lasting benefit
—in the second period of sleep restriction, performance is predicted to further deteriorate
(while converging towards the asymptotically stable equilibrium for W = 20h with a time
constant extending far beyond the period displayed in the graph).
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