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Abstract

The recycling of the amyloid precursor protein (APP) from the cell surface via the endocytic pathways
plays a key role in the generation of amyloid p-peptide (AB) in Alzheimer’s Disease (AD). We report
here that inherited variants in the SORL1 neuronal sorting receptor are associated with late-onset
AD. These variants, which occur in at least two different clusters of intronic sequences may regulate
tissue-specific expression of SORL1. We also show that SORL1 directs trafficking of APP into
recycling pathways, and that when SORL1 is under-expressed, APP is sorted into Ap-generating
compartments. These data suggest that inherited or acquired changes in SORL1 expression or
function are mechanistically involved in causing AD.

INTRODUCTION

The accumulation of AP peptide, a neurotoxic proteolytic derivative of the amyl0|d precursor
protein (APP) is a central event in the pathogenesis of Alzheimer’s Disease (AD) . Thus,
accumulation of AB in the brain i |s associated with dlsease -causing |nher|ted variants in the
amyloid precursor protein (APP) , presenilin 1 (PSl) presenilin 2 (PSZ) and apolipoprotein
E (APOE) genes 56 The generation of AB occurs in several subcellular compartments, but a
principle location is during the re entry and recycling of APP from the cell surface via the
endocytic pathway (Figure 1B) —11 \We reasoned that inherited variants in these pathways
might modulate APP processing, and thereby might affect risk for AD. This concept is
supported by prior reports that: 1) the expression of several candidate proteins within these
pathways (e.g. SORL112, VvPs35 1 ) are reduced in AD brain tissue; and 2) reductions in the
expression of some of these proteins is associated with increased Ap production 13-15
However, it is unclear whether these changes are causal or are simply reactive to AD.

To address this question, we investigated genetic associations between AD and single
nucleotide polymorphisms (SNPs) in selected members of the vacuolar protein sorting (VPS)
gene family including VPS35 (16q12); VPS26 (10g21); sortilin - SORT1 (1p21-p13); sortilin-
related VPS10 containing receptors - SORCS1 (10023-g25), SORCS2 (4p16), and SORCS3
(10923-g25); and sortilin-related receptor, low density lipoprotein receptor class A repeats-
containing - SORL1 (11g23-g24)]. The inheritance of SNPs from these genes was explored in
six independent datasets that have sufficient power to detect modest gene effects (As = 1.5).
These datasets were collected from restricted ethnic origins in order to minimize the
confounding effects of allelic heterogeneity 16,17  Indeed, two of these six datasets
(Caribbean-Hispanic FAD and Israeli-Arab datasets), were drawn from population isolates
with a limited number of founders 18,19

These six datasets were divided into a “discovery cohort” composed of families with late-onset
familial AD and a “replication cohort” composed of discordant sibships and case:control
datasets. The FAD pedigrees in the discovery cohort gNorth European FAD = 124 families
21 and Caribbean- Hispanic FAD = 228 families 22 ~ Table 1) were interrogated with
conservative family-based-association (FBAT) methods, which are less sensitive to population
stratification. Positive results from the “discovery cohort” were then re-investigated in the
“replication cohort” (Table 1). This replication cohort contained: 1) North European
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case:controls (178 sporadic AD cases, 242 controls of northwest European Caucasian 20, 2)
MIRAGE Caucasian sibships (276 Caucasian sibships from the MIRAGE Study) 23,24, 3)
MIRAGE African-American sibships (238 African-American sibships from the MIRAGE
Study) 23’24; and 4) Israeli-Arab case:controls (all 111 AD cases and 114 normal controls
from the Wadi Ara population study) 1925,

Independent replication was obtained from three large datasets of American Caucasians that
were independently ascertained, genotyped and analyzed statistically at the Mayo Clinic.

SNPs in SORL1 are associated with late-onset AD

At least two SNPs in the intragenic sequences of the SORL1, VPS26, VPS35, SORCS1,
SORCS3, SORCS2, and SORTL1 genes were initially screened for association with AD in the
two independent FAD “discovery datasets”. No allelic associations were observed with VPS26,
VPS35, SORCS3, or SORT1 (Supplemental Table 1, 2). However, one SNP in SORCS1
(rs7082289: p = 0.013), one SNP in SORCS2 (rs7694823: p = 0.01) and two SNPs in SORL1
exhibited nominally significant association in at least one of the FAD datasets (rs2298813: p
=0.012; rs2070045: p = 0.031).

To validate these initial results, a second series of SNPs from the SORCS1, SORCS2 and
SORL1 genes were investigated in the two FAD discovery datasets. No association was
detected with the additional SNPs in SORCS1 (total = 9 SNPs) or in SORCS2 (total = 6 SNPs)
(Supplemental Table 1, 2). However, six SNPs clustered in two distinct regions of the SORL1
gene were significantly associated with AD in at least one discovery dataset, and also in at least
one replication dataset (Table 3 and Supplemental Table 3) (0.0031 < p <0.014). Importantly,
at five of these SNPs, the alleles associated with AD were identical in both the discovery and
replication datasets (Table 3 and Supplemental Table 3). Thus, at the 5’-end of SORL1, AD
was associated with the “C”, “G” and “C” alleles at SNPs 8, 9 and 10 respectively in the
Caribbean-Hispanic FAD (p = 0.013, 0.017, and 0.021), Israeli-Arab (p = 0.002, 0.007, and
0.005), and North European case:control datasets (p = 0.021, 0.04, and 0.067) (Table 3 and
Supplemental Table 3). Similarly, at the 3'-end of SORL1, AD was associated with the “G”
and “T” alleles at SNPs 19 and 23 respectively in the North European FAD (p=0.031; 0.0031)
and North European case:control datasets (p = 0.00082, 0.00073) (Table 3 and Supplemental
Table 3). Post-hoc statistical adjustment for APOE genotype, age and gender did not alter the
conclusions that: 1) there were allelic associations between AD and two clusters of SNPs in
distinct regions of SORL1 in different datasets; and 2) that these associations replicated in
multiple independent datasets.

Haplotypic analyses using a sliding window method 26 and window size of three contiguous
SNPs confirmed the single SNP analyses, demonstrating replicated haplotypic associations in
two regions of SORL1 in different datasets (Table 4 and Supplemental Table 4). Thus, at the
5’ end of SORL1, the “CGC” haplotype at SNPs 8, 9, 10 was associated with AD in the
Caribbean-Hispanic FAD (global-p = 0.0098, haplotype-p = 0.0053, haplotype frequency =
0.614 v. 0.583 in controls); Israeli-Arab (global-p = 0.023 haplotype-p = 0.0085, frequency =
0.661 in cases vs.0.539 in controls); and North European case:control datasets (haplotype-p
= 0.045, frequency = 0.638 in cases vs. 0.566 in controls) (Table 4, and Supplemental Table
4). In the Israeli-Arab dataset, the overlapping “GCC” haplotype at SNPs 9, 10 and 11 showed
even greater evidence for association (global-p = 0.0080; haplotype-p = 0.0047). As might be
expected, SNPs 8, 9, and 10 also posses a protective haplotype. The “TAT” haplotype at SNPs
8, 9, 10 was associated with decreased risk of AD in these datasets (Hispanic FAD: haplotype-
p =0.0086; haplotype frequency = 0.353 vs. 0.394 in controls); Israeli-Arab: frequency = 0.301
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in cases vs. 0.434 in controls, haplotype-p = 0.0037; North European Caucasian: frequency =
0.351 in cases vs. 0.417 in controls, haplotype-p = 0.068).

A second cluster of replicated haplotypic associations was observed at the 3’ end of SORL1 in
the North European datasets. Thus, the overlapping haplotypes of “CTT” at SNPs 22-24 and
“TTC” at SNPs 23-25 were associated with AD in the North European FAD and North
European case:control datasets (0.001 < haplotype-p < 0.02; Table 4 and Supplemental Table
4). This region of SORL1 also revealed significant haplotypic associations in the MIRAGE
African-American sibships. However, the haplotypic associations at SNPs 23-25 in the
MIRAGE African-American sibships were with different haplotypes (global-p = 0.0043;
disease-associated “ACT” haplotype-p = 0.0025, frequency = 0.513; protective “ACC”
haplotype-p = 0.0044, frequency = 0.403) (Table 4 and Supplemental Table 3). The conclusion
that there are at least two distinct regions of SORL1 that are associated with AD in different
ethnic groups was supported when shorter or longer haplotypes were examined (Supplemental
Tables 5-8).

To provide acompletely independent confirmation of the association between AD and SORL1,
SNPs 4,5, 8,9, 12, 19, and 22-25 were genotyped and analyzed in an independent facility in
three series of Caucasian cases and controls ascertained at the Mayo Clinic (n = 1400 late onset
AD cases; 2113 controls, Table 1B)27'28. The North European Caucasians and the American
Caucasians in the Mayo datasets have slightly different allele frequencies and haplotype
structures and may therefore have slightly different ethnic origins. Nevertheless, significant
associations were observed at SNPs 4, 12, 19 and 23-25 in the overall Mayo dataset (single
SNP: 0.009 < p <0.046), and two of the three subdatasets individually gave highly significant
results (0.003 < p < 0.007) for one or more of these SNPs (Table 5). Importantly, the alleles
and haplotypes at SNPs 19, 22-25 that were associated with increased risk for AD in the
Mayo datasets (black highlight in Tables 5 and 6) were the same as those associated with
increased risk for AD in both the North European FAD dataset and in the North European
case:control dataset (black highlight in Tables 3 and 4). Moreover, when all of the Caucasian
case:control samples are considered together (n = 1554 AD cases, 2333 controls) the
associations remained robust (single SNP: = 0.002 < p <,0.04 with three SNPs giving p <
0.008). Intriguingly, both the Mayo dataset and the overall Caucasian case:control also detected
association with SNP 4 (p = 0.009 and p = 0.002 respectively), a result not evident in the
individual datasets.

Cell Biology of SORL1

The SNPs and haplotypes identified here are unlikely to be the actual AD-causing variants.
Sequencing of the exons and immediate intron-exon boundaries in carriers of the disease-
associated haplotypes at SNPs 8-10 or SNPs 22-24, and investigation of SORL1 splice forms
recovered by RT-PCR failed to identify any pathogenic sequence variants that were enriched
in AD cases over controls (Supplemental Table 9). It is therefore likely that the associations
with SNPs reflect the presence of pathogenic variants within the intronic sequences near SNPs
8-10 and 22-24. The possibility that the observed associations with SNPs inside the SORL1
gene might reflect pathogenic variants outside SORL1 can be excluded because the SNPs
flanking the 5’ and 3’ ends of SORL1 all showed no association with AD. We speculate that
these putative intronic variants might modulate cell-type-specific transcription or translation
of SORL1 in neurons of carriers of the AD-associated haplotypes.

Direct exploration of this hypothesis is difficult. First, the variations in SORL1 expression in
AD brain have been cell-type specific, SORL1 expression being depressed in neurons but not
glia 12 second, there are only limited numbers of brain tissue samples from individuals where
SORL1 SNP marker phase, and thus haplotypes are known. Nevertheless, tentative support

for the hypothesis that AD-associated haplotypes in SORL1 may be associated with reduced
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SORL1 transcription is provided by quantitative real-time PCR studies of SORL1 expression
in lymphoblasts from carriers of the “CTT” AD-haplotype at SNPs 22-24. (Insufficient
numbers of samples were available to test the effects of SNPs 8-10). These experiments
revealed that SORL1 was expressed in AD-haplotype carriers at less than half the levels that
were observed in obligate carriers of non-AD haplotypes (10324 + 8215 arbitrary units in
carriers versus 23650 + 17999 in non-carriers; mean + SD; normalized to B-actin mRNA; p <
0.05, two tailed Mann-Whitney U-test; n = 8 independent samples; n = 3 replications).
However, it is also of note that univariate regression analyses revealed that SORL1 haplotype
status accounted for only ~14% of this variance (p = 0.08). This latter result implies that other
genetic and non-genetic factors can also modulate SORL1 expression, and perhaps therefore
risk for AD.

The observation that specific genetic variants in SORL1 are associated with AD, and these
same variants may be accompanied by reduced SORL1 expression are critical on several levels.
First, these observations lead to the conclusion that the previously reported reductions in
SORL1 expression in neurons in sporadic AD are likely to be causal rather than simply reactive
changes. This notion is supported by that fact that SORL1 expression is not altered in other
types of AD with known etiology (e.g. PS1-mutant FAD)12’ 9 second, these observations
raise the question of how changes in SORL1 expression or function might affect risk for AD.
To explore this question, we undertook the following cell biological experiments, which
demonstrate that SORL1 directly binds APP and differentially regulates its sorting into
endocytic or recycling pathways.

Co-immunoprecipitation experiments in native HEK cells demonstrated that endogenous
SORL1 physically interacts with the endogenous APP holoprotein (Figure 2) and with VPS35
(which drives cargo selection in the retromer via VPS10-containing proteins like SORL1 30.
data not shown). SORL1, however, does not bind to APP carboxyl-terminal fragments
produced by a-, B- or y-secretase cleavage (Figure 2). These protein-protein interactions are
specific because SORL1 does not bind to other Type 1 membrane proteins (e.g. BACE1 31,
Figure 3) or to VPS26 (which links VPS35 to the other structural elements of the retromer30
- data not shown).

The interaction between SORL1, VPS35 and APP holoprotein provides a mechanism by which
SORL1 can regulate differential sorting of APP into the retromer recycling pathway or into
the late endosomal pathway (where APP undergoes - and y-secretase cleavage to generate
AB). In agreement with this hypothesis, over-expression of SORL1, which would be predicted
to divert APP holoprotein into the retromer recycling pathway, results in decreased Ap
production (82% of control value, p <0.05, n =5 replications; Figure 3A). Conversely, SIRNA
suppression of SORL1 expression, which we speculate mimics the effects of AD-associated
variants in SORL1, results in deflection of APP holoprotein away from the recycling retromer
pathway and into the late endosome-lysosome pathway. As would be predicted, SiRNA
suppression of SORL1 causes: 1) overproduction of the APPsp ectodomain generated by
BACEL1 cleavage of APP holoprotein (mean £ SEM normalized to control = 149.45% =+ 9.66,
p <0.0001, n =5 replications; Figure 3C); and 2) over-production of Af by the subsequent y-
secretase cleavage of the APP C-terminal stub generated by BACE1 (AB40 = 189% of control,
AB42 = 202% of control, p < 0.001; three independent siRNA oligonucleotides with five
replications each, Figure 3B). The conclusion that SORL1 regulates sorting of APP into the
retromer-recycling pathway is supported by the observation of identical effects following
suppression of the retromer proteins VPS26 (AB40 = 186% of control value; Ap42 = 183% of
control value, p < 0.001, n = 5 replications; Figure 3D) or VPS35 13 These results are in good
?greement with independent reports that appeared during preparation of this manuscript 4,
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DISCUSSION

METHODS
Subjects

Taken together, our results suggest that genetic and possibly environmentally-specified
changes in SORL1 expression or function are causally linked to the pathogenesis of AD and
have a modest effect on risk for this disease. The precise identity of the genetic effectors in
SORL1 remains to be determined. However, the results described here imply that: i) there are
several different allelic variants in distinct genomic regions of the SORL1 gene in different
populations; ii) that these variants are likely to be in intronic regulatory sequences that might
govern cell-type or tissue-specific expression of SORL1; and iii) these variants affect this risk
by altering the physiological role of SORLL1 in the processing of APP holoprotein.

The observations that: 1) no single SORL1 SNP or haplotype is associated with increased risk
for AD in all six datasets; and 2) that some datasets fail to show any association, contrasts
sharply with APOE (where APOE &4 is associated with AD in most datasets 32). However,
four points mitigate concerns that the association between SORL1 and AD is spurious. First,
the association was initially identified using conservative family-based association tests, which
are less sensitive to confounding due to population stratification 33, Second, at each set of SNP
clusters, the same alleles and haplotypes were associated with increased risk for AD in at least
three unrelated datasets drawn from ethnically different origins. Third, the association of
disease with a single allele in all datasets (i.e. an APOE ¢4-like association) is not a universal
observation for either complex or monogenic diseases 17 Thus, the occurrence of pathogenic
mutations across multiple domains of disease genes (i.e. allelic heterogeneity), and the absence
of these variants in some datasets (i.e. locus heterogeneity) are not unusual in either monogenic
or complex traits 34,35 Fourth, the absence of significant associations in two datasets
(MIRAGE Caucasian sibships and Mayo-RS) does not negate the findings from the other
datasets. There are several potential explanations for the failure to detect a significant
association in these two datasets, including: 1) insufficient power to reliably detect the
association in all series; 2) locus heterogeneity (i.e. non-SORL1-causes are over-represented
and SORL1-associated causes are under-represented in these datasets); and 3) allelic
heterogeneity (i.e. the association was obscured because in these datasets the biologically active
SORL1-alleles occur on adifferent SNP background or on multiple SNP backgrounds). Indeed,
the probable existence of population-specific alleles (ie allelic heterogeneity) has important
implications for replication studies. Such studies will need to assess a battery of SNPs focused
on datasets with as homogeneous a genetic background as possible.

Our results also resolve the conundrum concerning the significance of previous reports of
reduced expression in AD-affected brain tissue of several genes potentially involved in APP
trafficking. The data reported here argue that the reduction in SORL1 expression is likely to
be a primary and pathogenic event, whereas the reduction in VPS35 is likely to be a secondary
event.

Finally, our data demonstrate that SORL1 plays a key physiological role in the differential
sorting of APP holoprotein. In the presence of SORL1, APP holoprotein is recovered via the
retromer. In the absence of SORL1, APP is released into late endosomal pathways where it is
subjected to B- and subsequently y-secretase cleavage that generate Af (Figure 1b).

Informed consent was obtained from all participants. The clinical diagnosis of “probable” or
“possible” AD was defined according to the NINCDS-ADRDA diagnosis criteria at clinics
specializing in memory disorders. Clinical characteristics of the North European, MIRAGE,
Caribbean-Hispanic FAD, Israeli-Arab and Mayo American Caucasian datasets are
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summarized in Table 1 19,20,22-25,27,28 The North European case:control set is drawn from
the same populations as the North European FAD dataset 20,22 The three Mayo datasets were
drawn from Caucasian subjects and controls assessed in clinical series at the Rochester (RS)
and Jacksonville (JS) Mayo clinics, or from Caucasian brains in which the presence or absence
of AD was determined neuropathologically (AUT).

Genetic Analyses

Genotyping was performed using the GenomeLab SNPstream System and primer sets were as
in Supplemental Table 2B (Beckman Coulter Inc., CA). 100 DNA samples were genotyped
twice for every SNP marker (concordance rate was >99%). APOE was genotyped as described
S, Genotyping of the Mayo samples was performed on an ABI 7900 instrument using TagMan
chemistry with primers and probes designed by Applied Biosystems Inc. The entire open
reading frame of the SORL 1 gene was sequenced in twelve AD cases, twelve familial AD cases
and two normal controls selected from the North European and Caribbean-Hispanic datasets
(Supplemental Tables 2C and 9).

Alternatively spliced transcripts were sought by conventional RT-PCR in eight overlapping
fragments using total RNA isolated from frontal cortex (Canadian Brain Tissue Bank and the
New York Brain Bank) (16 normal controls and 17 sporadic AD cases). (Supplemental Table
2D, Supplemental Figure 2).

Statistical Analyses

SNP marker data were assessed for deviations from Hardy-Weinberg equilibrium (Pedstats
program) and for Mendelian inheritance errors (Pedcheck software). Single point family-based
association was assessed with FBAT v1.5.5 36, using an additive genetic model with the null
hypothesis of no linkage and no association. Allele frequencies were estimated by FBAT using
the EM algorithm. APOE &4 carrier status was included in the analyses using PBAT v2.6 37-
40, The x2 test (or the Fisher’s exact test) was used to assess genotypic and allelic associations
between AD. Multivariate logistic regression analysis was performed to adjust for APOE &4,
sex, and age-at-onset/age-at-examination.

Statistical significance and multiple testing corrections—The Benjamini-corrected
false discovery rate (FDR) 41 was used with a cut-off level of 0.1 to correct for multiple testing.
The p-values presented are nominal p-values. The cut off p-values for significance in each
dataset are displayed in the table legends.

Linkage Disequilibrium—LD structure was examined using Haploview
(http://www.broad.mit.edu/mpg/haploview/index.php). Haplotype blocks were defined using
confidence-intervals algorithm. The default settings were used in these analyses, which create
95% confidence bounds on D’ to define SNP pairs in strong LD.

Haplotype Analyses—Haplotype analyses were carried out with a sliding window of three
conti(sguous SNPs using FBAT for family data and Haplo. stats v1.1.1 for case:control data
16,26,42,4344 Tpe analyses were repeated using sliding windows of 2, 4, 5 and 6 SNPs.

Expression plasmids and cDNA constructs for human SORL1—The cDNA clones
for APP K670N/M671L Swedish mutation (APPs,e) and BACE1 V5-tagged at the C-terminus
were described previously 45,46,

Cell culture and transfection—HEK293 cell line stably expressing APPgy,e Was as

described 47. Transient transfection of BACE1 cDNA was performed using LipofectAMINE
2000 (Invitrogen, CA).
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RNA Interference—Small interfering RNA (siRNA) oligonucleotides were designed using
the online siRNA Design Tool (Dharmacon Research, CO). The siRNAs for SORL1 are: 5'-
AAACAACCGCACCAAUUUAUA-3' (termed LR1222), 5'-
AAGUGACACCUUGGUGAGGUA-3' (termed LR1318), and 5'-
AAAGACGGUCAUUGUCAGUAA-3' (termed LR5806). The siRNAs for VPS26 are: 5'-
AAACAAUCGCCAAAUAUGAAA-3' (termed VV764) and 5'-
GAAGACCGGAGGUACUUCAAA-3' (termed V925). The siCONTROL Non-Targeting
SiRNA #1 (Dharmacon Research, Lafayette, CO) was used as a hegative control.

Transfections were performed using LipofectAMINE 2000 according to the manufacturer’s
recommendations. In case of consecutive transfections, cells were split after 24 hours and then
retransfected 24 hours later. After culturing for an additional 24 hours, the conditioned medium
was collected for AB assay, and the cells were harvested for Western blotting.

Antibodies, Immunoprecipitation and Western blotting—Antibodies were: mouse
monoclonal anti-human LR11/SORL1gp250 (BD Transduction Laboratories) and
5-4-30-19-2; rabbit anti-SORL1 C-terminal antibody (from W. Hampe) rabbit polyclonal
antibody to PS1-NTF (Ab14, from S. Gandy); mouse monoclonal anti-myc (Invitrogen); rabbit
polyclonal antibody to APP C-terminal (Sigma); anti-BACE1 (EE-17, Sigma). Proteins were
immunoprecipitated in 1% digitonin 48 \Western blotted, and visualized by ECL (Amersham).

AB, APPsa and APPsB assays—Ap40 and AB42 peptide levels were measured by
sandwich ELISA 49. APPs, APPsa and APPsp were measured by Western blotting using
antibodies 22C11 (Chemicon), 2H3 and SW192 (Elan Pharmaceuticals, CA) respectively.
Differences were assessed by two-tailed students’ t-test.

Quantitative RT-PCR—PCR primer pairs targeting SORL1 exon 23:5'-
ctgcagcaacgggaactgtat (forward) and 5'-tgtctccacagtcgttgtcaaag (reverse). Total RNA (5ug)
was reverse-transcribed using a random hexamer. Real-time PCR was performed in a 384-well
format using a Prism 7900HT instrument (ABI) and the Sybr Green detection method. Samples
were analyzed in triplicate and mean expression levels corresponding to SORL1 mRNA
expression were normalized to B-actin mMRNA levels.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Genomic map of SORL1 gene showing the location of SNPs genotyped in this study. Orange
bars represent the 5’UTR and 3'UTR, red bar represents intragenic regions, vertical bars
represent each of the 48 exons. SNPs 1, 28 and 29 are located in extragenic intervals.

B: Diagram of APP processing pathways. APP holoprotein is synthesized in the endoplasmic
reticulum (ER) and Golgi. Proteolytic cleavage through the Ap peptide domain by ADAM17
and other a-secretase enzymes generates N-terminal soluble APPsa and membrane-bound
APP-CTFa fragments. Sequential cleavage by BACEL (B-secretase) generates N-terminal
APPsf and membrane bound APP-CTFp fragments. The latter undergoes presenilin-dependent
v-secretase cleavage to generate AB and amyloid intracellular domain (AICD). SORL1 binds
both APP holoprotein (see Fig. 3) and VPS35 (not shown) and acts as a sorting receptor for
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APP holoprotein. Absence of SORL1 switches APP holoprotein away from the retromer

recycling pathway, and instead directs APP into the B-secretase cleavage pathway, increasing
APPsp production (Fig 2c) and then into the y-secretase cleavage pathway to generate A (see
Fig. 2b). Blockade of the retromer complex (RC) by inhibiting retromer complex proteins such
as VPS26 (Fig. 2d) or VPS35 has a similar effect, also increasing APPsB and Ap production.
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Figure 2.

A: Small quantities of endogenous APP holoprotein but not APP C-terminal fragments (APP-
CTFs, generated by a- or B-secretase) can be co-immunoprecipitated with endogenous SORL1
(Top panel). Conversely small quantities of endogenous SORL1 can be co-precipitated with
endogenous APP holoprotein (Bottom panel).

B: SORL1 does not interact with BACE1 (B-secretase). Co-immunoprecipitations with
antibodies to over-expressed BACEL1-V5 fail to capture SORL1 (Bottom panel). Conversely,
SORL1-directed antibodies do not co-immunoprecipitate BACEL (Top panel) even though
BACE1 also traffics through the endosome to Golgi pathway.
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A: Over-expression of SORL1 reduces AB40 (and AB42 not shown) secretion (p < 0.05). Upper
panel: Representative data of Western blot for SORL1 and APP in HEK293 cells stably
expressing APPsye, and transiently transfected with empty vector (mock) or SORL1 (n =2
independent transfections). Lower panel: Bar charts of ELISA assays of secreted AB40 (and
AB42 not shown) following SORL1 over-expression. Error bar: SD; *p<0.05 compared to
Control (2-tailed t-test); n = 2 replications.

B: Left panel: Suppression of SORL1 expression with three independent siRNA primers
(LR1222, LR1318, and LR5806) did not alter the expression levels or maturation of APP, APP-
C83 C-terminal fragments or PS1, but (Right panel) significantly increased Ap40 and AB42
secretion and APPs secretion (*p <0.005, ** p < 0.001 2-tailed t-test compared to controls, n
=5 replications, 3 siRNAi oligomers).
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C: anti-SORL1 siRNA treatment results in significant increases in APPsp secreted into the
media, but no significant change in APPsa levels. Left panel: Western blots of conditioned
media from cells treated with nonsense siRNA oligo-nucleotides (Controls #1 and #2) or with
anti-SORL1 siRNA oligonucleotides investigated with the 2H3 antibody to APPsa or with
SW192 antibody to APPsp (n = 5 replications). Right panel: quantitation normalized to the
control. ** p < 0.0001 2-tailed t-test compared to controls, n = 5 replications.

D: Top panel: suppression of VPS26, another member of the VPS10 family involved in the
retromer pathways also did not alter APP or PS1 maturation, but (Middle and Bottom panels)
did increase both AB40 and AB42 secretion (*p <0.005, ** p < 0.001 2-tailed t-test compared
to controls, n = 5 replications, 2 siRNA oligomers). The control primer had no such effect.
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