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Abstract
Overproduction of the reactive oxygen species (ROS) superoxide (O2

−) and hydrogen peroxide
(H2O2) are increasingly implicated in human disease and aging. ROS are also being explored as
important modulating agents in a number of cell signaling pathways. Earlier work has focused on
development of small catalytic scavengers of O2

−, commonly referred to as superoxide dismutase
(SOD) mimetics. Many of these compounds also have substantial abilities to catalytically scavenge
H2O2 and peroxynitrite (ONOO−). Peroxides have been increasingly shown to disrupt cell signaling
cascades associated with excessive inflammation associated with a wide variety of human diseases.
Early studies with enzymatic scavengers like SOD frequently reported little or no beneficial effect
in biologic models unless SOD was combined with catalase or a peroxidase. Increasing attention has
been devoted to developing catalase or peroxidase mimetics as a way to treat overt inflammation
associated with the pathophysiology of many human disorders. This review will focus on recent
development of catalytic scavengers of peroxides and their potential use as therapeutic agents for
pulmonary, cardiovascular, neurodegenerative and inflammatory disorders.
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1. Endogenous catalytic hydrogen peroxide scavengers
Hydrogen peroxide (H2O2) is generated directly from superoxide (O2

−) through a rapid
dismutation reaction that can occur either enzymatically with superoxide dismutases (SOD) or
spontaneously. This means that wherever O2

− is generated there is also formation of H2O2. In
addition, H2O2 is formed enzymatically as a by-product of lipid metabolism in peroxisomes.
H2O2 is stable at biological pH and easily crosses lipid membranes. H2O2 can participate in
hydroxyl radical (HO•) formation in the presence of reduced transition metals. Oxidative stress
is traditionally defined as an imbalance between reactive oxygen species (ROS) production
and antioxidant defense against these ROS. A consequence of oxidative stress is an increase
in the formation of oxidized cellular macromolecules. Critical cysteinethiol groupson proteins
are a common site ofoxidation and many of these cysteines are important in maintaining
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proteins in a proper conformation for catalytic function. This is a common mechanism proposed
for how oxidative stress can disrupt cell signaling pathways leading to unregulated
inflammatory responses [1]

SODs and catalase are metalloproteins that catalyze “dismutation” reactions, which detoxify
O2

− and H2O2, respectively. SODs catalyze the formation of oxygen and H2O2 from two
O2

−, whereas catalase catalyzes the formation of oxygen and water from two H2O2 molecules.

Because these efficient reactions do not require additional reducing equivalents, no energy is
required from the cell. The overall goal of cellular antioxidant defenses is to reduce ROS to
water. Mammalian catalase is a tetramer in which each monomer contains an iron heme
(porphyrin) group bound to the catalytic site [2]. The heme groups are protected, being buried
in a non-polar pocket with narrow hydrophobic channels to aid in H2O2 selectivity. It should
be noted that catalase also possesses peroxidase activity and is known to oxidize short chain
alcohols to their corresponding aldehydes [3]. Overexpression of SOD and catalase in cultured
cells and whole animals has provided protection against the deleterious effects of a wide range
of oxidative stress paradigms [4].

Another class of endogenous catalytic H2O2 scavengers is the selenium-containing peroxidases
[5]. This is a broad group of enzymes that utilize H2O2 as a substrate along with an endogenous
source of reducing equivalence. One of the best studied families of peroxidases are the
glutathione peroxidases (GPx). GPxs are tetrameric proteins where each monomer contains
one atom of selenium at the catalytic site. The active site of GPx contains a selenocysteine
where the sulfur in cysteine has been replaced by selenium (R-SeH). During the catalytic cycle,
a selenol (protein-Se−) reacts with peroxide (H2O2 or lipid peroxide, LOOH) resulting in a
selenenic acid (protein-SeOH). The selenenic acid group is reduced back to a selenol by two
glutathiones (GSH) which are in turn oxidized to disulfide (GSSG) and LOOH is reduced to
its corresponding alcohol (LOH).

The GSSG is converted back to two GSH by glutathione reductase that uses reducing
equivalents derived from β-nicotinamide adenine dinucleotide phosphate (NADPH).
Overexpression of GPx has been shown to be protective against oxidative stress in cultured
cells and whole animals [6,7]. Not all of the peroxidases detoxify H2O2. A number of non-
specific peroxidases, such as myleoperoxidase, eosinophil peroxidase and lactoperoxidase,
actually form more reactive produces such as hypochlorite, hypothiocyanite, and hypobromous
acid [8].

A new family of proteins have been discovered that are known as the thioredoxin-dependent
peroxidases or peroxiredoxins (Prx). These proteins can directly reduce peroxides and the
oxidized protein is regenerated indirectly by thioredoxin (Trx) reductase [9,10]. There are at
least 13 mammalian Prxs and they are widely abundant in mammalian cells. Prx have been
found to be induced in response to oxidative stress [11] and are protective against oxidative
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stress when over-expressed in animals [12]. The Prxs and Trxs work in tandom with the GPxs
to maintain cellular peroxide steady-state levels and also maintain cellular protein cysteines in
a reduced state (Fig. 1). During oxidative stress, where cellular peroxides are elevated, there
is an increased level of oxidized protein cysteines that leads to inactivation of phosphatases
and transcription factors that are thought to drive dysregulated inflammatory reactions [13].
This is the drug target and rationale for the development of catalase and GPx mimics.

2. Development of catalytic hydrogen peroxide scavengers
There are two main design strategies to detoxify peroxides. One approach models after the
catalase dismutation reaction and focuses on compounds with redox-active metal centers that
often containing either manganese (Mn) or iron (Fe). Another strategy models after the GPx
enzymes using either selenium or tellurium active sites. An ideal mimetic is stable and non-
toxic at therapeutically efficacious concentrations. The size and charge of the mimetic is often
exploited to target cellular sites of oxidant production, such as the mitochondria, and to improve
their pharmacodynamic properties.

Many simple metal chelates readily react with H2O2. However, the rates of reaction with these
chelates are generally low and the complexes formed are relatively unstable. Recent
developments in the field have yielded more stable and active metal chelates (Fig. 2). These
include the salens, metalloporphyrins, and other metal complexes that can dismutate H2O2
under highly defined conditions. Likewise, a number of selenium-containing compounds have
been developed around the GPx mechanism of H2O2 decomposition (Fig. 3).

All of the reported catalytic H2O2 scavengers react with a wide range of ROS and are not
specific for H2O2. The potencies of these peroxide scavengers are based on rate constants
derived under very defined and often non-biologically relevant conditions. For example, most
compounds are routinely screened in buffers using very high H2O2 (1–10 mM) levels that are
two orders of magnitude higher than the 1–100 nM levels that occur physiologically [14]. The
findings that many of these diverse compounds are effective in similar oxidative stress models
confirms the basic concept that small, efficient, catalytic antioxidants show promise in the
treatment of ROS-mediated conditions associated with injury and tissue dysfunction.

3. Antioxidant properties of catalase-like hydrogen peroxide scavengers
3.1. Metalloporphyrins

Metalloporphyrins [AEOL series is currently being developed by Aeolus Pharmaceuticals,
Laguna Niguel, CA (http://www.aeoluspharma.com)] are structurally different from
endogenous protoporphyrins and are classified as synthetic meso-substituted porphyrins.
Metalloporphyrins have been shown to possess at least four distinct antioxidant properties,
which include scavenging O2

− [15], H2O2 [16], ONOO− [17], and LOOH [18]. Most
metalloporphyrins contain either a Fe or Mn moiety that is coordinated by four nitrogen axial
ligands. The catalase-like activity of metalloporphyrins is thought to be due to their extensive
conjugated ring system that can undergo reversible one-electron transfers in addition to the
one-electron transfers on the metal center. This mechanism is similar to that proposed for the
heme prosthetic groups of endogenous catalase and peroxidases. There are two classes of
metalloporphyrins wherein one group the SOD activities track with their catalase activities and
another group that has very little SOD activity with high catalase activity. Examples of a
manganese porphyrins with both high SOD and catalase-like activities are the pyridinium and
imidazolium-substituted meso-porphyrins such, as AEOL 10113 and 10150 [19], whereas
examples of compounds with low SOD activity and high catalase activity are MnTBAP [16]
and AEOL 11207 [20]. It is still unknown which antioxidant activities are the most important
in mediating the protective effects of metalloporphyrins in models of oxidative stress.
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Metalloporphyrins have been shown to be effective in ameliorating oxidative stress,
inflammation and injury in a large number of in vitro [21] and animal models of human disease
(Table 1). Metalloporphyrins have plasma half-lives that range from 4 to 48 h. Most
metalloporphyrins are not extensively metabolized by the body and are largely excreted
unchanged in the urine. A previous limitation of the metalloporphyrin class of compounds has
been their poor oral bioavailability, but several compounds in the AEOL 112-series have been
shown to have good oral bioavailability and longer plasma half-lives which should make them
better candidates for treating chronic diseases [22].

3.2. Salens
The salen class of catalytic antioxidants (EUK series) is currently being developed by Proteome
Systems, North Ryde, Australia (http://www.proteomesystems.com). Generically, salens are
aromatic, substituted ethylenediamine metal complexes. The Mn(III)-containing salen
complexes have both O2

− and H2O2 dismutation activities [23]. However, like all the small
molecular weight scavengers, these compounds are not selective and can react with O2

− and
other peroxides and ONOO−. The Mn moiety of the salen is coordinated by four axial ligands.
One of the unique features of these compounds is that the metal center is coordinated to oxygen
and nitrogen atoms which is in contrast to the porphyrins where the metal is only coordinated
to nitrogen atoms. The coordination of Mn by four axial ligands results in the formation of
several possible valence states that give these compounds their broad ROS scavenging
capabilities. The rates at which reported salens scavenge H2O2 are similar to those reported
for metalloporphyrins, but are many orders less than those documented for catalase under
similarly defined conditions [23]. Salens have also been shown to protect cells against H2O2-
mediated injury [24]. Salens have been shown to be efficacious in a large number of animal
models of human diseases (Table 1). One of the current limitations of the salens is the stability
of the parent compounds in biological matrix which makes it difficult to determine tissue levels
and half-lives.

3.3. Other metal complexes
There are a number of other metal containing macrocyclic compounds that have been described
as catalase mimics. Iron complexes of 14-membered macrocycles have been shown to
catalytically scavenge H2O2 to oxygen and water [25]. These compounds have been shown to
be effective only in cell culture systems [26]. It is unclear how stable the complexes will be in
more complex biological systems. Another group of compounds with H2O2-scavenging
activity are the dimanganese complexes. A number of bacteria have catalase enzymes that use
a dimanganese center to dismutate H2O2 and a number of investigators have tried to emulate
this strategy with small molecules and peptides. Some examples of the small molecules are the
nitro and chloro-substituted dimanganese complexes of 1,5-bis(5-salicylidenamino) pentan-3-
ol (5-NO2-salpent & 5-Cl-sal-pent), 1,5-bis(2-hydroxybenzophylideneamino)pentan-3-ol (2-
OH-benzpent), and 1,5-bis(2-hydroxynaphtylideneamino)pentan-3-ol (2-OH-Napthpent)
[27]. Very limited data is currently available whether they have protective properties in
biological systems. It should be noted that free manganese is an efficient scavenger of H2O2
and so stability is an important feature to establish for any claim of catalytic H2O2 scavenging
by a metal complex.

4. Antioxidant properties of glutathione peroxidase-like hydrogen peroxide
scavengers
4.1. Ebselen

One of the best studied GPx-like mimics is 2-phenyl-1,2-benzisoselenazol-3(2H)-one also
known as ebselen or PZ51. Ebselen was one of the first selenium-based GPx mimics developed.
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It catalytically scavenges peroxides in the presence of reducing equivalents such as GSH, N-
acetylcysteine (NAC), and dihydrolipoate (DHLA) [28]. The mechanism by which this occurs
is still debated and may differ under different conditions. Ebselen has also been shown to
stimulate the decomposition of a number of ROS including hypochlorous acid (HOCl) [29],
singlet oxygen [30], and ONOO− [31]. Ebselen can readily bind cellular thiol groups on
proteins which may complicate the interpretation of biological effects since many cellular
proteins have reactive thiols in their catalytic domains. In fact, it has been documented that
ebselen can inhibit lipoxygenases [32], NADPH oxidases [33], and nitric oxide synthases
[34]. All of these enzymes are also potential sources of endogenous ROS. Ebselen has been
shown to be protective in a number of cell culture systems [28] and animal models of human
disease (Table 1). Ebselen is orally active and appears to be well tolerated in animals and
humans.

Newer analogs of ebselen have been developed including BXT-51072, which has increased
activity and potency in cell systems. These analogs [BXT-series are being developed by Oxis
International, Foster City, CA (http://www.oxis.com)] have been shown to be protective in a
limited number of cell culture systems [35] and animal models of human disease (Table 1).

4.2. Diselenide and ditelluride compounds
A number of diselenide and ditelluride containing compounds have been reported to
catalytically scavenge peroxides with higher GPx-like activity than ebselen [36]. Sulfur,
selenium, and tellurium belong to group VI of the periodic table and have similar chemical
properties. Early compounds, such as the diphenyl diselenide (DPDS), were electrophilic
agents that have cytotoxic, genotoxic, and mutagenic effects [37,38]. Many previously reported
diselenide compounds release free selenium during the catalytic cycle, which may be
problematic in their development as therapeutic agents. A unique aspect of a newer series of
these compounds is the cyclodextrin (CD) group which may help in directing hydrophobic
peroxides towards the selenium or tellurium active site. The diselenide, 2,2′-deseleno-bis-β-
cyclodextrin (2-SeCD) can scavenge a variety of peroxides including H2O2, tert-butyl
hydroperoxide, and cumenyl hydroperoxide using GSH as a cofactor [39]. Only a limited
number of cell culture studies have been reported for these compounds [40], and it is still
unclear whether these compounds can be successfully used in animal models of human disease.

4.3. Peptide compounds
Many proteins and peptides contain cysteine residues that can be readily modified to contain
selenium and a number of investigators have examined whether these types of compounds have
GPx-like activities. Examples of this include seleno-subtilisin which was produced by chemical
modification of the serine protease, substilisin. This compound was found to have GPx-like
activity [41]. Another strategy used a phage library of random 15-mer selenopeptides that was
screened for GPx activity and generated some active GPx mimics (15SeP and 15SeP1). The
peptides were found to increase the GPx-like activity of treated cultured cells and protected
them against H2O2-mediated lipid peroxidation and cytotoxicity [42]. In order to increase the
selectivity of the selenoprotein toward GSH, a number of selenium-containing monoclonal
antibodies (i.e. Se-4A4 and Se-scFv2F3) were raised against GSH-S-2,4-dinitrophenyl t-butyl
ester and found to have GPx-like activity [43]. The selenium-containing antibody Se-4A4 has
been shown to protect isolated cardiac mitochondria against xanthine oxidase-induced
oxidative modification [44]. Very limited data exist on whether any of these approaches have
produced compounds with biological activity in more complex biological systems.

Day Page 5

Biochem Pharmacol. Author manuscript; available in PMC 2010 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.oxis.com


5. Catalytic antioxidants are effective in ameliorating oxidative stress in vitro
5.1. Cytotoxicity

In vitro models of oxidative stress have proved useful in verifying utility of catalytic
antioxidants under more complex biological conditions [21]. Members of all classes of catalytic
antioxidants with H2O2-scavenging activities have been shown to be effective in blocking
oxidative stress in a variety of in vitro cytotoxicity models involving oxidant production [21,
24,28]. The mechanism(s) by which these catalytic antioxidants produce their protective effects
are still highly debated and largely unknown. As discussed earlier, many of the compounds are
capable of scavenging a number of different ROS and many may also decrease ROS by
inhibiting endogenous ROS production [19]. These issues cloud the utility of H2O2-scavenging
screens to select potentially biologically potent compounds. Overall, many of the catalytic
antioxidant H2O2 scavengers at μmolar levels appear non-toxic and show similar efficacy in
protecting a wide variety of different types of cultured cells against the toxicity of ROS.

5.2. Apoptosis
Apoptosis is a form of cell death that is biochemically and morphologically distinct from
necrosis and has physiological and pathological roles in biological systems. There is an
increasing body of literature that supports the involvement of ROS in some apoptotic pathways.
The release of pro-apoptotic factors by mitochondria, which are a major source of ROS, lends
further credence to this argument. Delivery of catalase and GPx to cells is protective, whereas
paucity of either is deleterious, also supporting H2O2 involvement in cellular apoptosis [45].
A wide assortment of apoptosis paradigms can be ameliorated by catalytic antioxidants with
H2O2-scavenging activity [21,24,28]. Apoptosis can be limited by catalytic antioxidants with
catalase or GPx-like activities in a number of different cell types. It is not clear from these
studies whether the catalytic antioxidants affect a particular point in the intrinsic and/or
extrinsic apoptotic pathways. Some studies suggest that ROS might regulate the expression of
pro-apoptotic factors, and antioxidants may directly block apoptosis by increasing the
expression of anti-apoptotic factors, such as bcl-2 [46].

5.3. Inflammation
A number of recent studies have suggested that catalytic antioxidants with the ability to
scavenge H2O2 can attenuate markers of inflammation such as cytokines, chemokines and
adhesion molecules. H2O2 has been shown to activate a number of transcription factors
including NFkB, AP-1 and Nrf2 [47]. In addition, peroxides and other oxidants can inactivate
kinase signaling pathways through the inhibition of protein phosphatases [48]. These pathways
likely contribute to the protective effects of many catalytic H2O2 scavengers in a variety of
cell models of inflammation [21,24,28].

6. Catalytic antioxidants are effective in ameliorating oxidative stress in vivo
The beneficial effects of catalytic antioxidants with H2O2-scavenging capabilities have been
demonstrated in numerous in vivo model systems (Table 1). These model systems cover
diseases associated with the pulmonary system (such as fibrosis, asthma, acute respiratory
distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD),
bronchopulmonary dysplasia (BPD), and pleurisy), cardiovascular system (including sepsis,
hypertension, and myocardial infarction), neurologic system (including amyotrophic lateral
sclerosis (ALS), migraine, spinal cord injury, stroke, Parkinson’s disease (PD), and dementia),
digestive system (including liver injury, transplantation, hepatitis, and colitis), endocrine
system (diabetes), and the renal system (injury, sepsis, and transplantation). The diversity of
the various models systems by which these catalytic antioxidants have shown efficacy speaks
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to the important role ROS/reactive nitrogen species (RNS) play in animal models of human
disease.

6.1. Pulmonary models
The lung functions at higher oxygen tensions than most other organs creating a unique
relationship with ROS. There is increasing evidence that ROS have an important role in several
lung diseases [49]. A common feature of many lung diseases is an inappropriate or
dysfunctional inflammatory response. Catalytic antioxidants decrease airway hyperreactivity
and inflammation in antigen-induced mouse models of asthma [50]. This is in contrast to a
recent finding which reported high overexpression of catalase (8-fold) in the lung actually
increased airway reactivity in a mouse model of asthma [51]. A potential explanation for this
paradox is that many catalytic antioxidants have bell-shaped dose-responses and that very high
levels can actually give the opposite response. An important goal of antioxidant therapy is to
restore redox balance. Given the role of H2O2 in cell signaling pathways, it is conceivable that
excessive scavenging of H2O2 may be detrimental under certain conditions.

COPD, which includes emphysema and bronchitis, is strongly associated with cigarette smoke
that is a rich source of ROS [52]. In fact, cigarette smoke has been shown to inhibit catalase
activity [53]. The diselenide GPx-like mimic diphenyl diselenide has been shown to protect
rat pup lungs from oxidative changes associated with exposure to cigarette smoke [54].
Likewise, the metalloporphyrin AEOL 10150, which has both high SOD and catalase-like
activities, attenuated inflammation and protected rat lung epithelium from cigarette smoke-
induced precancerous lesions [55]. These data support the development of catalytic
antioxidants for the treatment of COPD.

Interstitial lung disease is also associated with oxidative stress and many of the animal models
of lung fibrosis use agents that overproduce or stimulate the production of ROS. Bleomycin is
a redox-cycling chemotherapeutic agent that produces lung fibrosis in rodents and humans.
Bleomycin-induced lung fibrosis can be attenuated by a liposomal mixture of SOD and catalase
[56]. The metalloporphyrin AEOL 10201, also known as MnTBAP, has low SOD activity and
moderate catalase activities and attenuated bleomycin-induced lung fibrosis in mice [57].
Ionizing radiation is also known to produce lung fibrosis in animals and man. Administration
of a mixture of polyethylene glycol-tagged SOD and catalase has been shown to attenuate
radiation-induced lung fibrosis in mice without affecting radiation-induced tumor killing
[58]. Similarly, a couple of different metalloporphyrins (AEOL 10113 & 10150) have been
shown to decrease radiation-induced lung fibrosis in rats [59,60]. The manganese-containing
salen EUK-189 also was found to ameliorate early DNA damage in a rat model of lung
irradiation [61]. These studies illustrate the potential utility of catalytic antioxidants in the
treatment of interstitial lung disease.

ARDS is associated with sepsis and shock and both of these conditions involve the over
production of ROS and reactive nitrogen species. A related lung disorder is BPD that occurs
in premature infants where the lung is not fully developed and requires supplemental oxygen
for adequate gas exchange. Both ARDS and BPD animals models commonly use either
hyperoxia or endotoxin exposures, both of which are known to elevate lung ROS production.
Both hyperoxia and endotoxin models have been shown to be responsive to modulation of
endogenous SOD and catalase lung levels [62,63]. The metalloporphyrin AEOL 10113 was
found to be beneficial in a preterm baboon model of BPD [64] and AEOL 10150 was found
to attenuate hemorrhage-induced acute lung injury in SOD3 KO mice [65]. The manganese
containing salen EUK 8 was found to be protective in an endotoxin-mediated swine model of
ARDS [66]. These finding support the further development of catalytic antioxidants for the
treatment of ARDS and BPD.
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6.2. Cardiovascular models
Cardiovascular disease is a major cause of death in humans. A common cause of tissue injury
directly related to the cardiovascular system is ischemia-reperfusion (IR). IR is associated with
hemorrhage [67], myocardial infarction, arrhythmias, angina, myocardial stunning and
transplantation. The role of excessive ROS production during IR and the protective effects of
endogenous antioxidants have been well documented. Catalytic antioxidants with H2O2-
scavenging activities are effective in animal models of heart IR [68,69]. In addition, several
other organ systems have been shown to benefit from catalytic antioxidant treatments in IR,
including the liver [70,71], lung [65], brain [72–75] and kidney [76].

Hypertension is a well characterized risk factor for cardiovascular disease. A number of
systems are involved in the complex regulation of blood pressure and include cardiac output,
fluid balance, vasodilatation and renal function. An important system in blood pressure
regulation is the renin/angiotensin system which has also been shown to regulate vascular ROS
production [77]. A well known anti-hypertensive agent captopril is both an angiotensin-
converting enzyme inhibitor and antioxidant [78]. Catalytic antioxidants with H2O2-
scavenging activities are effective in animal models of hypertension [79,80]. These studies
suggest that catalytic antioxidants may be useful antihypertensive agents.

Systemic infection or sepsis frequently results in the overproduction of ROS and RNS that has
devastating consequences for the cardiovascular system. A serious consequence of sepsis is
the loss of vascular tone and its responsiveness to vasoconstrictive agents in a condition referred
to as shock. A number of catalytic antioxidants with H2O2-scavenging activities are effective
in animal models of sepsis induced by bacteria or endotoxin [66,81–86]. The well-established
role of ROS and RNS in these conditions and the abundance of literature supporting a protective
role of the endogenous antioxidant defenses make this a very attractive arena for development
of catalytic antioxidants.

6.3. Nervous system models
The brain consumes a large amount of oxygen and is particularly sensitive to ROS-mediated
damage. Factors that are thought to contribute to this phenomena are the presence of
autooxidizable neurotransmitters, the high levels of polyunsaturated fatty acids in neuronal
membranes, and modest levels of endogenous antioxidants. Collectively, these factors make
catalytic antioxidants with H2O2-scavenging activities good candidates for several acute and
chronic neuronal disorders that involve the overproduction of ROS such as PD [87],
Huntington’s disease (HD) [88], Alzheimer’s disease (AD) [89], ALS [90], stroke [91], and
trauma [92].

PD is a chronic neurodegenerative disorder where a large body of literature supports a role for
ROS and oxidative stress and neuronal loss in the substantia nigra. Much of this data is linked
to the mitochondrial dysfunction of complex I associated with this disease [93]. There have
been numerous reports of increases in lipid, DNA and protein oxidative changes in PD and
animal models of PD [94]. In addition, there are reports of decreases in antioxidants such as
GSH, increased iron content and activation of NFkB [95]. Toxins that increase ROS in the
substantia nigra such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) also produce
PD-like symptoms and pathology in man and animals [96]. Catalytic antioxidants with H2O2-
scavenging activities are effective in animal models of PD [22,97]. Recent studies with the
orally active metalloporphyrin AEOL 11207 demonstrated neuroprotection in a mouse MPTP
model that was also associated with decreased oxidative stress [22]. Currently available PD
therapies are largely limited to palliative treatments with unpleasant side effects and opens PD
as an attractive target for the development of catalytic antioxidants.
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A number of dementias, such as AD and HD, are memory disorders that have been associated
with protein aggregation and increased oxidative stress in the cortex and hippocampus [98].
Some investigators have suggested that amyloid may increase H2O2 production through metal-
catalyzed reactions [99]. A few studies have shown that catalytic antioxidants can protect
neurons from amyloid-induced cytotoxicity [100]. Increased production of ROS and RNS may
also be an indirect consequence of amyloid protein deposits stimulating an inflammatory
response from microglial cells [101]. In addition, there is some evidence that NO plays a role
in memory and that catalytic antioxidants can be protective [102]. Aging is also a factor in the
loss of cognitive function and catalytic antioxidants have also shown to be effective at slowing
this process [103]. These data suggest that dementias may be a fruitful area for the further
development of catalytic anti-oxidants.

ALS is a motor neuron disorder that leads to progressive loss of motor function, muscle atrophy
and death within a few years. Most cases of ALS are sporadic, but about 10% are familial and
some of these are associated with genetic mutations. Some familial forms of ALS are associated
with mutations in SOD1, and transgenic mice overexpressing one of the SOD1 mutations
develop a progressive degenerative disease of motor neurons [104]. It is thought that there is
a gain of function associated with the mutant SOD1 that leads to the motor neuron loss in these
transgenic mice, and the mechanisms by which this occurs are highly debated. The importance
of oxidative stress in ALS is also highly debated even though ample evidence exists that it
occurs in this disease [90]. A few studies have shown that catalytic antioxidants with H2O2-
scavenging activities can prolong survival in the SOD1 mutant transgenic mice [105,106].
AEOL 10150 has completed phase I safety testing in ALS patients.

Stroke is a leading cause of death in humans with few treatment options. Stroke is an acute
neurodegenerative condition that often involves tissue injury due to IR events. Stroke is
associated with increased ROS production, and injury can be enhanced or attenuated by
modulation of endogenous antioxidants [107]. A number of catalytic antioxidants with H2O2-
scavenging activities are effective in animal vessel occlusion models of stroke [72–74].
Catalytic antioxidants are also effective in attenuating cerebral vasoconstriction that is
commonly associated with hemorrhagic stroke and migraines [108,109]. Ebselen has had some
success in human phase II clinical trials [75] and is currently being evaluated in human phase
III clinical trials for stroke in Japan sponsored by Daiichi Sankyo Pharmaceuticals. These
studies suggest that stroke may be a potential target for catalytic antioxidants.

7. Implications for the use of catalytic antioxidants as modulators of human
disease

The postulated role of ROS as a terminal mediator of tissue injury and dysfunction in diseases
of diverse etiologies emphasizes the wide range of therapeutic opportunities for catalytic
antioxidant development. Pathologies that are most likely to benefit from catalytic antioxidant
therapy include conditions in which a clear role for ROS has been established. Inflammation,
which is a pivotal etiological factor in many human pathophysiologic processes involving
multiple organ systems, is a major therapeutic opportunity for catalytic antioxidant
development given the increasingly important role ROS are being given in modulating cell
signaling pathways. The role of ROS has been well documented in host defense mechanisms
involving phagocytosis, cytokines, chemokines and immune complex formation, all of which
can contribute to auto-immune disorders. Inflammatory lung, intestinal, and cardiovascular
diseases all are potentially important targets for catalytic antioxidant therapy.

An important unaddressed issue in the development of catalytic antioxidants is the mechanism
by which these agents diminish oxidative stress and injury in animals and humans. To date,
catalytic antioxidants are defined by their chemistry under highly defined and largely non-
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biological conditions. The relevance of using this classification system is still yet to be verified.
In fact, over time the potential number of mechanisms these agents possess in biological
systems has increased substantially. A more important fact is that these compounds have potent
biological effects that often track with their ability to suppress oxidative stress in a large variety
of animal models of human disease. However, definitive proof that these compounds are
effective in human disease is still needed.

8. Conclusion
Emerging research is strengthening the role of ROS in redox-mediated cell signaling pathways
that have well-established roles in human disease and aging. A novel class of compounds that
efficiently scavenge cellular peroxides are being developed to modulate cellular ROS and alter
some of the aberrant cell signaling associated with many human disorders. There is promising
data in the literature that these compounds may have potential therapeutic use in pulmonary,
cardiovascular, neurodegenerative and inflammatory disorders.
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GPx  
glutathione peroxidase

HD  
Huntington’s disease

H2O2  
hydrogen peroxide

HO•  
hydroxyl radical

HOCl  
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IR  
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TAA  
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Trx  
thioredoxin

H2O  
water
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Fig. 1.
Endogenous scavenging of cellular peroxide. The cell’s steady-state peroxide (ROOH) levels
are largely maintained by the activities of catalase, glutathione peroxidases (GPx) and the
thioredoxin-assisted peroxidases (peroxiredoxins, Prx). This system also maintains cellular
protein cysteines in a reduced (red) state. During oxidative stress, where cellular peroxides are
elevated, there is an increased level of oxidized (ox) protein cysteines that leads to inactivation
of phosphatases and transcription factors and dysregulated inflammatory reactions. This is the
drug target and rationale for the development of catalase and GPx mimics.
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Fig. 2.
Examples of catalase-like mimics chemical structures: (A) metalloporphyrins; (B) salens; and
(C) other metal complexes.
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Fig. 3.
Examples of glutathione peroxidase-like mimics chemical structures: (A) mono-selenium
mimics; and (B) di-selenium mimics.
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Table 1
Examples of catalytic antioxidants with H2O2-scavenging activity that are
effective in attenuating oxidative stress in in vivo models..

Model system Species Active site Compound(s) Reference

Pulmonary

 Bleomycin fibrosis Mice Mn AEOL 10201 [57]

 Radiation fibrosis Rats Mn AEOL 10113 [59]

Mn AEOL 10150 [60]

Mn EUK 189 [61]

 Cigarette smoke Rats Se DPDS [54]

Mn AEOL 10150 [55]

 Endotoxin Pigs Mn EUK 8 [66]

 Bronchopulmonary dysplasia Preterm baboons Mn AEOL 10113 [64]

 Antigen-induced asthma Mice Mn AEOL 10113 [50]

 Hemorrhage SOD3 KO mice Mn AEOL 10150 [65]

Cardiovascular

 Heart ischemia/reperfusion Mice Se BXT 51072 [68]

Aged rats Mn EUK 8 [110]

Rats Mn AEOL 10113 [69]

 Dilated cardiomyopathy SOD2 KO mice Mn AEOL 10201 [111]

Harlequin mutant mice Mn EUK 8 [83]

 Sepsis Rats Mn AEOL 10113 [84]

Mn EUK 8 [81]

 Hemorrhage Rats Mn EUK 8 [67]

Mn EUK 134

Nervous system

 Neurofibromatosis Flies Mn AEOL 10201 [112]

Mn AEOL 10150

 MPTP Monkeys Se Ebselen [97]

Mice Mn AEOL 11207 [22]

 ALS Mutant SOD1 Mn AEOL 10150 [105]

Tg mice Mn EUK 8 [106]

Mn EUK 134

 Stroke Rats Se Ebselen [74]

Mn EUK 134 [73]

Mice Mn AEOL 10113 [72]

Mn AEOL 10150

Humans Se Ebselen [75]

 Spinal cord trauma Rats Mn AEOL 10201 [113]

Se Ebselen [114]

Mice Mn AEOL 10150 [115]

 Cerebral vasoconstriction Amyloid Tg mice Mn AEOL 10201 [108]

Rats Mn AEOL 10201 [109]

 Cognitive function Aged mice Mn EUK 189 [103]
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Model system Species Active site Compound(s) Reference

Mn EUK 207

Hepatic/gastrointestinal/renal

 Ischemia/reperfusion Rat Mn AEOL 10150 [70]

Mn EUK 134 [76]

Se Ebselen [71]

 Endotoxin Mice Se Ebselen [85]

Mn AEOL 10113 [82]

Rats Mn EUK 134 [86]

 Fas Mice Mn AEOL 10201 [116]

 Ethanol Rats Se Ebselen [117]

 Carbon tetrachloride Rats Se Ebselen [118]

 Hyperthermia Aged rats Mn EUK 189 [119]

 Colitis Rats Mn AEOL 11201 [120]
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