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Purkinje cells can encode the strength of parallel fiber inputs in
their firing by using 2 fundamentally different mechanisms, either
as pauses or as linear increases in firing rate. It is not clear which
of these 2 encoding mechanisms is used by the cerebellum. We
used the pattern-recognition capacity of Purkinje cells based on the
Marr–Albus–Ito theory of cerebellar learning to evaluate the suit-
ability of the linear algorithm for cerebellar information process-
ing. Here, we demonstrate the simplicity and versatility of pattern
recognition in Purkinje cells linearly encoding the strength of
parallel fiber inputs in their firing rate. In contrast to encoding
patterns with pauses, Purkinje cells using the linear algorithm
could recognize a large number of both synchronous and asyn-
chronous input patterns in the presence or absence of inhibitory
synaptic transmission. Under all conditions, the number of patterns
recognized by Purkinje cells using the linear algorithm was greater
than that achieved by encoding information in pauses. Linear
encoding of information also allows neurons of deep cerebellar
nuclei to use a simple averaging mechanism to significantly in-
crease the computational capacity of the cerebellum. We propose
that the virtues of the linear encoding mechanism make it well
suited for cerebellar computation.

cerebellum � motor learning � Purkinje cell

Purkinje cells receive �150,000 parallel fiber synaptic inputs
(1) that provide them with a vast and broad spectrum of

information. These inputs are integrated with the spontaneous
activity of Purkinje cells to provide the sole output of the
computational circuitry of the cerebellar cortex. The mechanism
by which this information is encoded by Purkinje cells is funda-
mental to theories of cerebellar computation. It has been
recently demonstrated that Purkinje cells can encode this infor-
mation by using 2 different mechanisms (2), either as pauses in
their activity (3) or as linear increases in their firing rate (4) (see
also Fig. 1B). Although, in principle, cerebellar computation can
be based on either of these 2 encoding schemes, it is unlikely that
they are used concurrently because they require fundamentally
different decoding mechanisms. It has not been established
whether either of these 2 mechanisms is used by the cerebellum,
nor is it even known how they directly compare in their ability
to encode information.

Pattern recognition was proposed in a pair of seminal papers
by Marr and Albus (5, 6) to be the mechanism by which
cerebellar Purkinje cells learn motor tasks. Based on this theory,
the more patterns the cerebellum recognizes, the higher its
computational power and ability to fine-tune and learn motor
tasks. Numerous attempts have been made to estimate the
pattern recognition capacity of Purkinje cells (3, 5–8), and
recently it has been used to evaluate the suitability of an
encoding mechanism in cerebellar computation (3).

A recent evaluation of a detailed Purkinje cell model sug-
gested that optimal pattern recognition capacity is obtained if
Purkinje cells encode information by using pauses (3). However,
encoding with pauses requires a specialized decoding mecha-
nism such as rebound firing by neurons of the deep cerebellar
nuclei, the physiological prevalence of which is under consider-
able debate (9). In contrast to encoding with pauses, the linear

algorithm is independent of the pattern or location of synaptic
input and holds even under conditions of input asynchrony and
intact inhibition (4). Thus, given the simplicity of encoding/
decoding with the linear algorithm, as was done for pauses, we
examined its suitability for cerebellar information processing by
examining its utility in pattern recognition.

We developed an artificial neural network based on the linear
algorithm and combined it with experimental data that esti-
mated Purkinje cell response variability to examine the pattern
recognition capacity of Purkinje cells (P-ANN) [see supporting
information (SI) Text]. The pattern recognition capacity was
estimated under conditions of synchronous and asynchronous
parallel fiber synaptic input and in the presence and absence of
inhibitory synaptic transmission. The relevant parameters for the
P-ANN were experimentally obtained in acutely prepared rat
cerebellar slices. We found that under all conditions, use of the
linear algorithm enabled Purkinje cells to recognize a large
number of input patterns. Moreover, compared with estimates of
storage capacity when information was encoded as pauses, the
capabilities of linear algorithm-based pattern recognition were
always superior. In addition to its compatibility with the rate and
pattern of Purkinje cell activity observed in vivo, the linear
algorithm of Purkinje cells allows deep cerebellar nuclei (DCN)
neurons to use a simple averaging mechanism to increase the
pattern recognition capacity of the system. Given its simplicity,
versatility, and computational power, we propose that the linear
algorithm is suited for cerebellar information processing.

Results
High Pattern Recognition Capacity with Asynchronous Inputs. The
pattern recognition capacity of Purkinje cells depends on the
mechanism and reproducibility with which they encode patterns
of comparable strength, the number of parallel fiber inputs
forming a pattern, and the extent to which these synapses can be
modified (SI Text and Fig. S1). We first experimentally evaluated
the reproducibility with which various synaptic input patterns of
comparable strength are encoded in the maximum firing rate of
a Purkinje cell by measuring its response variability when inputs
were repeatedly activated in acutely prepared rat cerebellar
slices. We restricted our analysis to inputs strengths that in-
creased Purkinje cell firing rates to a maximum of �250 spikes
per second (Fig. 1B), a range comparable with those observed
during performance of motor tasks in vivo (10–13). To remain
as close to physiological conditions as possible, inhibitory syn-
aptic transmission was left intact. The background activity of
interneurons combined with any remaining parallel fiber activity
in the acutely prepared slice preparation resulted in irregular
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firing of Purkinje cells such that they had a relatively high
interspike interval coefficient of variation (14).

As has previously been shown in vivo, brief, discrete sensory
stimuli in rats result in the asynchronous activity of patches of
granule cells (15–19). The axons of these granule cells, parallel
fibers, provide Purkinje cells with asynchronous inputs dis-
persed throughout their dendritic tree. We reproduced this
asynchronous, dispersed pattern of input by photoreleasing
glutamate onto a patch of granule cells (4). The stimulated
patch of granule cells was chosen to be either directly beneath
the target Purkinje cell or �100 �m lateral to it. There were
no differences between the data obtained with stimulation at
these 2 different locations.

To estimate response variability, we measured the maximum instan-
taneous firing rate of a spontaneously firing Purkinje cell in response to
a large number of repeated photolytic stimulations. Up to a maximum
firing rate of �250 spikes per second, this parameter is a good measure
of the strength of granule cell synaptic input because it is linearly and
directly correlated with the number of extra spikes after stimulus and
also with the average firing rate after stimulus (4). With this method of
stimulation, from trial to trial, photorelease of glutamate at the same
location results in the activation of different combinations of granule
cells. This is because, depending on their membrane potential before
photolysis, different granule cells are brought to threshold by glutamate
in each trial. Furthermore, the cells that reach threshold fire different
numbers of action potentials and with varying delays. In addition,
because of synaptic failure, activation of a granule cell does not
necessarily imply that it will release neurotransmitter. Therefore, from
trial to trial, therepeatedphotoreleaseofglutamateat thesamelocation
in the granule cell layer will result in randomly dispersed, asynchronous
input to the dendrites of the target Purkinje cell (4). As expected from
asynchronous activation of granule cells, this method of stimulation
produced an excitatory postsynaptic current (EPSC) in voltage-
clamped Purkinje cells that had a relatively slow time to peak (20 ms)
and a slow, noisy decay to baseline (Fig. 1A), resembling the time course
of activation of granule cells in vivo (15–19).

For every Purkinje cell, the maximum firing rate response to
3 different strengths of stimulation were experimentally deter-
mined in acutely prepared rat cerebellar slices. At all stimulation
strengths and in every cell tested, the resulting maximum firing
rate distributions resembled Gaussian functions that permitted
the use of their standard deviations as a measure of response
variability (Fig. 1C). The standard deviation of the response was
positively correlated with the strength of stimulation (n � 38
from 8 cells, Fig. 1D). Standard deviations obtained from

latterly positioned patches of granule cells were activated, whereas the filled
symbols correspond to activation of patches of granule cells immediately
underneath the target Purkinje cell. (E) The experimentally determined stan-
dard deviations were implemented in an artificial neural network to estimate
the s/n of Purkinje cells by using the linear computational algorithm in
distinguishing learned patterns from novel ones. The s/n decreased as the
number of patterns that had to be learned increased. Filled circles correspond
to estimates where it was assumed that each parallel fiber synapse releases
neurotransmitter only once. The open circles correspond to estimates for
which paired pulse facilitation at the parallel fiber to Purkinje cell synapse was
taken into consideration. (F) The pattern recognition capacities of 3 different
ANNs were compared for synchronous parallel fiber inputs and with synaptic
inhibition blocked. Black symbols corresponds to the ANN described in the
present study assuming that Purkinje cells encode information in their max-
imum firing rate. Red symbols reflect the performance of the same ANN when
it was assumed that Purkinje cells encode information in pauses. Blue symbols
represent the performance of the ANN implemented by Steuber et al. (3) that
also used pauses to encode input patterns. (G) Comparison of the pattern
recognition capacity of a Purkinje cell based on the ANNs described in F. Blue
symbols are taken from Steuber et al. (3). Black and red symbols correspond to
present study assuming that Purkinje cells encode information in their max-
imum firing rate (black symbols) or in pauses (red symbols).

Fig. 1. Pattern recognition capacity of Purkinje cells using the linear com-
putational algorithm. The reproducibility with which Purkinje cells encode the
strength of the same parallel fiber input in their maximum firing rate was
determined by repeatedly stimulating the same patch of granule cells and
measuring the maximum instantaneous firing rate after stimulus. Granule
cells were activated synchronously by electrical stimulation or asynchronously
by photoreleasing glutamate by using a 1-ms pulse of UV light. (A) In contrast
to the fast kinetics of Purkinje cell EPSCs obtained from synchronous activation
of granule cells by electrical stimulation, photorelease of glutamate activated
granule cells asynchronously and resulted in corresponding EPSCs that had a
slow time course and noisy appearance. (B) Raster plots showing that increas-
ing the strength of stimulation resulted in correspondingly higher maximum
firing rate responses with either synchronous or asynchronous activation of
parallel fiber inputs. Vertical bars indicate the time of occurrence of each
action potential. Strong stimulation intensities produced responses that con-
sisted of an initial high frequency burst, followed by a pause (asterisks),
although with asynchronous activation of inputs, it was not always possible to
generate a burst–pause response. (C) Raster plots of the response of a Purkinje
cell to 50 repeated presentations of the same asynchronous stimulus. Granule
cells were stimulated every 30 s, and the intensity of the UV photolysis light
was adjusted to 1 of 3 different strengths that were chosen to be below that
which resulted in a burst–pause response. Below each raster plot, the associ-
ated population histogram is shown. The histograms to the right of each raster
plot show the resulting maximum instantaneous firing rate distribution after
stimulus. Each distribution was fit well by a Gaussian function (red line). (D)
The scatter plot of the standard deviations of the maximum firing rates after
stimulus determined from a number of experiments similar to that described
above. Open symbols correspond to standard deviations obtained when

4472 � www.pnas.org�cgi�doi�10.1073�pnas.0812348106 Walter and Khodakhah



stimulating a patch of granule cells immediately underneath a
Purkinje cell were comparable with those estimated by activating
lateral patches of granule cells (Fig. 1D). These standard devi-
ations may be an overestimate of the response variability be-
cause, even though photorelease of glutamate on average is
likely to activate the same number of granule cells, it is unlikely
that it will activate exactly the same number in each trial.
Reassuringly, our experimentally determined standard devia-
tions are in remarkable agreement with those measured in
Purkinje cells in response to repeated smooth eye pursuit trials
in awake trained macaques (13). Moreover, reanalysis of a
limited set of our own data available from a separate study
showed that these standard deviations were also similar to those
obtained in vivo in which granule cells were repeatedly activated
in the absence of inhibition in mice.

We next determined the number of parallel fiber inputs that
constitute a pattern. It is reasonable to postulate that Purkinje
cells optimally use their linear dynamic range and thus that an
unlearned pattern increases the firing rate of a Purkinje cell to
�250 spikes per second. With this assumption, the number of
inputs that constitute a pattern will be that which increases the
firing of a Purkinje cell from its average spontaneous rate of �50
spikes (14, 20) to �250 spikes per second. With inhibition intact,
and if each synaptic input releases neurotransmitter only once,
this number corresponds to release from 650 asynchronously
activated inputs (SI Text and Fig. S2).

To estimate the pattern recognition capacity of Purkinje cells,
we combined the experimentally obtained Purkinje cell response
variability measured in acutely prepared rat cerebellar slices as
detailed above with an artificial neural network representing a
Purkinje cell in the cerebellar cortex (P-ANN). The P-ANN not
only incorporated our experimentally determined response vari-
ability and pattern size, but also was based on the linear
algorithm. To allow for direct comparison with the recent study
that examined the efficacy of pauses in pattern recognition, the
connectivity and learning rule of the P-ANN used here were
modeled after their artificial neural network (3, 21) and simu-
lated a Purkinje cell receiving 150,000 independent parallel fiber
inputs (see SI Text for details). Each pattern was created by
randomly selecting 650 inputs from the entire pool of 150,000
inputs. The response of the P-ANN was a linear function of the
strength of its input. Six hundred fifty novel inputs increased the
firing rate of the P-ANN by 200 spikes per second.

The Marr–Albus–Ito theory of cerebellar learning postulates
that selective modification of the strength of parallel fiber
synaptic inputs (LTD) by a climbing fiber acting as an instructor
enables Purkinje cells to recognize groups (patterns) of parallel
fibers relaying contextual information related to intended motor
tasks. In our P-ANN, learning occurred by a process mimicking
long-term depression (LTD) of the parallel fiber to Purkinje cell
synapses, resulting in a 50% decrease in the strength of all inputs
constituting a learned pattern (22–24).

We used the P-ANN to evaluate the capacity of a Purkinje cell
in pattern recognition by altering the number of patterns it had
to learn and quantifying its ability to distinguish between learned
and novel patterns. As detailed in SI Text, to quantify the latter,
we calculated the resulting signal-to-noise ratio (s/n) of the
maximum firing rate of a Purkinje cell in response to learned
patterns as compared with novel ones by using:

s/n �
2�� l � �n�2

� l
2 � �n

2

where �l and �n are the means, and �l and �n are the standard
deviations of the learned and novel maximum firing rate distri-
butions (3, 25, 26).

Fig. 1E quantitatively shows the remarkable utility of the
linear computational algorithm of Purkinje cells in bestowing a

large capacity for pattern recognition under physiological con-
ditions. As can be noted, by using the linear algorithm, a Purkinje
cell can recognize �25 patterns with a s/n of 15 and �70 patterns
with a s/n of 10 (Fig. 1E, filled circles).

The considerable pattern recognition capacity of Purkinje
cells using the linear algorithm described above was based on
parameters obtained experimentally in acutely prepared cere-
bellar slices under physiological experimental conditions where
inhibitory synaptic transmission was intact and parallel fiber
inputs were asynchronously activated. The analysis presented
here was designed to examine the range of parallel fiber inputs
that increased the firing rate of Purkinje cells to those typically
seen during performance of a motor task. However, it has been
shown that very strong synchronous parallel fiber inputs cause
Purkinje cells to depolarize to extents that produce brief high-
frequency bursts followed by pauses that encode the strength of
the input (ref. 3 and Fig. 1B). We found that with asynchronous
parallel fiber stimulation and with inhibition intact, it was not
possible to obtain such a burst–pause response. Thus, we were
not able to estimate the pattern recognition capacity of Purkinje
cells, assuming that they encode information in pauses under
these conditions. With inhibition blocked, it was possible to get
burst–pause responses with asynchronous inputs (Fig. 1B). How-
ever, durations of these bursts were long, and those of the pauses
were short and variable such that, under these conditions by
using our P-ANN, the estimated pattern recognition capacity of
Purkinje cells encoding information as pauses was marginal (see
SI Text). In agreement with our observations, a recent study
based on a biophysical model of a Purkinje cell (in which the
pauses are much more reproducible) found that with asynchro-
nous inputs, the pattern recognition capacity of Purkinje cells
using pauses to encode information was severely limited (3). In
fact, when inputs are delivered asynchronously, this encoding
mechanism does not recognize any patterns with a s/n �10 (3).
Asynchronous activation of parallel fibers over 10- or 25-ms time
windows alone degrade the s/n for the recognition of 75 patterns
to �5 and �2, respectively (3).

Impact of Facilitation at the Parallel Fiber Synapse on Pattern Rec-
ognition. In response to a discrete input in vivo (18, 19), and with
our method of granule cell stimulation, a granule cell is likely to
release neurotransmitter more than once. If one takes into
consideration the significant paired-pulse facilitation observed
at parallel fiber synapses (27) and adjusts the number of inputs
accordingly, then release from only 185 parallel fiber inputs is
needed to drive a Purkinje cell to �250 spikes per second (SI
Text and Fig. S2). This reduction in the number of inputs per
pattern dramatically increases the pattern recognition capacity
of a Purkinje cell such that �75 patterns can be recognized with
a s/n of 15 and �200 patterns with a s/n of 10 (Fig. 1E, open
circles). These estimates are more likely to represent what occurs
in vivo than those made assuming that each synapse releases
neurotransmitter only once.

Pattern Recognition with Synchronous Inputs. The pattern recogni-
tion capacity of Purkinje cells using pauses to encode patterns is
considerably improved in the absence of inhibition and when
inputs are assumed to be synchronous (3). Although what is
commonly observed in vivo is asynchronous granule cell activity
(15–19), there may be conditions in which granule cells provide
synchronous input. Thus, we wondered whether the use of the
linear algorithm enabled Purkinje cells to recognize a large
number of patterns when their inputs were synchronously acti-
vated and how the capacity of Purkinje cells using the linear
algorithm compared with those using pauses to encode infor-
mation under similar conditions. To estimate this, we experi-
mentally determined the response variability of Purkinje cells
after repeated synchronous activations of granule cells by using
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electrical stimulation and confirmed that a standard LTD pro-
tocol significantly reduced the maximum firing rate response (SI
Text and Fig. S3). We then estimated that in the absence of
inhibitory synaptic transmission, synchronous release of neuro-
transmitter from only 70 inputs is sufficient to increase the firing
rate by 200 spikes per second (SI Text and Fig. S2). Because of
the smaller number of inputs in a pattern, a Purkinje cell could
recognize more learned synchronous input patterns (�350 with
a s/n of 10) than asynchronous ones (Fig. 1 E and G).

To allow for direct comparison for pattern recognition capac-
ity when information is encoded in pauses rather than in firing
rate, we adapted our P-ANN to encode information as pauses (SI
Text). We found that the pattern recognition capacity of the
ANN component of the P-ANN was comparable when infor-
mation was encoded as pauses rather than as increases in firing
rate (Fig. 1F). However, the pattern recognition capacity of
Purkinje cells using pauses was appreciably lower than when they
encoded information in increases in their firing rate (Fig. 1G).
In fact, using a pause-based encoding mechanism, Purkinje cells
recognized a single learned pattern with a s/n of only �6. This
estimate is in close agreement with an experimentally deter-
mined s/n of 5.6 for discrimination between pauses produced by
parallel fiber inputs before and after induction of LTD under
comparable conditions (3).

We also compared our results with those of Steuber et al. (3),
which assumed information was encoded as pauses and was
based on a biophysical model of a Purkinje cell. Because our
ANN was modeled after theirs, the performance of both ANNs
was comparable (Fig. 1F). However, the pattern recognition
capacity of the biophysical Purkinje cell model was higher than
that estimated for encoding with pauses here (Fig. 1G). This is
mainly because, in their study, from trial to trial, the pause
duration of their biophysical Purkinje cell model was much less
variable than pause durations seen in Purkinje cells in acutely
prepared cerebellar slices (3). Nonetheless, when compared with
their estimates, the pattern recognition capacity using the linear
firing rate algorithm outperformed by �2-fold (Fig. 1G) that of
encoding with pauses under comparable conditions (3). In fact,
under all conditions examined, the use of the linear algorithm to
encode patterns is as good as or better than the use of pauses.

A Simple Mechanism to Increase s/n. A limitation of the Marr–
Albus pattern recognition scheme is that learning large numbers
of patterns invariably adds significant noise and reduces the
accuracy of decoding (see SI Text). However, it has recently been
reported that the cerebellum introduces little noise to motor
signals (13). Thus, the cerebellum must implement a mechanism
to minimize the noise inherently associated with decoding large
numbers of patterns. As delineated below, an advantage of the
use of the linear algorithm by Purkinje cells is that the cerebel-
lum can use a simple averaging mechanism to reduce noise and
improve its pattern recognition capacity.

The majority of Purkinje cells within the cerebellum converge
onto neurons of the deep cerebellar nuclei (DCN) via synapses
specialized for the transmission of their high-frequency signals
(28). In turn, neurons of the DCN further process and relay this
information out of the cerebellum. One form of processing that
individual DCN neurons are ideally suited to perform is that of
averaging the information from the tens to hundreds of Purkinje
cells estimated to converge onto them (29, 30). By linearly
summing synaptic inputs from multiple Purkinje cells, individual
DCN neurons can, in principle, reduce the standard deviation of
the signals encoded in Purkinje cell firing. With this method of
averaging, the extent to which the noise is reduced is propor-
tional to the number of converging Purkinje cells that have
learned the same parallel fiber input patterns and the extent to
which the noise in different Purkinje cells is uncorrelated (Fig.
2). As can be noted in Fig. 2, the remarkable consequence of this

simple averaging is that the s/n of the pattern recognition
capacity of this system for a specific pattern increases by the
number of Purkinje cells averaged (see SI Text and Fig. S4 for
an extensive discussion). Thus, as many as 1,000 patterns can be
recognized by a single DCN neuron with a s/n of �10 if as few
as 7 Purkinje cells are averaged. The simplicity of this averaging
algorithm is due to the linearity with which Purkinje cells encode
the strength of learned and unlearned patterns and the ease with
which pattern recognition can subsequently be accomplished by
DCN neurons.

Discussion
In principle, Purkinje cells can encode information by using 2
fundamentally different mechanisms: strong parallel fiber inputs
as pauses and weaker inputs in firing rate. It is not known
whether either of these 2 mechanisms is implemented by the
cerebellum, although, within the context of Marr–Albus–Ito
theory, it has been suggested that encoding information as
pauses is optimal for pattern recognition. We sought to assess the
suitability of encoding information by using the linear algorithm
and to compare its pattern recognition capacity with that
achieved when encoding with pauses. Under all conditions
examined, with the linear algorithm, a Purkinje cell had a
significantly higher capacity for recognizing patterns than when
it used pauses to encode inputs. As shown above and discussed
in detail below, the simplicity, versatility, and computational
power of linearly encoding the strength of parallel fiber inputs
in the firing rate of Purkinje cells endows it with several
advantages for cerebellar computation.

A

B

Fig. 2. Averaging significantly improves the pattern recognition capacity of
the cerebellum. (A) The signal-to-noise ratio of the pattern recognition ca-
pacity of the cerebellum was estimated as a function of the number of
patterns to be learned, assuming that DCN neurons average information from
a number of Purkinje cells, each of which have learned the same patterns. (B)
Averaging reduced the standard deviation of learned and novel Purkinje cell
maximum firing distributions by �N, resulting in a N-fold improvement in the
signal-to-noise ratio. Red circles denote signal-to-noise ratios �10.
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Superior Pattern Recognition Capacity of the Linear Algorithm. Based
mainly on its anatomy and perceived function, Marr and Albus
proposed that cerebellar motor learning occurs by adjusting the
strength of parallel fiber synaptic inputs onto Purkinje cells (5,
6). More than a decade later, plasticity at the parallel fiber-to-
Purkinje cell synapse was experimentally demonstrated by Ito
and colleagues in vivo (22, 23). According to the Marr–Albus–
Ito theory of cerebellar function, the proficiency of the cerebel-
lum in coordinating movement is limited by the number of input
patterns that it learns to recognize (5, 6).

The pattern recognition capacity of Purkinje cells has been
evaluated when using various learning rules, connectivity pat-
terns, and information-encoding mechanisms (3, 5–8). Steuber
et al. (3) combined an artificial neural network based on the
Marr–Albus–Ito learning rule with a detailed biophysical model
of a Purkinje cell to examine the pattern recognition capabilities
of Purkinje cells using pauses to encode information. To simi-
larly explore the utility of linearly encoding information in the
firing rate, we generated a comparable artificial neuronal net-
work incorporating the linear algorithm. Furthermore, rather
than estimating the relevant parameters from a biophysical
model in silico as done by Steuber et al., we experimentally
determined them in Purkinje cells in cerebellar slices. Remark-
ably, the use of the linear algorithm to encode input patterns
endowed Purkinje cells with a high pattern recognition capacity
that, under all conditions examined, was greater than that
achieved with pauses.

Compatibility with Spontaneous Firing of Purkinje Cells. Use of the
linear algorithm of Purkinje cells to encode patterns also endows
the system with numerous features compatible with the known
physiological properties of the cerebellum. Purkinje cells in vivo
are spontaneously active. Underlying this spontaneous activity is
an input-independent intrinsic pace-making mechanism that
drives Purkinje cells to fire at an average firing rate of �50 spikes
per second (14, 20, 31, 32). In vivo, the activity in parallel fibers
and interneurons strongly modulates this intrinsic firing over a
wide range. The presence of an intrinsically driven pace making
is incompatible with most pattern recognition theories (5, 7, 8),
and the recent study using pauses to encode patterns did not
incorporate it because the biophysical model used did not
support it. Instead, this study found that the accuracy of pattern
recognition strongly depended on the spontaneous activity of
Purkinje cells that was artificially generated by background
parallel fiber input (3). In contrast, however, pattern recognition
based on encoding the relative strength of parallel fiber inputs
in the maximum firing rate of Purkinje cells easily incorporates
Purkinje cell pace making as long as the maximum firing rate
does not exceed �250 spikes per second.

Compatibility with Patterns of Purkinje Cell Activity in Vivo. If the
cerebellum utilizes pattern recognition as proposed by the
Marr–Albus–Ito hypothesis, then as patterns of parallel fiber
input representing learned and unlearned contexts are presented
to a Purkinje cell, its firing rate should change to represent values
associated with learned and unlearned patterns. The linear
algorithm predicts that Purkinje cell firing rates should reach a
maximum of �250 spikes per second. This is in close agreement
with Purkinje cell activity observed during the performance of
motor tasks in vivo (10–13). In contrast, the use of pauses to
encode patterns would dictate that a pattern of parallel fiber
input, whether learned or unlearned, is represented by pauses of
�40- to 80-ms duration (3). Because these pauses are the
consequence of a hyperpolarization after a very large parallel
fiber-induced depolarization, each of these pauses must be
preceded by at least 1 interspike interval corresponding to a
firing rate �250 spikes per second (3). This predicted burst–
pause activity pattern is not only inconsistent with that seen in

vivo (10–13, 33) but also, as previously noted by Steuber et al.
(3), significantly limits the maximum processing speed of the
cerebellar circuitry.

Encoding Asynchronous Parallel Fiber Input Patterns. We find that,
similar to that seen when patterns are encoded as pauses (3),
synchronous inputs result in higher pattern recognition capacity.
However, there is good evidence to suggest that parallel fiber
inputs to Purkinje cells arrive asynchronously in vivo (15–19).
Although the ability of Purkinje cells to recognize asynchronous
patterns significantly degrades when encoding information as
pauses, the linear algorithm remains remarkably proficient.
The ability of Purkinje cells to recognize large numbers of
synchronous and asynchronous input patterns when using the
linear algorithm highlights the diversity of function of this
encoding mechanism and, thus, its potential utility in cerebellar
computation.

Beyond the Marr–Albus–Ito Theory. The pioneering work of Marr
and Albus and the subsequent experimental demonstration of
LTD has made the Marr–Albus–Ito theory of motor learning
one of the most prominent theories for cerebellar function.
Nonetheless, recent advances in our understanding of the cer-
ebellar circuitry suggest that numerous additional factors are
likely to contribute to cerebellar motor learning. There is good
evidence to suggest, for example, that synaptic connections made
by interneurons and even Purkinje cells are plastic and contrib-
ute to motor learning (34–38). Moreover, during performance of
motor tasks such as smooth eye pursuit (39) or alternate wrist
movements (33), the firing rate of a Purkinje cell is smoothly
modulated both below and above its resting spontaneous rate,
suggesting that Purkinje cells can also encode information in
decreases in firing rate. In this study, we purposefully restricted
our analysis to the classic Marr–Albus–Ito theory to allow direct
comparison with a similarly focused study that examined the
efficacy of encoding the strength of parallel fiber input patterns
as pauses (3). A cursory consideration suggests that the linear
algorithm can easily incorporate bidirectional signaling by Pur-
kinje cells. Nonetheless, there is no doubt that in future studies,
analysis of computational capabilities of the linear algorithm and
encoding information as pauses need to be extended to incor-
porate additional sites of plasticity and the active role that
cortical interneurons play in cerebellar information processing.

Linear Algorithm and Averaging. As noted by Eccles (40), the
anatomy of the cerebellum suggests that the convergence of
several Purkinje cells to a single DCN neuron can be used as an
averaging mechanism to increase s/n and ensure the reliability of
cerebellar computations. Use of the linear algorithm allows for
implementation of such an averaging mechanism to increase the
pattern recognition capacity of the cerebellum. Whether this
method of averaging improves pattern recognition capacity
critically depends on the functional connectivity of the cerebel-
lum and remains to be established. For example, the effective-
ness of this DCN averaging requires the convergence of Purkinje
cells whose noise is not fully correlated and that also have
learned the same patterns. These converging Purkinje cells
should not only receive the same information but also must have
learned to recognize the same patterns for a given motor task.
Thus, the limiting factor is likely to be the number of Purkinje
cells that receive the same instructor signal from a climbing fiber.
Because of electrical coupling in the inferior olive (41), several
climbing fibers may convey the same information, and, more-
over, a single climbing fiber contacts �10 Purkinje cells (42).
Thus, given that even the convergence of 2 Purkinje cells can, in
principle, double the s/n, it seems quite likely that averaging is
used by the cerebellum.

Implementation of the linear computational algorithm affords
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individual Purkinje cells a high capacity for pattern recognition
and makes predictions that are consistent with many features of
Purkinje cell function observed in vivo. Moreover, linearity
allows for a simple, yet extremely powerful, mechanism to use
the highly conserved anatomical circuitry of the cerebellum to
significantly improve the pattern recognition capacity of the
system.

Materials and Methods
Slice Preparation. Experiments were carried out in accordance with the guide-
lines and recommendations set by Albert Einstein College of Medicine. Wistar
rats of the age 12–25 days were anesthetized with halothane and decapitated.
Three-hundred-micron-thick sagittal or 400-�m-thick coronal slices were
made from the cerebellar vermis by using a modified Oxford vibratome. Slices
were kept at room temperature until use (1–4 h) in a solution containing 125
mM NaCl, 2.5 mM KCl, 26 mM NaHCO3, 1.25 mM NaH2PO4, 1 mM MgCl2, 2 mM
CaCl2, and 10 mM glucose (pH 7.4) when gassed with 5% CO2/95% O2.

Electrophysiological Recordings. Slices were placed in a recording chamber on
the stage of an upright Olympus microscope, and Purkinje cells were visual-
ized by using a 40� water-immersion objective (N.A. 0.8) with infrared optics.
The slices were constantly superfused at a rate of 1.5 mL/min. When noted, the
solution contained 100 �M picrotoxin (Sigma) and 1 �M CGP 55845 (Tocris) to
block GABAA and GABAB receptors. The temperature of the bathing solution
was adjusted to 35 � 1 °C.

Extracellular recordings were made from single Purkinje cells by using a
home-made differential amplifier and glass pipette electrodes. Whole-cell
recordings were performed with an Optopatch amplifier (Cairn Research)
with electrodes pulled from borosilicate glass with a resistance of 1–3 M	
when filled with internal solution containing 120 mM cesium gluconate, 10

mM CsF, 20 mM CsCl, 10 mM EGTA, 10 mM Hepes, and 3 mM MgATP (pH 7.4)
with CsOH. This intracellular solution also contained 2 mM QX-314 to block
voltage-gated sodium channels. EPSCs were recorded in Purkinje cells whole-
cell voltage-clamped at 
60 mV.

Extracellular data were sampled at 10 kHz, and whole-cell data were
sampled at 20 kHz by using a National Instruments analog-to-digital converter
(PCI-MIO-16XE-10) and acquired and analyzed by using custom software
written in LabView (National Instruments).

Granule Cell Stimulation. To estimate response variability, granule cells were
activated synchronously by electrical stimulation and asynchronously by glu-
tamate photolysis. Electrical stimulation was done by using 200-�s current
pulses applied with an electrode placed within the granule cell layer by using
a constant current stimulator (Digitimer).

To asynchronously activate granule cells, a patch of granule cells was
activated by local photorelease of glutamate. MNI-caged L-glutamate (1 mM;
Tocris) was added to the bathing solution and recirculated to allow preequili-
bration with the slice. The energy source for glutamate photolysis was a
multiline UV Coherent Innova 300C Krypton ion laser. An accusto-optical
modulator (NEOS) was used to gate (1 ms) and regulate the intensity of the UV
pulse. The laser light was transmitted to the microscope via a fiber optic cable,
collimated, and positioned via a pair of galvos (Cambridge Technology) driven
by the data-acquisition software. The laser light was focused to form a
40-�m-diameter spot in the granule cell layer.

With both electrical and photolytic activation of granule cells, the maxi-
mum instantaneous firing rate after stimulus was calculated as the inverse of
the briefest interspike interval after stimulus. Unless otherwise noted, the
data are presented as mean � SEM.
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