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Abstract
Motivation—This paper presents a workflow designed to quantitatively characterize the 3-D
structural attributes of macroscopic tissue specimens acquired at a micron level resolution using light
microscopy. The specific application is a study of the morphological change in a mouse placenta
induced by knocking out the retinoblastoma gene.

Result—This workflow includes four major components: (i) Serial-section image acquisition, (ii)
image preprocessing, (iii) image analysis involving 2-D pair-wise registration, 2-D segmentation and
3-D reconstruction, and (iv) visualization and quantification of phenotyping parameters. Several new
algorithms have been developed within each workflow component. The results confirm the
hypotheses that (i) the volume of labyrinth tissue decreases in mutant mice with the retinoblastoma
(Rb) gene knockout and (ii) there is more interdigitation at the surface between the labyrinth and
spongiotrophoblast tissues in mutant placenta. Additional confidence stem from agreement in the 3-
D visualization and the quantitative results generated.

Availability—The source code is available upon request.

Keywords
Light microscopy; histology staining; genetic phenotyping; mutation; morphometrics image
analysis; image registration; segmentation; visualization; imaging workflow

1 INTRODUCTION
This paper presents an imaging workflow designed to quantitatively characterize 3-D structural
attributes of microscopic tissue specimens at micron level resolution using light microscopy.
The quantification and visualization of structural phenotypes in tissue plays a crucial role in
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understanding how genetic and epigenetic differences ultimately affect the structure and
function of multi-cellular organisms [1–5].

The motivation for developing this imaging workflow is derived from an experimental study
of a mouse placenta model system wherein the morphological effects of inactivating the
retinoblastoma (Rb) tumor suppressor gene are studied. The Rb tumor suppressor gene was
identified over two decades ago as the gene responsible for causing retinal cancer
(retinoblastoma) but has also been found to be mutated in numerous other human cancers.
Homozygous deletion of Rb in mice results in severe fetal and placental abnormalities that lead
to lethality by prenatal day 15.5 [6–8]. Recent studies suggest that Rb plays a critical role in
regulating development of the placenta and Rb−/− placental lineages have many fetal
abnormalities [8–10].

Our previous work suggested that deletion of Rb leads to extensive morphological changes in
the mouse placenta including possible reduction of total volume and vasculature of the
placental labyrinth, increased infiltration from the spongiotrophoblast layer to the labyrinth
layer, and clustering of labyrinthic trophoblasts [8]. However, these observations are based
solely on the qualitative inspection of a small number of histological slices from each specimen
alone. In order to fully and objectively evaluate the role of Rb deletion, a detailed
characterization of the mouse placenta morphology at cellular and tissue scales is required.
This permits the correlation of cellular and tissue phenotype with Rb−/− genotype. Hence, we
develop a microscopy image processing workflow to acquire, reconstruct and quantitatively
analyze large serial-sections obtained from a mouse placenta. In addition, this workflow has a
strong visualization component that enables exploration of complicated 3-D structures at
cellular/tissue levels.

Using the proposed workflow, we analyzed six placentae samples which included three normal
controls and three mutant (Rb−/−) samples. A mouse placenta contains a maternally derived
decidual layer and two major extra-embryonic cell derivatives namely, labyrinth trophoblasts
and spongiotrophoblasts. Placental vasculature that lays embedded within the labyrinth layer
is the main site of nutrient-waste exchange between mother and fetus and consists of a network
of maternal sinusoids interwoven with fetal blood vessels. The quantitative analysis of
placentae samples validates observations published in [10] that Rb-deficient placentae suffer
from a global disruption of architecture marked by increased trophoblast proliferation, a
decrease in labyrinth and vascular volumes, and disorganization of the labyrinth-
spongiotrophoblast interface.

To summarize, in this paper we report the architecture and implementation of a complete
microscopic image processing workflow as a novel universal 3-D phenotyping system. The
resulting 3-D structure and quantitative measurements on the specimen enable further modeling
in systems biology study. While some of the algorithms presented here are optimized for
characterizing phenotypical changes in the mouse placenta in gene knockout experiments, the
architecture of the workflow enables the system to be easily adapted to countless biomedical
applications including our exploration of the organization of tumor microenvironment [16].

1.1 Related Work
The quantitative assessment of morphological features in biomedical samples is an important
topic in microscopic imaging. Techniques such as stereology have been used to assess 3-D
attributes by sampling a small number of images [17]. Using statistical sample theory,
stereological methods allow the researcher to gain insights on important morphological
parameters such as cell density and size [18,19]. However, an important limitation of stereology
is that it is not useful for large scale 3-D visualization and tissue segmentation, both of which
are potentially critical for biological discovery. Therefore, we need new algorithms to enable

Mosaliganti et al. Page 2

J Biomed Inform. Author manuscript; available in PMC 2009 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



objective large-scale image analysis. Since our work involves multiple areas of image analysis
research, we delegate algorithmic literature review to the corresponding subsections in Section
2.

There has been some work focusing on acquiring the capability for analyzing large microscopic
image sets. Most of these efforts involve developing 3-D anatomical atlases for modeling
animal systems. For instance, in [20], the authors developed a 3-D atlas for the brain of
honeybees using stacks of confocal microscopic images. They focus on developing a consensus
3-D model for all key functional modules of the brain of the bees. In the Edinburgh Mouse
Atlas Project (EMAP), 2-D and 3-D image registration algorithms have been developed to map
the histological images with 3-D optical tomography images of the mouse embryo [21]. Apart
from atlas related work, 3-D reconstruction has also been used in clinical settings. In [1], the
authors build 3-D models for human cervical cancer samples using stacks of histological
images. The goal was to develop an effective non-rigid registration technique and identify the
key morphological parameter for characterizing the surface of the tumor mass. In this paper,
instead of focusing on a single technique, we present the entire workflow with a comprehensive
description of its components.

2 COMPONENTS AND ALGORITHMS OF THE WORKFLOW
In this section, we describe the components of the workflow and the related image processing
algorithms. Please refer to Figure 2 for a schematic representation of the three stages.

1. In the first stage, large sets of histological slides are produced and digitized. The
preprocessing of the images includes color correction to compensate for intensity inconsistency
across slides due to staining variations and pixel-based color classification for segmenting the
image components such as cell nuclei, white spaces (including purported vasculature spaces),
cytoplasm and red blood cells. These standard pre-processing steps build the foundation for
the next two stages of investigation.

2. The second (middle) stage consists of image registration and segmentation. The
registration process aligns 2-D images in a pair-wise manner across the stack. Pair-wise
alignments provide 3-D coordinate transforms to assemble a 3-D volume of the mouse placenta.
The segmentation process identifies regions corresponding to different tissue structures such
as the labyrinth and spongiotrophoblast layers. In our current realization, the image
registration and segmentation process do not directly interact with each other. However, in
other applications, results from image segmentation provide the landmarks that may used in
image registration [16].

3. The final stage (bottom) of the workflow supports user-interaction, exploration via
visualization and quantification. For this project, the quantification is focused on testing three
hypotheses about the effects of Rb deletion in placental morphology. We provide the
hypotheses specifics later in Section 2.6. The quantification step in our workflow provides
measurements of morphological attributes relevant to the hypothesis. The visualization step
allows the researcher to further study the 3-D structures in detail. Volumetric rendering
techniques are developed because we are interested in visualization of multiple interleaving
types of tissue that will further confirm the quantifications.

The details in the three levels of the workflow are given in Section 2.1 – 2.6. Please note that
in stage 2, we adopt a multiresolution strategy. For example, image registration/segmentation
is carried out at lower resolutions in order to reduce computational costs. Furthermore, we note
that the performance of a segmentation algorithm is dependent on the resolution scale. Later
stages often process segmented images at different resolutions. Hence, multiple algorithms
have been developed for the same technical component.
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2.1 Data acquisition
2.1.1 Image Acquisition and Stitching—Six mouse placenta samples, three wild-type
and three Rb−/−, were collected at embryonic day 13.5. The samples were fixed in formalin,
paraffin-embedded, sectioned at 5-µm intervals and stained using standard haematoxylin and
eosin (H&E) protocols. We obtained 500–1200 slides approximately for each placenta
specimen that were digitized using a Aperio ScanScope slide scanner with 20× objective length
and image resolution of 0.46 µm/pixel. Digitized whole slides were acquired as uncompressed
stripes due to the constrained field-of-view of the sensor. The digitization process also produces
a metadata file that contains global coordinates of the stripes and describes the extent of any
overlap with adjacent stripes. This file is used to reconstruct the digital file of the whole slide
from the stripes using a custom Java application that we developed for this purpose.

2.1.2 Image Re-sampling—Each serial-section produces a digitized RGB format image
with dimensions approximately 16K × 16K pixel units. A entire set of the placenta image stacks
(each containing approximately 500–1200 images) occupies more than 3 Terabytes (Tb) of
data storage. The processing of such large datasets is beyond the computational capability of
most workstations, especially since most imaging algorithms require the full image to be loaded
into memory. For certain tasks, it is convenient to down-sample images by a factor of 2 to 10
depending on the algorithm and performance. The down-sampling process employs linear
interpolation to maintain continuity of the features.

2.2 Image preprocessing
2.2.1 Color Correction—Digitized images of sectioned specimens usually exhibit large
staining variations across the stack. This occurs due to idiosyncracies in the slide preparation
process, including section thickness, staining reagents and reagent application time. The
process of color correction seeks to provide similar color distributions (histograms) in images
from the same specimen. This process greatly facilitates later processing steps, because
consistent color profiles narrow the range of parameter settings in algorithms. Color correction
is accomplished by normalizing all images in a specimen to a standard color histogram profile.
The standard histogram is computed from a manually pre-selected image with a color profile
that is representative of the whole image stack.

The color profiles are normalized using MATLAB’s Image Toolbox histogram equalization
function [22]. We ensure that pixels representing foreground tissue alone participate in the
color normalization process. We developed an algorithm to identify foreground tissue pixels
from background by thresholding the image in HSL (hue, saturation, and luminance) color
space. The HSL color space is less sensitive to intensity gradients within a single image that
result from light leakage near edges of glass slides.

2.2.2 Pixel-based color segmentation—Pixels in an H&E-stained image correspond to
biologically salient structures, such as placental trophoblast, cytoplasm, nuclei and red blood
cells. These different cellular components can be differentiated based on color in each
specimen, and the per-pixel classification result is used in image registration and segmentation.

A maximum likelihood estimation (MLE) algorithm is implemented to classify the pixels into
four classes in the RGB color space: red blood cells, cytoplasm, nuclei, and background. For
simplicity, we assume that the histograms of the bands of data have normal distributions. The
a priori information related to the four classes is learnt via the following training process. For
the image dataset of each placenta specimen (usually contains 500 to 1200 images), one
representative image is selected as training image (the same one used to normalize the color
profile). A custom-built application randomly selects pixels from the images, displays patches
of the training image centering at the selected pixel and highlights the center pixels. The user
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then chooses among the four classes and a pass option. This procedure provides the training
samples and their classifications from manual input. The spatial locations and RGB triplet
values are used as attributes for these randomly selected pixels. The covariance matrices, mean
values and prior probability weights are then calculated for each individual class. The
maximum logarithmic probability rule is invoked to determine the final class membership.
Here the pixels classified as background are from three possible sources. One source is the
white background of the images. In each image, the foreground (the region corresponding to
the specimen) is surrounded by a large region of white background space. Therefore pixels in
the largest region of background can be easily removed. Another source of background pixels
is the white space in the blood vessels. Since most red blood cells are removed from the blood
vessel during the preparation of the slides, the regions corresponding to cross sections of blood
vessels usually appear in the form of small white areas with a small number of red pixel clusters
(red blood cells). The pixels corresponding to the blood vessels are important in determining
the area of vasculature space in the images. The third source of white pixels is the cytoplasm
areas for large cells such as giant cells in the spongiotrophoblast layer and the glycogen cell
clusters. An example of the pixel classification result is shown in Figure 3. The classification
results are used in the subsequent stages based on requirements in classification granularity.

2.3 Image Registration
During the slide preparation process, a tissue section is mounted with a random orientation on
the glass slide. The section remains displaced in orientation and offset from the previous sliced
section. The nature of physical slicing causes deformation and non-linear shearing in the soft
tissue. Image registration seeks to compensate for the misalignment and deformation by
aligning pair-wise images optimally under pre-specified criteria. Hence, image registration
allows us to assemble a 3-D volume from a stack of images. In our study, we employ rigid and
non-rigid registration algorithms successively. While rigid registration provides the rotation
and translation needed to align adjacent images in a global context, it also provides an excellent
initialization for the deformable registration algorithm [1]. Non-rigid registration compensates
for local distortions in an image caused by tissue stretching, bending and shearing [22,26–
28].

2.3.1 Rigid registration algorithms—Rigid registration methods involve the selection of
three components: the image similarity metric (cost function), the transformation space
(domain), and the search strategy (optimization) for an optimal transform. We present two
algorithms for rigid registration. The first algorithm is used for reconstructing low-resolution
mouse placenta images. The second algorithm is optimized for higher resolution images.

1. Rigid registration via maximization of mutual information: This algorithm exploits the
fact that the placenta tissue has an elongated oval shape. We carry out a principal component
analysis of the foreground region to estimate the orientation of the placenta tissue. This
orientation information is used to initialize an estimate of the rotation angle and centroid
translation. After the images are transformed into a common coordinate reference frame, a
maximum mutual information based registration algorithm is carried out to refine the matching
[12,23]. The algorithm searches through the space of all possible rotation and translations to
maximize the mutual information between the two images.

MI based methods are effective in registering multi-modal images where pixel intensities
between images are not linearly correlated. While the placenta images are acquired using the
same protocol, they have multimodal characteristics due to staining variations and the
occasional luminance gradients. Rigid body registration techniques requiring intrinsic point or
surface-based landmarks [41] and intramodal registration methods [42] that relying on linear
correlation of pixel values are inadequate under these conditions.
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It has been shown [43] that MI registration with multiresolution strategies can achieve similar
robustness compared to direct registration. Studholme [44] reported no loss in registration
precision and significant computational speed-up when comparing different multiresolution
strategies. We adopt the multiresolution approach, using 3-level image pyramids. The image
magnifications used were 10×, 20×, and 50×. Optimal transforms obtained from a lower
magnification are scaled and used as initialization for registration of the next higher
magnification. Registration is then performed on the images, potentially with different
optimizer parameters, to refine the transforms. The process is repeated for each magnification
level to obtain the final transforms. We note that at magnifications higher than 50×, the
computation cost for registration outweighs the improvements in accuracy. The details of the
implementation can be found in [12].

2. Fast rigid registration using high-level features: This algorithm segments out simple high-
level features that correspond to anatomical structures such as blood vessels using the
colorbased segmentation results in both images. Next, it matches the segmented features across
the two images based on similarity in areas and shapes. Any two pairs of matched features can
potentially be used to compute rigid transformation between the two images. The mismatched
features are removed with a voting process, which selects the most commonly derived rigid
transformation (rotational and translational) from the pairs of matched features. This algorithm
was implemented to register large images with high speed [11].

2.3.2 Non-rigid registration—In our workflow, the rigidly-registered image stack serves
as input for further refinement using non-rigid methods. In order to visualize a small localized
tissue microenvironment, non-rigid registration was conducted by manually selecting point
features in each slice of the microenvironment. While we obtained good quality visualizations,
repeating this procedure is cumbersome and forced us to consider automated techniques.

(The literature review part has been consolidated and shrunk.): There are many previous
studies on automatic non-rigid registration. Johnson and Christensen present a hybrid
landmark/intensity-based technique [45]. Arganda-Carreras et al present a method for
automatic registration of histology sections using Sobel transforms and segmentation contours
[47]. Leung and Malik et al use the powerful cue of contour continuity to provide curvilinear
groupings into region-based image segmentation [48]. Our data does not however have well
defined contours on a slice by slice basis. Thus, contour based registration techniques fail on
our dataset.

In our approach, automated pair-wise non-rigid registration is conducted by first identifying a
series of matching points between images. These points are used to derive a transformation by
fitting a nonlinear function such as a thin-plate spline [26] or polynomial functions [25,28].
We have developed an automatic procedure for selecting matching points by searching for
those with the maximum cross correlation of pixel neighborhoods around the feature points
[11].

Normally, feature points in an image are selected based on their prominence. Our approach
differs with the previous ones in that we select points uniformly. For instance, we choose points
that are 200 pixels apart both vertically and horizontally. The variation in a 31 × 31 pixel
neighborhood centered at each sampled point is analyzed. The selection of the neighborhood
window size depends on the resolution of the image so that a reasonable number of cells/
biological features are captured. Please note that we only retain feature points belonging to the
foreground tissue region. The neighborhood window is transformed into the grayscale color
space and its variance is computed. We retain the selected point as a feature point only when
the variance of the neighboring window pixel intensity value is large enough (which implies
a complex neighborhood). The unique correspondence of a complex neighborhood with a novel
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region in the next image is easy to determine. On the other hand, regions with small intensity
variance tend to generate many matches and prone to false-positives. For example, consider
an extreme example in which a block of white space can be matched to many other blocks of
white spaces without knowing the correct match. This step usually yields about 200 features
points that are uniformly distributed across the foreground of each image.

In the second step, we rotate the window around the feature point by the angle that is already
computed in the rigid registration procedure. This gives a template patch for initialization in
the next image. In the next image, a much larger neighborhood (e.g., 100 × 100 pixels) is
considered at the same location. A patch in this larger neighborhood with the largest cross
correlation with the template patch from the first image is selected. The center of this patch is
designated as the matching feature point. The two steps together usually generate more than
100 matched feature points between the two images. These points are then used as control
points to compute the nonlinear transformation using the thin-plate splines or polynomial
transformations [25,28]. In this project, we tested both six-degree polynomial transformations
and piecewise affine transformations. The 3-D reconstructions are similar in both schemes
while the piecewise affine transformation is easier to compute and propagate across a stack of
images. Figure 4 shows renderings of the placenta that were reconstructed using the rigid and
deformable registration algorithms. This approach is used to generate high resolution 3D
reconstructions of the samples.

2.4 Image Segmentation
In processing biological images, a common task is to segment the images into regions
corresponding to different tissue types. For analysis of the mouse placenta, we segmented
images into three tissue types, labyrinth trophoblast, spongiotrophoblast, and glycogen cells
(a specialized derivative of the spongiotrophoblast lineage). Each H&E-stained tissue type can
be classified by distinctive texture and color characteristics of cell nuclei and cytoplasm and
by presence of vacuoles and red blood cells. The segmentation algorithm, therefore, is based
on object texture, color, and shape.

The automatic segmentation of natural images based on texture and color has been widely
studied in computer vision [30–32]. Most segmentation algorithms contain two major
components: the image features and the classifier (or clustering method). Image features
include pixel intensity, color, shape, and spatial statistical features for textures such as Haralick
features and Gabor filters [33,34]. A good set of image features can substantially ease the design
of the classifier. Supervised classifiers are used when training samples are available. Examples
of such classifiers include Bayesian classifier, K-nearest neighbor (KNN), and support vector
machine (SVM). If no training example is available, unsupervised clustering algorithms are
needed. Examples of such algorithms are K-means, generalized principal component analysis
(GPCA)[32], hierarchical clustering, and self-organizing maps (SOM). Active contour
algorithms, such as the level set based ones [35], can also be considered as an unsupervised
method.

In our project, both manual and automatic segmentation procedures have been conducted on
the image sets. For each placenta, manual segmentation of the labyrinth layer was carried out
on ten images that are evenly spaced throughout the image stack. These manually segmented
images are used as the ground truth for training and testing the automatic segmentation
algorithms. In addition, manual segmentation allows for higher level of accuracy in the
estimation of area of the labyrinth layer, which also translates to more accurate volume
estimates. However, manual segmentations are not feasible for the purpose of visualizing the
boundary between the labyrinth and the spongiotrophoblast layers since it is impractical to
manually segment all the images. Instead, we adopted automatic segmentation for this purpose.
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New features for histological images—In histology-based microscopy images, there has
been little work on the automatic segmentation of different types of tissues or cell clusters in
histological images. Due to the complicated tissue structure and large variance in biological
samples, none of the commonly used image segmentation algorithms that we have tested can
successfully distinguish the biological patterns in microstructure and organization [13]. To
solve this problem, we designed new segmentation algorithms. The idea was to treat each tissue
type as one type of heterogeneous biomaterial composed of homogeneous microstructural
components such as the red blood cells, nuclei, white background and cytoplasm. The
distribution and organization of these components determine the tissue type. For such
biomaterials, quantities such as multiple-point correlation functions (especially the two-point
correlation function) can effectively characterize their statistical properties [36] and thus serve
as effective image features.

The two-point correlation function (TPCF) for a heterogeneous material composed of two
components is defined as the probability that the end points of a random line with length l
belong to the same component. TPCF has been used in analyzing microstructures of materials
and large images in astrophysics. However, our study marks the first time that TPCF is
introduced in characterizing tissue structures in histological images. For materials with more
than two components, a feature vector replaces the probability with each entry being the
correlation function for that component. In our work, the four components are cell nuclei,
cytoplasm, background and red blood cells, which are obtained through pixel classification in
the preprocessing stage. In addition to the two-point correlation function, three-point
correlation function and lineal-path function can also be similarly defined. These functions
form an excellent set of statistical features for the images, as demonstrated in Section 3.

Supervised classification—In addition to feature selection, another aspect of the
segmentation problem is to select the classification procedure. In our project, we selected the
K-nearest neighbor (KNN) due to both its effectiveness and easy implementation [14]. For
each placenta specimen, about 500 to 1200 serial images are generated. Due to the large
variation in morphology, intensity and cell distributions across the different placenta datasets,
the KNN classifier is trained on a per placenta dataset basis prior to segmenting all the images.

Within each placenta dataset, ten evenly spaced images were selected from the stack. These
ten images were then manually segmented by the pathologist. A representative image of the
2-D morphology for this placenta specimen was selected by the pathologist as the training
sample from the set of 10 images. Image patches of size 20-by-20 pixels were randomly
generated and labeled as labyrinth, spongiotrophoblast, glycogen cells or background. A patch
lying on the boundaries remained ambiguous and was not chosen into the training dataset. A
total of 2200 regions were selected from the image slide (800 for labyrinth, 800 for
spongiotrophoblast, and 600 for the background) for training. Please note that the color-
correction of the serial-section stacks (Section 2.1.2) allowed the tissue components to share
similar color distributions across the images and hence training based on a representative slide
was applicable throughout. The remaining nine images were used for validation purposes as
ground-truth.

Evaluation of the automatic segmentation algorithm—In our study, we found that
automatic segmentation tends to generate relatively large error in images obtained from the
end regions of the placenta slice sequence, which can bias the volume estimation. However,
for the mid-section of the sequence, automated segmentation provided a visually satisfactory
boundary between the two layers of tissues. These tests were carried out in three placentae with
one control and two mutants. The observation is further confirmed by a quantitative evaluation
process as shown in Figure 6. In the figure, the automatically segmented labyrinth is overlaid
on the manually segmented labyrinth tissue. For all the manually segmented images, the error
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is measured as the ratio between the area encircled by the two tissue boundaries (manually and
automatically generated boundaries) and the manually segmented labyrinth area. For the three
samples, the mean errors are 6.6±1.6%, 5.3±3.3%, and 16.7±7.4%. The two samples (one
control and one mutant) with mean error less than 8% are then used for visualization. As shown
in Figure 6e and 6f, the discrepancy between the two segmentation methods can be attributed
to two major factors: the use of a large sliding window in automatic segmentation which leads
to the “dilation effect”, and the discrepancy in assigning the large white areas on the boundary.
This white region is actually the cross-section of a blood vessel at the boundary of the labyrinth
tissue layer and the spongio-trophoblast tissue layer. The designation of such regions usually
requires post-processing based on explicit anatomical knowledge which is not incorporated in
the current version of the automatic segmentation algorithm.

2.5 Visualization in the 3-D space
We are interested in quantifying the 3D finger-like infiltration (referred as pockets) that occurs
on the labyrinth-spongiotrophoblast tissue interface of the mouse placenta (Figure 5). The
presence of pockets has a direct correlation with surface morphological parameters such as
interface surface-area, convolutedness and the extent of tissue infiltration.

The registered stack of images is treated as volume data and visualized using volumetric
rendering techniques. In volumetric rendering, a transfer function maps the feature value (e.g.
pixel intensity) to the rendered color and opacity values. It allows the user to highlight or
suppress certain values by adjusting the transfer function. In our approach we evolve a front
in the close vicinity of the target surface. The front initially represents a global shape of the
surface without pockets. As the front progresses towards the target surface, it acquires the
features on the surface and finally converges to it. This leads to a natural definition of feature
size at a point on the contour as the distance traveled by it from the initial front to the target
surface. Surface pockets have larger feature sizes compared to the flat regions owing to the
larger distances traversed. Hence they are suitably extracted. Figure 5 shows the resultant
visualizations from a transfer function that highlights high feature values. The details of the
implementation can be found in [49].

2.6 Quantification
Our application requires the quantitative testing of three hypotheses regarding the
morphological changes in mouse placenta induced by the deletion of Rb. These hypothesized
changes include the increased surface complexity between the labyrinth layer and the
spongiotrophoblast layer, the reduced volume of the labyrinth layer, and reduced vasculature
space in the labyrinth layer. Here we describe the quantification processes for measuring the
three morphological parameters.

2.6.1 Characterizing the complexity of the tissue layer interface—Rb mutation
increases the number of shallow interdigitations at the interface of the spongiotrophoblast and
the labyrinth tissue layers. In order to quantify the increased interdigitation, we calculate the
number of pixels at the interface and the roughness of the interfacial area between the two
layers, based on the assumption that increased interdigitation is manifested as increased area
of the interface and greater roughness. The number of pixels at the interface is computed based
on the image segmentation results. In addition, given the fractal nature of the surface area
between the two tissue layers, the boundary roughness is quantified by calculating the
Hausdorff dimension, a technique that is well-known and commonly used in geological and
material sciences for describing the fractal complexity of the boundary [40]. Typically, the
higher the Hausdorff dimension, the more rough the boundary. In order to calculate the
Hausdorff dimension, we take the 2-D segmented image and overlay a series of uniform grids
with cell size ranging from 64 pixels to 2 pixels. Next we count the number of grid cells that
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lie at the interface of the two tissue layers. If we denote the cell size of the grids as ε and the
number of grid cells used to cover the boundary as N(ε) Then the Hausdorff dimension d can
be computed as

In practice, d is estimated as the negated slope of the log-log curve for N(ε) versus ε.

2.6.2 Estimating the volumes of the labyrinth tissue layer in mouse placentae—
The volume of the labyrinth is estimated using an approach analogous to the Riemann Sum
approximation for integration in calculus. The labyrinth volume for a slice is computed from
the pixel count of the labyrinth mask obtained from the 2D segmentation, the 2D pixel
dimensions, and section thickness. The labyrinth volume is accumulated across all serial
sections in a dataset to obtain an approximation of the total labyrinth volume.

2.6.3 Estimating the vascularity in the labyrinth tissue layer—The vascularity of the
labyrinth is estimated by the ratio of total blood space volume to total labyrinth volume, which
is referred to as intravascular space fraction. The estimation of total labyrinth volume is
described in the above section. The total blood space is calculated by counting all pixels
previously classified as red blood cell pixels or as background pixels within the labyrinth tissue.
The labyrinth mask generated by the segmentation step is used to identify the background pixel
in the second case. The intravascular space fraction is then computed.

3 RESULTS: A CASE STUDY ON THE EFFECTS OF RB DELETION IN
PLACENTAL MORPHOLOGY
3.1 Manual and automated stages

Whole slide imaging for histology and cytology usually involves a large amount of data and
is typically not suitable for manual annotation. Three-dimensional processing of serial sections
further motivates the need for automation of different stages in the workflow. However,
biological systems are characterized by a high incidence of exceptions, and these are especially
evident in systems with high-level of detail such as microscopic imaging. Human intervention
and semiautomated approaches are often essential components in image analysis workflows.
The manual components are identified in the schematic representation shown in Figure 2.

3.2 Results
The last stage of the workflow discussed in Section 2 generates results for the application –
namely quantified parameters and visualizations. For this project, the quantification is focused
on testing the three hypotheses about the effects of Rb deletion in placental morphology, namely
reduced volumes of the placental labyrinth layer (Section 3.2.3), decreased vasculature space
in the labyrinth layer (Section 3.2.4), and increased roughness of the boundary between the
labyrinth and spongiotrophoblast layers (Sections 3.2.1 and 3.2.2).

3.2.1 Reconstruction and Visualization in 3-D—Figure 5 shows the final reconstructed
mouse placenta using rigid registration results. Different tissues are highlighted by
incorporating the segmentation results in the transfer function adjustment during volumetric
rendering. Earlier, in Section 2.5, we mentioned about the 3D fingerlike infiltration that occurs
on the labyrinth-spongiotrophoblast tissue interface of the mouse placenta. The presence of
pockets has a direct correlation with surface morphological parameters such as interface
surface-area, convolutedness and the extent of tissue infiltration. We automatically detect
pockets using a level-set based pocket detection approach to determine a pocket size feature
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measure along the interface (16). The bottom section of the figure shows the infiltration
structure in detail by using these feature measurements in the transfer function. The resulting
visualization reveals extensive shallow interdigitation in mutant placenta in contrast with fewer
but larger interdigitations in the control specimen. These observations are quantitatively
verified by calculating the fractal dimension.

3.2.2. Quantifying complexity of the tissue interface—We first computed the number
of pixels at the interface between the two tissue layers in littermates. The number of interface
pixels for the controls are 1738 and 2374 (in the images downsampled by 20 times to save
computational cost for the image segmentation algorithm) while the interface pixels for the
corresponding mutants are 3413 and 4210 respectively. Therefore in both cases, the numbers
of interface pixels are almost doubled in mutants than in controls. However, the result for
computing the Hausdorff dimension is not as significant. Among the three pairs of littermates,
the increase in the Hausdorff dimensions in mutants comparing to the controls are only 3%,
2.5% and 0.5% when the grid cell sizes between 2 pixels and 64 pixels are used. However, in
the mutant placenta, the number of grid cells of size no more than 8 pixels that lie on the
interface layer is significantly increased. This suggests that most of the disruption at the
interface is due to small shallow interdigitations which are difficult to be characterized using
fractal dimensions. This observation supports our result determined in Section 3.2.1 above on
surface pockets. Available work in literature have also reported difficulty in computing fractal
dimensions [1].

3.2.3 Volume of labyrinth tissue layer estimation—The volume of the labyrinth tissue
layer for each specimen was estimated by summing the areas of the labyrinth layer in each of
the ten manually segmented images then multiplying by the distance between consecutive
images. This method gives a first order approximation of the labyrinth layer volume. The
estimated volumes of the labyrinth layer for the three control mice are 11.0mm3, 9.0 mm3, and
12.8 mm3. While the measurements for their corresponding littermates are 7.9 mm3, 8.2
mm3, and 9.3 mm3. A consistent reduction of labyrinth layer volume in the range of 9% to
28% is therefore observed for the three pairs of littermates.

3.2.4 Intravascular space fraction estimation—The intravascular space fraction is
estimated by combining the color segmentation and image segmentation results. We compute
the percentage of white and red pixels in the segmented labyrinth layers. As shown in Figure
7, for all three pairs of mutant and control samples, significant decrease in intravascular space
fraction is observed.

The reduction in the volume and the intravascular space of the labyrinth layer in the mouse
placenta is consistent with our hypothesis that Rb deletion causes significant morphological
disruption in mouse placenta which negatively affects fetal development.

4 CONCLUSION AND DISCUSSION
In this paper, we presented an imaging workflow for reconstructing and analyzing large sets
of microscopy images in the 3-D space. The goal of this work is to develop a new phenotyping
tool for quantitatively studying sample morphology at tissue and cell level. We developed a
set of algorithms that include the major components of the workflow using a mouse placenta
morphology study as a driving application. This workflow is designed to acquire, reconstruct,
analyze, and visualize high-resolution light microscopy data obtained from a whole mouse
placenta. It allows the researchers to quantitatively assess important morphological parameters
such as tissue volume and surface complexity on a microscopic scale. In addition, it has a strong
visualization component that allows the researcher to explore complicated 3-D structures at
cellular and tissue levels. Using the workflow, we analyzed six placenta including three
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controls and three Rb−/− mutant with gene knockout and quantitatively validated the hypotheses
relating to Rb in placenta development [10]. Analysis of placenta indicated that Rb mutant
placenta exhibit global disruption of architecture, marked by an increase in trophoblast
proliferation, a decrease in labyrinth and vascular volumes, and disorganization of the
labyrinth-spongiotrophoblast interface. The analytical results are consistent with previously
observed impairment in placental transport function [8,10]. These observations include an
increase in shallow finger-like interdigitations of spongiotrophoblast that fail to properly
invade the labyrinth and clustering of labyrinth trophoblasts that was confirmed with the 3-D
visualization. Due to the intricacy of carrying out experiments with transgenetic animals, we
had only a small number of placenta samples which just satisfied the basic statistical
requirement. However, the consistent changes in placental morphology we have obtained from
large scale image analysis and visualization provide strong evidence to support our hypothesis.

One of the major challenges we faced in the process of workflow development was to strike a
good balance between automation and manual work. On one hand, large data size forced us to
develop automatic methods to batch process the images. On the other hand, large variations in
the images required us to take several manual steps to circumvent the technical difficulties and
achieve more flexibility. While this work was largely driven by the mouse placenta study, it
is subsequently applied to process other data sets including our ongoing work in phenotyping
the mouse breast tumor microenvironment. Other directions include developing a parallel
processing framework for handling images in their original high resolution and a middleware
system to support the execution of the workflow on multiple platforms, improving the accuracy
of the image segmentation algorithm to obtain higher accuracy and better time performance,
and extending the image registration algorithm to deal with images from slides stained with
different staining techniques (e.g., H&E versus immunohistochemical staining) so that we can
map molecular expression to different types of cells.
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Figure 1.
(a) A mouse placenta reconstructed in 3D with the described imaging workflow. (b) Zoomed
placenta image showing the different tissue layers. The tissue between the two thick black
boundaries is the labyrinth tissue. The pocket area is an example of the infiltration
(interdigitation) from the spongiotrophoblast layer to the labyrinth layer. The cells in the left
circle are glycogen cells.
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Figure 2.
The imaging workflow for characterizing phenotypical changes in microscopy data.
Components that involve manual intervention are identified.
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Figure 3.
An example of the color segmentation. (a): A 200-by-200 pixel patch of the original image
(downsampled by four times for visualization purposes). (b): Segmented background region.
Most of the white background regions correspond to blood vessels. A small fraction of them
(in the bottom left corner of the image) correspond to cytoplasm regions for the large cells in
the spongiotrophoblast layer. (c): Segmented cytoplasm region. (d): Segmented cell nuclei
region. (e): Segmented red pixels corresponding to the remaining red blood cells in the blood
vessels.
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Figure 4.
Comparison of rigid and deformable registration algorithms. A stack of twenty five images
were registered using rigid registration algorithm (top) and nonrigid registration algorithm
(bottom) and the 3-D reconstruction results are rendered. The frontal views show the
crosssections of the reconstructed model. The benefits of using deformable registration
algorithms are clearly visible in the frontal view of the image stack cross-section. In the top
frontal view which is the cross section of the rigid registered images, the structures are jaggy
and discontinuous. In the bottom frontal view, the results from the nonrigid (deformable)
registration algorithm display smooth and continuous structures.
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Figure 5.
Visualizing the interdigitation at the interface of the labyrinth and the spongiotro-phoblast
tissue layers in control (left) and mutant (right) mouse placenta. The detected pockets are
colored using a heat map. Red regions indicate large pockets and yellow regions indicate
shallow pockets.
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Figure 6.
Evaluation of the automatic segmentation algorithm. (a): The solid line is the manually marked
boundary and the dashed line is the automatic segmentation result. The boundary estimation
error is defined as the ratio between the shaded area and the grey area. (b), (c) and (d): examples
of images with boundary estimation errors being 2.5%, 8.4% and 16.5%. The boundary is in
the top portion of the image. The dark gray area is the manual segmentation result, and the
light gray area is the automatic segmentation result. (e) and (f): a larger view of the difference
between manual segmentation (black) and automatic segmentation (white).
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Figure 7.
Intravascular space fraction estimation. The intravascular space fraction is measured for each
sample in ten manually segmented images. The mean and standard deviation of the
measurement are presented here.
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