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Abstract
Background: Mass spectrometry is actively being used to discover disease-related proteomic patterns in complex mixtures 
of proteins derived from tissue samples or from easily obtained biological fl uids. The potential importance of these clinical 
applications has made the development of better methods for processing and analyzing the data an active area of research. 
It is, however, diffi cult to determine which methods are better without knowing the true biochemical composition of the 
samples used in the experiments.

Methods: We developed a mathematical model based on the physics of a simple MALDI-TOF mass spectrometer with 
time-lag focus ing. Using this model, we implemented a statistical simulation of mass spectra. We used the simulation to 
explore some of the basicoperating characteristics of MALDI or SELDI instruments.

Results: The simulation reproduced several characteristics of actual instruments. We found that the relative mass error is 
affected bythe time discretization of the detector (about 0.01%) and the spread of initial velocities (about 0.1%). The accuracy 
of calibration based on external standards decays rapidly outside the range spanned by the calibrants. Natural isotope 
distributions play a major role inbroadening peaks associated with individual proteins. The area of a peak is a more accurate 
measure of its size than the height.

Conclusions: The model described here is capable of simulating realistic mass spectra. The simulation should become a 
useful tool forgenerating spectra where the true inputs are known, allowing researchers to evaluate the performance of new 
methods for processing and analyzing mass spectra.

Availability: http://bioinformatics.mdanderson.org/cromwell.html

Keywords: mass spectrometry, MALDI, SELDI, simulation, peak capacity, peak quantifi cation, mass resolution, isotope 
distribution.

Introduction
Mass spectrometry is actively being used to discover disease-related proteomic patterns in complex 
mixtures of proteins derived from tissue samples or from easily obtained biological fl uids such as serum, 
urine, or nipple aspirate fl uid (Paweletz et al., 2000; Paweletz et al., 2001; Wellmann et al., 2002; 
Petricoin et al., 2002; Adam et al., 2002; Adam et al., 2003; Zhukov et al., 2003; Schaub et al., 2004). 
These proteomic patterns can potentially be used for early diagnosis, to predict prognosis, to monitor 
disease progression or response to treatment, or even to identify which patients are most likely to benefi t 
from particular treatments.

A typical data set arising in a clinical application of mass spectrometry contains tens or hundreds of 
spectra; each spectrum contains tens of thousands of intensity measurements representing an unknown 
number of protein peaks. Any attempt to make sense of this volume of data requires extensive low-level 
processing in order to identify the locations of peaks and to quantify their sizes accurately. Inadequate 
or incorrect preprocessing methods, however, can result in data sets that exhibit substantial biases and 
make it diffi cult to reach meaningful biological conclusions (Baggerly et al., 2003; Sorace and Zhan, 
2003; Baggerly et al., 2004). The low-level processing of mass spectra involves a number of complicated 
steps that interact in complex ways. Typical processing steps are as follows.

1. Calibration maps the observed time of fl ight to the inferred mass-to-charge ratio.
2. Filtering removes random noise, typically electronic or chemical in origin.
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3.  Baseline subtraction removes systematic 
artifacts, usually attributed to clusters of 
ionized matrix molecules hitting the detec-
tor during early portions of the experi-
ment, or to detector overload.

4.  Normalization corrects for systematic 
differences in the total amount of protein 
desorbed and ionized from the sample plate.

5.  Peak detection and quantifi cation is the 
prim ary goal of low-level processing; it 
typically involves an assessment of the 
signal-to-noise ratio and may involve 
heights or areas.

6.  Peak matching across samples is required 
because neither calibration nor peak detec-
tion is perfect. Thus, the analyst must decide 
which peaks in different samples corre-
spond to the same biological molecule.

The potential importance of the clinical applica-
tions of mass spectrometry has drawn the attention 
of increasing numbers of analysts. As a result, the 
development of better methods for processing and 
analyzing the data has become an active area of 
research (Baggerly et al., 2003; Coombes et al., 2003; 
Coombes et al., 2004; Hawkins et al., 2003; Lee et al., 
2003; Liggett et al., 2003; Rai et al., 2002; Wagner 
et al., 2003; Yasui, Pepe, et al., 2003; Yasui, McLerran 
et al., 2003; Zhu et al., 2003). It is, however, diffi cult 
to determine which methods are better without 
knowing the true biochemical composition of the 
samples used in the experiments. To deal with this 
problem, we have developed a simulation engine in 
S-Plus (Insightful Corp., Seattle,WA) that allows us 
to simulate mass spectra from instruments with 
different properties. In this article, we fi rst derive the 
mathematical model of a physical mass spectrometry 
instrument that underlies our simulation. Next, we 
use the model to explore some of the low-level 
characteristics of mass spectrometry data, including 
the limits on mass resolution and mass calibration, 
the role of isotope distributions, and the implications 
for methods of normalization and quantifi cation.

1: A physical model of a MALDI-TOF 
instrument
The mass spectrometry instruments most commonly 
applied to clinical and biological problems use a 
matrix-assisted laser desorption and ionization 

(MALDI) ion source and a time-of-fl ight (TOF) 
detection system. Briefl y, to run an experiment on a 
MALDI-TOF instrument, the biological sample is 
fi rst mixed with an energy absorbing matrix (EAM) 
such as sinapinic acid or ά- cyano-4-hydroxycinnamic 
acid. This mixture is crystallized onto a metal plate. 
(The commonly used method of surface enhanced 
laser desorption and ionization (SELDI) is a variant 
of MALDI that incorporates additional chemistry on 
the surface of the metal plate to bind specifi c classes 
of proteins (Merchant and Weinberger, 2000; Tang 
et al., 2004). The plate is inserted into a vacuum 
chamber, and the matrix crystals are struck with light 
pulses from a nitrogen laser. The matrix molecules 
absorb energy from the laser, transfer it to the proteins 
causing them to desorb and ionize, and produce a 
plume of ions in the gas phase. Next, an electric fi eld 
is applied, which accelerates the ions into a fl ight 
tube where they drift until they strike a detector that 
records the time of fl ight. A quadratic transformation 
is used to compute the mass-to- charge ratio (m/z) of 
the protein from the observed fl ight time. The spec-
tral data that results from this experiment consists of 
the sequentially recorded numbers of ions arriving 
at the detector (the intensity) coupled with the cor-
responding m/z values. Peaks in the intensity plot 
represent the proteins or polypeptide fragments that 
are present in the sample.

We developed code to simulate experiments 
based on a physical model of a linear MALDI-TOF 
instrument with time-lag focusing or delayed 
extraction (Wiley and McLaren, 1955; Vestal et al., 
1995). Such an instrument is illustrated schemati-
cally in Figure 1. The fl ight path of a particle in 
this instrument passes through three regions:

1.  focusing, from the sample plate to the fi rst 
grid,

2.  acceleration, through the electric fi eld 
between the two charged grids, and

3.  drift, through the fi eld-free tube from the 
second grid to the detector. 

Our model requires three parameters to describe the 
lengths of these three regions. We let L denote the 
length of the drift tube, which is typically on 
the order of 1 or 2 meters. We let D1 be the distance 
from the sample plate to the grid and D2 the distance 
between the two grids. These are typically measured 
in millimeters; the default values used in our simu-
lation are D1 = 17 mm and D2 = 8 mm.



43

Simulating mass spectra

Cancer Informatics 2005:1

At the start of an experiment, the voltage on the 
sample plate is the same as the voltage on the fi rst 
grid. By contrast, there is a large potential difference 
(on the order of V = 20000 volts) between the two 
grids. A laser is fi red at the sample, and the matrix 
molecules absorb energy and transfer it to the 
sample molecules. The laser imparts different initial 
velocities to different particles, which we model as 
a normal distribution, v0 ∼ N(μ, σ), following Beavis 
and Chait (1991). During this phase of the experi-
ment, the sample ions drift in a fi eld-free zone dur-
ing a delay time of length δ, typically on the order 
of 600 nanoseconds. After waiting the specifi ed 
amount of time, the voltage on the sample plate is 
increased by an amount V1, typically on the order 
of 10% of the voltage potential between the charged 
grids. Different combinations of laser power, delay 
time, and voltage allow the user to focus the opti-
mum resolution of the instrument for different mass 
ranges. The electric fi eld resulting from the voltage 
change causes the positively charged ions to 
accelerate into the region between the charged grids, 
where the larger potential difference imparts a larger 
acceleration. The particles then pass into the drift 
tube, where they continue to fly until they hit 
the detector. In our model, the detector counts 
particles continuously (and perfectly), but it reports 
the counts at discrete time intervals, with an 

acquisition time resolution τ on the order of a few 
nanoseconds.

From the description so far, we see that a model 
of a linear MALDI-TOF instrument with time-lag 
focusing depends on nine parameters: L, D1, D2, V, 
V1, δ, τ, μ, and σ. In a real instrument, the three 
distance parameters are unchanging characteristics 
of the design. The user has direct control over the 
voltages, the delay time, and the acquisition time 
resolution. The parameters that determine the normal 
distribution of initial velocities are controlled 
indirectly by the choice of EAM and by the laser 
intensity. Since we do not have a good theoretical 
understanding of how these factors interact to deter-
mine the initial velocity distribution, our simulation 
skips directly to the distribution. By default, we take 
μ = 350 m/sec and σ = 50 m/sec, which are compatible 
with published experimental results (Beavis and 
Chait, 1991; Juhasz et al., 1997).

We can compute the total time for a particle to 
travel from the sample plate to the detector as a sum 
of four contributions: the delay time δ, the focus time 
tf , the acceleration time ta, and the drift time td, which 
are calculated below. We assume that all particles 
start the experiment attached to the sample plate (at 
x = 0) and that the clock starts when the laser is fi red. 
Each particle acquires an initial velocity v0 ∼ N(μ, 
σ), which is assumed to be independent of the mass. 

Figure 1: (Top) Simplified schematic of a 
MALDI-TOF instrument with time-lag focusing. 
Samples are inserted on a metal plate into a 
vacuum chamber where they are ionized by a 
laser. Electric fi elds between the sample plate 
and two charged grids accelerate the ions into 
a drift tube, where they continue until they 
strike a detector. (Bottom) Voltage potentials 
along the instrument. The sample plate and 
grid start at the same potential, but the 
potential is raised after a brief delay.
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After a delay of length δ, the particles are located at 
position x0 = δv0, still traveling at velocity v0. Using 
the default value of δ = 600 ns and an estimated 
upper bound on the velocity of 500 m/sec, the par-
ticles should be roughly 0.3 mm away from the plate 
at the end of the delay period

We let v1 denote the velocity of a particle at the 
end of the focus phase, when the particle reaches the 
fi rst grid, and we let v2 denote the velocity at the end 
of the acceleration phase, when the particle reaches 
the second grid and enters the drift tube. It is easiest 
to understand the fi nal portion of the experiment, 
during which the particle travels at constant velocity 
v2 through a tube of length L. So, we have

L v td= 2  (1.1)

During the main acceleration phase, an electric 
fi eld of voltage V accelerates a particle of mass m 
with charge z through a distance D2 by applying a 
constant force F. Because the work W done by the 
electric fi eld is equal to the change in kinetic 
energy, we have

W zV FD mv mv= = = −2
2
2

1
2

2 2
. (1.2)

Solving equation 1.1 for the velocity and substitut-
ing, we fi nd that
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During the simulation, everything in this 
equation is known except for the drift time td and 
the velocity v1 that marks the transition from the 
focusing phase of the experiment to the acceleration 
phase.

During the focusing phase, the electric fi eld 
generated by the potential difference V1 applies a 
constant force F to the particle. We can determine 
the force from the work that would be done mov-
ing a particle from the sample plate to the fi rst grid, 
which yields FD1 = zV1. During this phase, how-
ever, the particle is acclerated through a distance 
D1 - x0, resulting in change of velocity from v0 to v1. 

Using the equality between work and the change 
in kinetic energy, we fi nd
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Solving for the velocity v1, we fi nd
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Since all the quantities on the right hand side of 
this equation are assumed to be known, we can 
combine it with equation (1.4) to compute the drift 
time as
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We now turn our attention to the time spent in 
the acceleration and focusing phases of the exper-
iment. During both phases, the particle is subject 
to a constant force, and so undergoes constant 
acceleration. In these circumstances, one knows 
that the change in velocity is equal to the accel-
eration times the duration. As we have seen, the 
force during the main acceleration phase is 
F = zV/D2. Combining this with Newton’s Second 
Law, we have a = zV/mD2, so
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Since td can be computed from known values using 
equation (1.7) and v1 can be computed using equa-
tion (1.6), this allows us to compute the time spent 
during the acceleration phase.

As we have also seen, the force during the 
focusing phase is F = zV1/D1, so the acceleration 
is a = zV1/mD1. Thus,

t v v
a

mD
zV

v vf = − = −1 0 1

1
1 0( ).  (1.9)

In summary, to simulate the fl ight time of a 
particle of mass m and charge z, given the nine 
parameters describing the setup of the instrument 
during the experiment, we fi rst sample the initial 
velocity v0 from the appropriate distribution. We 
then compute the position x0 = δv0 at the end of the 
delay phase. Next, we use (1.6) to compute v1, (1.7) 
to compute the drift time, (1.8) to compute the 
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acceleration time, (1.9) to compute the focus time, 
and report the total time of fl ight as

.f a dTOF t t tδ= + + +  (1.10)

Results
We now apply the model described in the previous 
section, and its S-Plus implementation, to under-
stand some of the fundamental characteristics of 
mass spectra. In particular, we look at some phys-
ical factors that affect the mass resolution (Ingendoh 
et al., 1994; Barbacci et al., 1997, Vestal and Juhasz, 
1998), at limits on the accuracy of mass calibration 
(Christian et al., 2000; Hack and Benner, 2002), at 
the role of isotope distributions (Zhang et al., 1997), 
and at implications for the normalization and 
quantifi cation of MALDI-TOF data.

2: Mass Resolution
Our model contains two factors that affect the mass 
resolution of the instrument: the acquisition time 
resolution (or period) of the detector and the 
distribution of initial velocities. We begin by 
considering the effect on mass resolution caused by 
the discretization of time by the detector. As we will 
see, this effect is, in general, far smaller than that 
due to the spread in initial velocities. If there were 
no variability in the initial velocities, then all ions 
with the same mass and charge would strike the 
detector at the same instant. In this idealized setting, 
our ability to distinguish ions of different mass would 
be completely determined by the period of the detec-
tor. We can get a rough estimate of the magnitude 
of this effect as follows. First, assume that v0 = 0 and 
that the dominant component of the time is spent in 
the drift tube. Then (1.7) simplifi es to
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Solving for the mass-to-charge ratio M = m/z, we 
obtain

M m
z

t V V
Ld= = +2 1

2
2( ) . (2.2)

Differentiating with respect to time, we fi nd that

1
24 .d d

V VM t t
L
+Δ ≈ Δ  

(2.3)

In other words, the absolute mass error arising from 
using a discrete-time detector grows linearly with 
the time and is thus proportional to the square root 
of M. Alternatively, we can compute the relative 
mass error, which satisfi es
Δ ΔM
M

t
t

d

d

≈ 2 .  (2.4)

So, the relative mass error is inversely proportional 
to the time (or to the square root of M ).

In order to interpret equations (2.3) and (2.4) 
numerically, we measure the mass in Daltons 
(where 1 Dalton = 1.6603×10-27 kg) and the charge 
in integer multiples of 1.602×10-19 coulombs (which 
is the charge on a single electron or proton). Figure 2 
displays, for six different detection periods, the 

Figure 2: Plots of the relative (top) and absolute (bottom) mass 
resolution arising from a discrete time detector at four different 
acquisition periods from 0.5 ns to 20 ns.
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mass resolution in an ideal noise-free instrument. 
The fi gure was produced using typical values for 
the instrument parameters (L = 1 m, D1 = 17 mm, 
D2 = 8 mm, V = 20000 volts, V1 = 2000 volts). 
Shorter detection periods, of course, yield better 
mass resolution. One should also note that doubling 
the length of the drift tube is almost equivalent to 
cutting the detector period in half. At a period of 
τ = 4×10-9 seconds, which is commonly used on a 
Ciphergen SELDI instrument, the absolute mass 
error at 20,000 Daltons is less than 2.5 Daltons, 
which represents a relative error near 0.01%.

We tested these theoretical resolutions by 
collecting MALDI spectra on a sample containing 
cytochrome C at three different acquisition periods 
(Figure 3). The resolution (the reciprocal of the 

relative mass error) when the acquisition period was 
set to 4 ns is close to the theoretical value. As 
expected, the resolution was signifi cantly decreased 
when acquiring data every 10 ns. Interestingly, the 
peak appears artifi cially enhanced when sampling 
at the slower rate of 20 ns; the apparent sharpness 
is a direct result of the fact that only three data 
points are acquired over the main part of the 
peak.

The relative mass error of actual MALDI-TOF 
instruments is typically reported in the range of 
0.1%, which suggests that factors other than the 
period of the detector play a larger role. In our 
model, the most important factor affecting the mass 
resolution is the distribution of initial velocities; 
this is the only stochastic factor included in the 
model. Figure 4 shows the simulated spectra from 
ions of 3000 and 3003 Daltons, with a mean initial 
velocity of 350 meters/second as the standard 
deviation increases from 5 to 30. The twin peaks 
are easily resolved when the standard deviation is 
small, but they gradually coalesce into a single 
broad peak as the standard deviation increases.

Calibration
Calibration of a MALDI-TOF instrument is 
performed in order to accurately map the observed 
time-of-fl ight to a mass-to-charge ratio. Calibration 
involves both experimental observations and 
theoretical computations. Most MALDI-TOF 
spectra are calibrated externally by running a 
separate experiment, under the same conditions, 
using a sample that only contains a small number 
(typically 5 to 7) of proteins of known mass. 
Computationally, we simplify the equations of 
Section 1 by concentrating on the portion of the 
fl ight time spent in the drift tube. In this way, we 
see that m/z is approximated by a quadratic function 
of the observed fl ight time. The unknown coeffi -
cients of this quadratic are estimated from the 
calibration spectrum using least squares.

Even under ideal conditions, the errors in this 
approximation can become fairly large when the 
calibration equation is extrapolated beyond the 
range of masses of the calibrants. We simulated 
calibration spectra using the default parameters 
from the previous section for two different calibrant 
mixes. The fi rst mix contained proteins with masses 

Figure 3: Effect of acquistion period on cytochrome C [M+H]+ with 
data digitized at (A) 4 ns, (B) 10 ns, and (C) 20 ns. The resolution is 
close to the theoretical value for 4 ns sampling, decrease signifi cantly 
at 10 ns sampling, and is artifi cially enhanced at 20 ns sampling.
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of 4, 7, 10, 12, and 15 kDa; the second mix 
contained calibrants with masses of 2, 7, 12, 20, 
and 35 kDa. We then simulated spectra containing 
masses from 1 to 50 kDa at 1000 Dalton intervals 
and determined the observed “calibrated” masses 
from each of the two mixes. In both cases, the mass 
of the 1000 Dalton protein was miscalibrated by 
more than 2%. Calibration errors within the region 
spanned by the calibrants was typically near 0.1%, 
but the error started to grow considerably outside 
the calibrant range (Figure 4). Calibration is more 
difficult in the presence of a spread of initial 

velocities, because the location of the peak adds 
an additional element of error.

To test these results, we ran a MALDI experiment 
using calibrants at masses close to those used in the 
two theoretical mixtures (2466 Da, 3660 Da, 7527 
Da, 13683 Da, 15054 Da, and 29023 Da). We 
included other proteins whose masses extended 
beyond the calibrant range. Specifically, an 
equimolar protein mixture containing ribonuclease 
A, serum albumin, carbonic anhydrase II, hemoglo-
bin, ovalbumin, and cytochrome c (all purchased 
from Sigma, St. Louis, MO) was combined at a 
20 : 1 ratio with the 4700 calibration peptide mixture 
(Applied Biosystems, Framingham, MA). Aliquots 
of this solution were mixed 1:1 with sinapinic acid 
(20 mg/ml) in 50% acetonitrile and 50% aqueous 
0.1% TFA. Positive ion MALDI mass spectra con-
sisting of 250 laser shots were acquired in linear 
mode on an Applied Biosystems Voyager DE-STR. 
Both myoglobin (m/z 16952) and serum albumin 
(m/z 66431) were used as standards to optimize the 
resolution for small proteins and large proteins, 
respectively. Typical instrument settings for the 
myoglobin method were 25 kV accelerating voltage, 
93% grid voltage, and 700 ns delay; for serum albu-
min, 25 kV, 91%, and 900 ns were used. Resolution 
values were calculated by dividing the centroid m/z 
value calculated for the peak by the full-width at 

Figure 4. Simulated peaks at 3000 and 3003 Daltons with different 
values for the standard deviation of the initial velocity. As the standard 
deviation increases, the resolution decays rapidly

Figure 4: Plot of the relative calibration error 
(as a percentage of the mass) for two different 
mixtures of calibrants. Vertical lines in each 
plot indicate the masses of the fi ve calibrants. 
Calibration error increases rapidly outside the 
mass range spanned by the calibrants. 
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half maximum (FWHM), using the Data Explorer 
software which came with the instrument. Four point 
calibrations were performed using Data Explorer as 
well, using different peaks. The results, shown in 
Table 1, indicate that TOF instruments have mass 
dependent focusing (i.e., optimizing the resolution 
for a specifi c m/z value reduces the resolving power 
for other m/z values). The values in the table are 
typical for our MALDI instrument; values for 
SELDI are usually lower, by a factor of 2–5. Higher 
resolution indicates higher data quality, because 
peak capacity is increased and mass measurement 
accuracy improves.

Isotope distributions
We have seen that sharply defi ned peaks erode 
quickly into broad hills as the standard deviation 
of the initial velocity distribution increases. Even 
with fairly small values for the standard deviation, 
it can be diffi cult to resolve peaks whose mass 
differs by a single Dalton. In practice, however, 
even a pure solution of a single protein includes 
molecules whose mass differs by one Dalton. The 
reason, of course, is the existence of naturally 
occurring stable isotopes of common elements 
[Zhang et al., 1997]. Only 98.89% of naturally 
occurring carbon atoms are in the form of 12C; most 
of the remaining 1.11% consists of atoms of 13C. 
In the same way, 14N accounts for 99.63% of natu-
rally occurring nitrogen, with the remaining atoms 
in the form of 15N. Oxygen exists in three stable 
isotopes, with 16O accounting for 99.76% of atoms, 

18O for 0.20%, and 17O for 0.04%. These three ele-
ments account for most of the isotope differences 
between protein molecules (with the possible addi-
tion of a few sulfur molecules).

Our simulation includes the isotope distribu-
tions of individual proteins. By assuming that most 
of the mass of a protein is accounted for by the 
atoms of carbon, nitrogen, and oxygen (with their 
numbers in proportions of about 6 : 2.5 : 1), we 
can get a crude approximation of the number of 
atoms that might occur as heavier isotopes by 
dividing the nominal mass by 15. We then model 
the process of incorporating heavier isotopes using 
a binomial distribution with a success rate of 
0.0111. We make another simplifi cation by assum-
ing that a heavier isotope always adds one to the 
mass (which downweights the less abundant 
oxygen atoms).

Figure 5 illustrates how accounting for the 
isotope distribution of a peak at 2000 Daltons 
lowers and broadens the peak shape. This effect 
becomes more pronounced at higher masses 
because there are more chances for a larger 
molecule to incorporate different isotopes. We can 
estimate the magnitude of the effect using the same 
simplifi cations we have incorporated in our model. 
The distribution of the number of heavier isotopes 
in a protein of mass m is approximated by a 
binomial distribution, Binom(m/15, 0.0111), and 
so the expected number of heavier isotopes is 
0.0111m/15 = 0.00074m. There is still notable skew 
in the distribution in the mid-mass range. When 

Table 1: Resolution as a function of mass, optimizing for two different regions.

Optimized for Myoglobin Optimized for albumin
Ion M/Z Singe Spectrum Average of 4 Single Spectrum Average of 4

ACTH 18-39 2466.72 300 289 146 156

ACTH 7-38 3660.19 351 248 134 168

RNase A 2+ 6842.11 634 680 180 180

HBA 2+ 7257.59 675 573 192 216

HBB 2+ 7978.70 711 606 143 152

RNase A 13683.23 972 826 239 274

HBA 15054.18 864 748 263 267

HBB 15956.39 626 386 189 207

CAH2 29023.59 222 207 277 331

BSA 66431.00 60 55 69 63



49

Simulating mass spectra

Cancer Informatics 2005:1

m  is  large, however,  the distribution is 
approximately normal with standard deviation 
√(m/15)(0.0111) (0.9889) = 0.027√m. To illustrate 
this result, when m = 20000 Daltons, we expect to 
see an average of about 15 heavier isotopes per 
molecule, with 99% of molecules containing 
between 3 and 27 heavier isotopes. This effect 
spreads the peak over a range of at least 24 Daltons 
or about 0.012% of the nominal mass. The offset 
of the center of the peak can also affect the 
calibration and the interpretation of the results.

Quantifi cation
As we pointed out in the introduction, the primary 
goal of the low-level analysis of a single mass 
spectrum is to locate and quantify the peaks that 
correspond to individual proteins. We will not 
discuss peak fi nding in this paper since we have 
addressed this issue elsewhere (Coombes et al., 
2004), but we will consider the problem of 
quantifying peaks after they have been found. Two 
natural candidates for the size of a peak are its height 
and its area. We simulated a spectrum containing 
equal numbers of molecules of six different proteins 
over the mass range from 2000 to 25000 Daltons 
(Figure 6). In this idealized noise-free setting, the 
areas of the peaks are, as expected, equal. The 
heights, however, decrease as the mass increases, 
which is consistent with what we have already seen 

about the resolution. Interestingly, the height 
appears to be inversely proportional to the mass.

The fact that peak areas accurately refl ect the 
number of molecules of a given protein species 
that hit the detector in an ideal instrument suggests 
that the common normalization strategy of dividing 
by the total ion current (the area under the curve) 
is a reasonable way to account for differences in 
the total amount of sample protein that was applied 
to the sample plate.

Discussion
In this article, we have described some preliminary 
results using a simulation of mass spectra based 
on a physical model of a linear MALDI-TOF 
instrument with time-lag focusing. We have 
shown that our simulation recovers some of the 
important characteristics of real data. We expect 
the simulation to be a useful tool in developing 
improved methods for processing and analyzing 
mass spectrometry data, since it will allow us to 
generate complex spectra where the true loca-
tions and sizes of the peaks are known. The 
simulation code in S-Plus is available from our 
web site (http://bioinformatics.mdanderson.org/
cromwell.html).

Some recent analyses of SELDI spectra have 
used every measured time point (or every m/z value) 
as a potential feature used to build a classifi er to 
distinguish cancer samples from normal samples 
(Petricoin et al., 2002; Zhu et al, 2003). We believe 
that this approach is misguided. As we have seen, 
the spread in initial velocities and the isotope 
distribution can cause the measurement of a single 
protein to extend over many time points. From a 
biophysical perspective, it seems unreasonable to 
treat things that cannot possibly be distinguished 
within the resolution of the instrument as independent 
entities. From a statistical perspective, complica-
tions arise when one treats highly correlated 
measurements as though they were independent. 
These statistical diffi culties are compounded by the 
tremendous amount of multiple testing that accom-
panies the selection of a few features out of several 
thousand m/z values.

We can perform a simple calculation to get an 
idea of how many peaks can be resolved in a 
spectrum. The “peak capacity” of a mass spectrum 

Figure 5: The effect of the isotope distribution on the size and shape 
o peaks. Peaks on a low resolution instrument are expected to be 
lower and broader after accounting for isotopes.
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is defi ned as the maximum number N of peaks 
could be distinguished as m/z ranges between a 
and b with a relative mass error r. Given perfect 
spacing of the peaks, the fi rst peak would be found 
at a, the second at a + ra = (1 + r)a, the third at 
(1 + r)2a and the last at b = (1 + r)N+1a. Thus, we 
can compute the peak capacity explicitly as

N b a
r

= − +
+

1
1

log
log

( / )
( )

.  

As an example, when a = 2000, b = 20000, and 
r = 0.1%, then the peak capacity is N = 2303. If 
the relative mass error degrades to 0.2%, then the 
peak capacity diminishes to only 1152, and with 
a relative mass error of 0.5%, the peak capacity 
is only 461. It is interesting to note that, in our 
experience with SELDI data in this mass range, 
we can typically identify between 100 and 200 
peaks.

Although we have talked about quantifi cation 
of peaks in this article, we should make it clear 
exactly what is being quantifi ed. Our simulation 
models those molecules that are desorbed from the 
surface, ionized, and detected. Being able to 
accurately quantify these molecules is only part of 

the problem. In an actual experiment, we would 
like to be able to quantify the number of molecules 
of each mass that were deposited on the surface. 
Unfortunately, the selection process that determines 
which molecules make it off the surface involves 
extremely complicated chemical interactions 
between the analytes and the matrix and among 
the analytes. We can (potentially) succeed in 
making mass spectrometry quantifi cations more 
precise, but are likely to be stymied in efforts to 
make them more accurate.

There are a number of potential enhancements 
to the simulation model described here. First, the 
current model ignores the physics of the detector, 
which is another source of stochastic noise in the 
system. Second, one could try to model a more 
elaborate instrument. The obvious next step 
would be to include a refl ectron instead of a 
simple linear fl ight path. Third, we could extend 
the modeling of the isotope distribution to con-
sider other common molecule alterations, such as 
the inclusion of salt adducts or the loss of water 
molecules. Fourth, one might want to explicitly 
model some of the interactions of the particles in 
the plume before the focusing electric fi eld is 
imposed.

Figure 6: (Top) A simulated spectrum containing equal numbers of molecules of six different proteins, with masses equal to 2, 3, 6, 10, 15, 
and 25 kDa. (Bottom) The reciprocal of the height of the peak is approximately a linear function of the mass.
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Our eventual goal is, as mentioned above, to 
simulate complex mixtures of proteins in order to 
evaluate the behavior of different methods to process 
and analyze mass spectra. These simulations are 
likely to require additional stochastic components 
beyond the distribution of initial velocities and of 
isotopes. For example, it is reasonable to believe 
that the voltage is essentially constant for all mol-
ecules in a single experiment. When simulating 
experiments with different samples across labora-
tories or across time, however, variability in the 
nominal voltages (or in the specifi ed delay time) 
is an additional source of noise. One will also have 
to decide how to simulate the background electronic 
or chemical noise and realistic baseline curves. 
Finally, there is the challenge of deciding what 
kinds of truth (number, mass, intensity, and 
variability of peaks) to simulate for the input to the 
present simulation engine. We believe that these 
challenges will eventually be met, and that the 
simulation tool described in the present article is 
a useful step in the right direction.
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