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Purpose: To evaluate the utility of inversion recovery with on-reso-
nant water suppression (IRON) in combination with injec-
tion of the long-circulating monocrystalline iron oxide
nanoparticle (MION)-47 for contrast material–enhanced
magnetic resonance (MR) angiography.

Materials and
Methods:

Experiments were approved by the institutional animal
care committee. Eleven rabbits were imaged at baseline
before injection of a contrast agent and then serially 5–30
minutes, 2 hours, 1 day, and 3 days after a single intrave-
nous bolus injection of 80 �mol of MION-47 per kilogram
of body weight (n � 6) or 250 �mol/kg MION-47 (n � 5).
Conventional T1-weighted MR angiography and IRON MR
angiography were performed on a clinical 3.0-T imager.
Signal-to-noise and contrast-to-noise ratios were mea-
sured in the aorta of rabbits in vivo. Venous blood was
obtained from the rabbits before and after MION-47 injec-
tion for use in phantom studies.

Results: In vitro blood that contained MION-47 appeared signal
attenuated on T1-weighted angiograms, while characteris-
tic signal-enhanced dipolar fields were observed on IRON
angiograms. In vivo, the vessel lumen was signal attenu-
ated on T1-weighted MR angiograms after MION-47 injec-
tion, while IRON supported high intravascular contrast by
simultaneously providing positive signal within the vessels
and suppressing background tissue (mean contrast-to-
noise ratio, 61.9 � 12.4 [standard deviation] after injec-
tion vs 1.1 � 0.4 at baseline, P � .001). Contrast-to-noise
ratio was higher on IRON MR angiograms than on conven-
tional T1-weighted MR angiograms (9.0 � 2.5, P � .001 vs
IRON MR angiography) and persisted up to 24 hours after
MION-47 injection (76.2 � 15.9, P � .001 vs baseline).

Conclusion: IRON MR angiography in conjunction with superparamag-
netic nanoparticle administration provides high intravas-
cular contrast over a long time and without the need for
image subtraction.
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Contrast material–enhanced mag-
netic resonance (MR) angiography
is an imaging technique with a mul-

titude of clinical applications (1–4). Cur-
rently, contrast-enhanced MR angio-
graphic techniques are most commonly
based on T1 shortening of blood caused
by MR angiographic contrast agents
(5,6). However, the short intravascular
half-life of common low-molecular-weight
gadolinium chelates limits the imaging
time window and, therefore, the spatial
resolution of contrast-enhanced MR an-
giography (5–7). For this reason, newer
contrast agents, including gadolinium-
based macromolecular contrast media
and superparamagnetic nanoparticles,
have been developed (7–13). These intra-
vascular contrast agents remain in the
vascular space for a prolonged time pe-
riod, thereby permitting acquisition of
high-spatial-resolution MR angiograms
(7–13). The majority of MR angiographic
approaches use intravascular agents to
exploit the T1 shortening characteristics
of contrast agents to achieve intravascu-
lar enhancement. However, undesirable
signal from the surrounding tissue be-
cause of T1 recovery remains with these
approaches; therefore, methods that sup-
port further improvement in blood-to-
tissue contrast may represent a useful al-
ternative.

Off-resonance imaging techniques
were reported to create positive contrast
in areas of superparamagnetic contrast
materials (14–17). Inversion recovery

with on-resonant water suppression
(IRON) is a new off-resonance technique
used to generate positive signal from su-
perparamagnetic nanoparticles (18). In
contrast to other off-resonance imaging
techniques that use the frequency-selec-
tive excitation of off-resonance protons
(17), the concept of IRON comprises the
use of a spectrally selective saturation
prepulse that suppresses the signal origi-
nating from on-resonant protons (Appen-
dix E1, http://radiology.rsnajnls.org/cgi
/content/full/2491071706/DC1). This
prepulse is then followed by a conven-
tional imaging sequence with on-
resonant broadband radiofrequency
excitation pulses. The saturation pulse
does not affect off-resonant protons in
areas of superparamagnetic nanopar-
ticles; thus, signal enhancement adja-
cent to these particles can be gener-
ated while simultaneously the on-
resonant background appears signal
attenuated. The purpose of our study
was to evaluate the utility of IRON in
combination with injection of the long-
circulating monocrystalline iron oxide
nanoparticle (MION)-47 for contrast-
enhanced MR angiography.

Materials and Methods

One author (M. Stuber) is compensated
as a consultant for Philips Medical Sys-
tems (Best, the Netherlands) (ie, the
manufacturer of the equipment used in
our study), one author (M. Schär) is an
employee of Philips Medical Systems,
and one author (S.S.) is an employee of
Siemens Medical Solutions. The authors

who are not consultants for or employ-
ees of Philips Medical Systems or Sie-
mens Medical Solutions had full control
of the inclusion of any data or informa-
tion that might have presented a conflict
of interest for these authors.

Animals
The studies were approved by the animal
care and use committee of Johns Hopkins
University. Experiments were conducted
in 11 male rabbits (2.5–3.2 kg) that were
sedated with acepromazine (1 mg per ki-
logram of body weight) and ketamine (40
mg/kg) administered intramuscularly.
General anesthesia was maintained with
thiopental administered intravenously.
For phantom studies, venous blood was
obtained from the ear vein before and 30
minutes and 1 day after MION-47 injec-
tion.

Phantoms
The 1% agar gel (Sigma-Aldrich, St Louis,
Mo) was prepared in 150-mm-diameter
tissue culture dishes (BD Biosciences,
San Jose, Calif). Heparinized venous rab-
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Advances in Knowledge

� Inversion recovery with on-reso-
nant water suppression (IRON)
MR angiography performed in
conjunction with administration
of superparamagnetic nanopar-
ticles provides a new mechanism
with which to generate contrast
for MR angiography on a clinical
3.0-T imager.

� IRON MR angiography provides
strong intravascular contrast
within the vessel lumen over
a long time and simultaneously
suppresses background signal,
without the need for image
subtraction.

Implications for Patient Care

� Because of the high contrast-to-
noise ratio and the long half-life of
the contrast agent in the blood
pool, IRON MR angiography sup-
ports excellent vessel conspicuity
and high-spatial-resolution vascu-
lar imaging.

� IRON MR angiography may be
useful in patient care for identifi-
cation of luminal narrowing in
small-diameter vessels and for
evaluation of atherosclerosis
progression.
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bit blood was transferred in 1.0-mL Ep-
pendorf tubes that were embedded in the
agar gel. A probe containing mineral oil
was included to test the efficacy of fat
suppression.

Contrast Agent
One of the authors (R.W.) synthesized
MION-47 at the Center for Molecular Im-
aging Research (Massachusetts General
Hospital, Harvard Medical School).
MION-47 is a stable nanoparticle that
shortens the longitudinal (T1) and trans-
verse (T2) relaxation times (19–21).
MION-47 consists of a monocrystalline
magnetite-like single-crystal core. The av-
erage size of the nanoparticles used in our
study was 27.5 nm � 6.8 (standard devi-
ation), the R1 and R2 relaxivity rates
were 25.5 mM/sec and 53.7 mM/sec re-
spectively, and the plasma half-life was
11.4 hours � 0.6 in mice (20). In our
study, a single bolus injection of 80
�mol/kg MION-47 was administrated in
six rabbits, whereas a single bolus injec-
tion of 250 �mol/kg MION-47 was admin-
istered in five rabbits.

MR Imaging
MR imaging was performed with a clinical
3.0-T whole-body MR unit (Achieva; Phil-
ips Medical Systems). Phantoms were im-
aged with a six-element cardiac phased-
array receiver coil used in humans. Imag-
ing of rabbits was performed serially
before single bolus injection of contrast
material and 5–30 minutes, 2 hours, 1
day, and 3 days after contrast agent injec-
tion (Fig 1) with use of a four-element
carotid receiver coil used in humans
(Pathway MRI, Seattle, Wash). The same
imaging parameters were used for in vitro
and in vivo imaging. For all imaging proce-
dures, higher-order shimming was used
(22).

Quantitative T1 measurements.—A
Look-Locker sequence (23) was applied
in vivo to determine the T1 values of ar-
terial blood. The imaging parameters for
the Look-Locker sequence were as fol-
lows: repetition time msec/echo time
msec, 3.8/2.3; 6° flip angle; 260 �
156-mm field of view; bandwidth, 189 Hz/
pixel; and 304 � 174 image matrix result-
ing in a 0.9 � 0.9 � 9-mm acquired voxel
size. The examination yielded a time se-

ries of 50 images, on which signal inten-
sities followed the T1-mediated regrowth
of longitudinal magnetization after a 180°
inversion pulse. In between these inver-
sion pulses, a recovery period (Td) of
2.5–10.0 seconds (more than five times
the expected T1 value of blood) was used.

With this approach, the time from
magnetization inversion until inversion
recovery was measured to the time point
of signal nulling (TInv), and T1 values were
numerically calculated with Excel soft-
ware (Microsoft, Redmond, Wash) and
the following equation (24): TInv �
T1 � ln[2/(1 � e�Td/T1)].

Conventional T1-weighted MR imag-
ing.—For T1-weighted MR imaging,
three-dimensional gradient-echo images
were obtained by using the following pa-
rameters: 25/2.7, 20° flip angle, 200 �
100-mm field of view, 217 Hz/pixel band-
width, and 400 � 200 image matrix. For
in vivo imaging, a 5.0-cm-thick three-
dimensional volume was imaged with 50
z-encoding steps (0.5 � 0.5 � 1-mm ac-
quired voxel size). Imaging time was 3
minutes.

IRON imaging.—For off-resonance
imaging, an on-resonant frequency-selec-
tive IRON suppression prepulse with a
100-Hz bandwidth and a 100° flip angle
was used to suppress the signal originating
from on-resonant protons (18) (Appendix
E1, http://radiology.rsnajnls.org/cgi/
content/full/2491071706/DC1). Another
frequency-selective prepulse preceding the
IRON prepulse with a �480-Hz frequency
offset, a 500-Hz bandwidth, and a 105° flip
angle was used for fat saturation. Typical
parameters for the three-dimensional seg-
mented k-space gradient-echo imaging se-
quence that followed the IRON prepulse
were as follows: 3.9/1.5, 19 broadband on-
resonant radiofrequency excitations per k-

space segment with a constant 15° flip an-
gle, 74-msec acquisition window, 140 �
112-mm field of view, partial echo, 642 Hz/
pixel bandwidth, and 288 � 220 image ma-
trix. For in vivo imaging, a 5.0-cm-thick
three-dimensional volume was examined
with 25 z-encoding steps (0.49 � 0.51 �
2-mm acquired voxel size). Imaging time
was 3 minutes. T1-weighted and IRON MR
angiograms were obtained at baseline and
5–30 minutes, 2 hours, 1 day, and 3 days
after contrast agent injection.

Source of positive signal on IRON
images.—In six rabbits that received
80 �mol/kg MION-47, two series of
pulses were applied 5–30 minutes af-
ter injection: One series had variable
bandwidth and incremental durations
(3, 5, 10, 15, 20, 30, 40, and 50 msec),
whereas the other series had increas-
ing time delays (5.5, 6.5, 9.0, 11.5,
14.0, 19.0, 24.0, and 29.0 msec) and a
constant duration of 3 msec. The signal-
to-noise ratio and contrast-to-noise ratio
(CNR) were subsequently quantified on
all of the resultant images (Appendix E1,
http://radiology.rsnajnls.org/cgi/content
/full/2491071706/DC1).

Image analysis.—Quantitative
analysis of in vivo MR angiograms was
performed with the SoapBubble Tool
(release 5.0 for Pride V5; Philips Med-
ical Systems) (25,26). An author
(G.K., 6 years of experience in cardio-
vascular imaging) quantified the sig-
nal-to-noise ratio and CNR by using
original nonreformatted magnitude
images, without use of sensitivity en-
coding or constant level appearance,
as described previously (25) (Appen-
dix E1, http://radiology.rsnajnls.org/
cgi/content/full/2491071706/DC1). Re-
gions of interest (ROIs) were placed
manually in the abdominal aorta and in

Figure 1

Figure 1: Flow diagram of the animal studies.
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the inferior caval vein at the level of the
left renal artery to measure the mean
blood signal intensity (SIb). Signal inten-
sity of adjacent muscle (SIm) was mea-
sured by choosing an ROI similar in size
to ROIs in the abdominal aorta and in
the inferior caval vein adjacent to the
aorta. ROIs were also placed in the air
outside the rabbit. The standard devia-
tion of the signal in this ROI was used as
a measure of background noise (�). The
signal-to-noise ratio (SNR) was calcu-
lated with the following equation:
SNR � SIb/�, and CNR was calculated
with the following equation: CNR � (SIb �
SIm)/�.

Care was taken to standardize ROI
size and placement for better compar-
ison between image sets. The mean
size of ROIs placed in vessels was 0.30
cm2 � 0.04, the mean size of those
placed in adjacent muscle was 0.33
cm2 � 0.04, and the mean size of

those placed in the background was
7.3 cm2 � 0.9.

Statistical Analysis
Data are presented as means � stan-
dard deviations. On the basis of the ex-
pected increase in CNR after adminis-
tration of MION-47, we estimated that
five or six animals in each group would
be sufficient to yield a statistical power
of more than 90%, with 	 of .05 consid-
ered to indicate significant differences
in intravascular contrast enhancement.
To correct for serial correlation among
measurements, differences in T1 values
and differences in CNRs between differ-
ent time points and between IRON and
T1-weighted MR angiography were com-
pared with a cross-sectional time series
regression model by using a generalized
least-squares estimator with a random-
effects model for between-regression
estimations. Furthermore, to correct

for the lack of independence in our data
because of repeated observations in
rabbits, a clustered regression ap-
proach was used to compare differences
in signal-to-noise ratio and CNR be-
tween IRON images acquired with the
same time delay and different durations
of the IRON prepulse. Differences in
CNR between the aorta and the caval
vein were evaluated with a paired t test.
P � .05 was considered to indicate a
significant difference. Calculations were
performed with statistical software
(Stata, version 9.2; Stata, College Sta-
tion, Tex).

Results

In Vitro Blood Studies
Blood collected 30 minutes after injec-
tion of 80 �mol/kg MION-47 appeared
signal attenuated on conventional T1-
weighted images, whereas blood col-
lected 1 day after injection of 80
�mol/kg MION-47 had increased signal
(Fig 2, B). Blood appeared signal atten-
uated up to 24 hours after injection of
250 �mol/kg MION-47 (Fig 2, E). With
use of IRON MR angiography, agar gel,
blood collected before MION-47 injec-
tion, and fat were signal attenuated,
whereas blood collected after MION-47
injection showed highly signal-enhanced
characteristic dipolar fields around the
test tubes (Figs 2, C, F).

In Vivo T1-weighted MR Angiography
Both the thoracic aorta and the abdom-
inal aorta were signal-attenuated after
MION-47 injection on conventional T1-
weighted MR angiograms when com-
pared with baseline images (Fig 3). The
signal in the vessel lumen returned 1
day after injection and approached that
seen at baseline 3 days after injection
(Fig 3). Quantitative T1 measurements
revealed concentration-dependent T1
shortening of blood in vivo, which was
related to the dose of MION-47 injected
and inversely related to the interval be-
tween injection and imaging (Table).
For both of the MION-47 doses (80
�mol/kg and 250 �mol/kg), there was
significant T1 shortening directly after
contrast agent injection and 1 day after

Figure 2

Figure 2: Phantoms that included blood collected from rabbits before and after injection of, A–C, 80 �mol/kg
MION-47 and, D–F, 250�mol/kg MION-47 were imaged with T1-weighted (B and E ) and IRON (C and F ) MR
angiography. On coronal T1-weighted angiograms (25.0/2.7, 20° flip angle), blood samples with high concentra-
tions of MION-47 were hypointense (dotted arrows in B and E ) compared with those obtained at baseline (solid
arrows in B and E ), while blood collected 1 day after injection of 80�mol/kg MION-47 with a relatively low concen-
tration had increased signal (dashed arrow in B ). On IRON MR angiograms (3.9/1.5, 15° flip angle), background
and fat (dotted arrows in C and F ) were strongly suppressed, while blood containing MION-47 (dashed arrows in
C and F ) showed signal-enhanced characteristic dipolar structures.
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contrast agent injection when compared
with T1 at baseline (P � .001). In addi-
tion, there was a more intense decrease
in T1 with the high dose than with the
low dose (P � .002). This was most
notable 1 day after injection.

In Vivo IRON MR Angiography
With use of IRON MR angiography,
the lumen of the thoracic aorta and
that of the abdominal aorta was
strongly enhanced after MION-47 in-
jection. Simultaneously, background
tissues, including fat and muscle, ap-
peared strongly signal attenuated, and
image subtraction was not needed. This
finding supported high intravascular con-
trast, which persisted up to 24 hours after
contrast material injection and ap-
proached the baseline level 3 days after
injection (Fig 3).

Quantitative Analysis of T1-weighted MR
Angiography and IRON MR Angiography
For injection of 80 �mol/kg MION-47,
CNR decreased on T1-weighted MR an-
giograms 5–30 minutes and 2 hours after
injection (P � .001 vs baseline for both),
CNR increased 1 day after injection (P �
.001 vs baseline), and CNR returned to
the baseline value 3 days after injection

(Fig 4, A). With use of IRON, CNR in-
creased markedly after MION-47 injec-
tion (P � .001 vs baseline) and was sim-
ilarly high both 2 hours and 1 day after
injection (P � .001 vs baseline for both).
After administration of 250 �mol/kg
MION-47 (n � 5), CNR was negative on
T1-weighted MR angiograms obtained
5–30 minutes after injection and 2 hours
after injection (P � .001 vs baseline for
both) and returned to the baseline value 3
days after injection. With use of IRON, a
striking increase in CNR was noticed

5–30 minutes after injection of 250
�mol/kg MION-47 (61.9 � 12.4 after in-
jection vs 1.1 � 0.4 at baseline, P �
.001). CNR remained high 2 hours and 1
day after injection (P � .001 vs baseline
for both) (Fig 4, B). There was no signif-
icant difference in the pattern of CNR
changes between the low and high con-
trast agent doses on IRON images.
Furthermore, the CNR on IRON MR
angiograms was markedly higher than
that on conventional T1-weighted MR
angiograms (9.0 � 2.5, P � .001 vs

Figure 3

Figure 3: On sagittal conventional T1-weighted MR angiograms (25/2.7, 20° flip angle), the aorta of the rabbits was signal attenuated 5–30 minutes after MION-47
injection (B and F ) when compared with that at baseline (A and E ). Intravascular signal returned 1 day after injection (C and G ) and approached that at baseline 3 days
after injection (D and H ). On sagittal IRON MR angiograms (3.9/1.5, 15° flip angle), fat, muscle, and blood were homogeneously suppressed at baseline (I and M ). After
injection, the aorta was strongly signal enhanced, and the surrounding tissue was signal attenuated, supporting high intravascular contrast (J and N ), which persisted up
to 24 hours after injection (K and O ) and approached the baseline level 3 days after injection (L and P ).

T1 Values of Arterial Blood in the Abdominal Aorta of Rabbits at Baseline and after
MION-47 Injection

Time Point

T1 Value in Rabbits That Received
an 80 �mol/kg Dose of MION-47
(msec)

T1 Value in Rabbits That Received
a 250 �mol/kg Dose of MION-47
(msec)

Baseline 1643 � 69 1657 � 61
Within 2 hours after injection 109 � 11* 37 � 6*†

1 day after injection 375 � 125‡ 125 � 32†‡

3 days after injection 1685 � 84 1633 � 79

Note.—Data are means � standard deviations.

* P � .001 within 2 hours after injection of MION-47 versus baseline.
† P � .002 within 2 hours and 1 day after injection of 80 �mol/kg versus 250 �mol/kg MION-47.
‡ P � .001 1 day after injection of MION-47 versus baseline.
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IRON MR angiography) and persisted
up to 24 hours after MION-47 injec-
tion (76.2 � 15.9, P � .001 vs base-

line). In addition, CNR in the caval
vein on IRON MR angiograms was
similar to that in the aorta after

MION-47 injection (62.7 � 13.9 vs
62.1 � 11.4, respectively; P � .05).

Quantification of the Sources of Positive
Signal on IRON MR Angiograms
By gradually increasing the duration of
the IRON prepulse (Appendix E1, http:
//radiology.rsnajnls.org/cgi/content/full
/2491071706/DC1), intravascular signal
increased by a significantly (P � .001)
higher degree than that obtained with an
incremental delay between the IRON pre-
pulse and the imaging part of the se-
quence (Figs 5, 6). For bandwidth of the
IRON prepulse of 100 Hz (50-msec dura-
tion and 29-msec delay), CNR was 83.1.
For the corresponding bandwidth of the
IRON prepulse of 1667 Hz (3-msec dura-
tion with broadband suppression of on-
and off-resonant protons and 29-msec de-
lay), CNR was 34.6. Thus, 42% of intra-
vascular contrast was attributable to T1
shortening (ie, CNRT1rec/CNRtot � 34.6/
83.1), where CNRT1rec is CNR for T1 re-
covery and CNRtot is total CNR. The re-
maining 58% (ie, [CNRtot � CNRT1rec]/

Figure 4

Figure 4: After injection of, A, 80 �mol/kg MION-47 (n � 6), and, B, 250 �mol/kg MION-47 (n � 5),
CNR decreased on T1 weighted MR angiograms 5–30 minutes and 2 hours († indicates P � .001 vs baseline)
after injection and returned to baseline 3 days (P � .05) after injection, while CNR significantly increased 1
day after injection of 80 �mol/kg (‡indicates P � .001 vs baseline). On IRON MR angiograms, CNR markedly
increased after injection, remained high 2 hours and after 1 day after injection (� indicates P � .001 vs base-
line for all), and returned to baseline 3 days after injection (P � .05). The CNR on IRON MR angiograms was
markedly higher than that on conventional T1-weighted MR angiograms (P � .001).

Figure 5

Figure 5: By increasing the duration of the IRON prepulse (
), intravascular signal increased to a higher degree (A–G) when compared with that obtained with an in-
cremental time delay between the IRON prepulse and the imaging part of the sequence (H–M). ms � milliseconds.
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CNRtot � 48.5/83.1) was attributed to off
resonance.

Discussion

IRON MR angiography performed in
conjunction with administration of su-
perparamagnetic nanoparticles offers
a new source of contrast enhancement
for in vivo vascular imaging by provid-
ing a high signal from the blood pool
and by simultaneously suppressing sig-
nal from background tissue. This leads
to high contrast between the blood
pool and the surrounding tissue,
thereby supporting vessel conspicuity
without the need for image subtrac-
tion. Because of these characteristics
and in concert with the long half-life of
the contrast agent in the blood pool,
IRON MR angiography seems well
suited for three-dimensional imaging,
which inherently necessitates pro-
longed examination times. IRON MR
angiography may facilitate serial eval-
uations (ie, before and after interven-
tions), thereby obviating the need for
repeated contrast agent injections,
and it may provide a useful adjunct or
alternative to more conventional T1-
weighted MR angiography methods
for use in the identification and char-
acterization of vascular disease. Be-
cause MION-47 is analogous to feru-
moxtran, which has completed phase
III clinical trials, the translation of
these findings to the clinical realm ap-
pears promising (27,28).

Furthermore, in light of earlier work
by Ruehm et al (29), this technique may
have the potential to be used in a more
comprehensive assessment of vascular
disease because iron uptake by macro-
phages in the atherosclerotic vessel wall
may lead to off-resonance signal enhance-
ment once the agent has cleared the
blood pool. Because the phagocytosis of
superparamagnetic particles occurs grad-
ually and reaches its maximum level sev-
eral days after administration (29,30), in-
traluminal off-resonance signal is ex-
pected to be low at these later time
points, thereby allowing for better defini-
tion of the vessel wall and for detection of
positive signal in areas of macrophage-
dense atherosclerotic plaque.

Our results show that the intravascu-
lar contrast provided by IRON MR an-
giography is significantly higher than that
provided by conventional T1-weighted
MR angiography after administration of a
single bolus of MION-47. The spatial res-
olution, total imaging volume, and dura-
tion of IRON MR angiography and T1-
weighted MR angiography were similar.
Furthermore, the dual origin of positive
signal on IRON images was character-
ized, and the relative contribution of each
source of signal was quantified. Thus,

with use of IRON MR angiography, ap-
proximately 58% of the contrast can be
attributed to off resonance, and the re-
maining 42% can be attributed to T1 re-
covery. In fact, the combination of signal
originating from off resonance and signal
originating from T1 recovery results in a
high CNR, which is sustainable for a long
time.

Since signal enhancement was present
in blood samples containing MION-47 in
static phantoms and since similarly high
CNR was measured in the caval vein of

Figure 6

Figure 6: Increases in (a) signal-to-noise ratio and (b) CNR were significantly higher when the duration of
the IRON prepulse was increased in comparison with increases observed with an incremental time delay
(� indicates P � .001 with clustered regression analysis).

EXPERIMENTAL STUDIES: Off-Resonance Angiography Korosoglou et al

Radiology: Volume 249: Number 2—November 2008 ▪ radiology.rsnajnls.org 507



rabbits after injection, inflow was not
considered a major contributor to overall
contrast. This may represent an advan-
tage of IRON MR angiography techniques
over flow-dependent MR angiography
techniques, such as time-of-flight imag-
ing, where diminished blood flow may re-
sult in low contrast formation within the
vessels of interest (26,31).

Recently, an alternative MR angiog-
raphy technique, off-resonance contrast
angiography (ORCA), that is dependent
on magnetic susceptibility effects after
gadolinium chelate administration was
introduced and used to generate in vivo
images in human subjects (17). ORCA
combines a frequency-selective excita-
tion with a broadband presaturation
pulse for background signal suppres-
sion. The signal enhancement obtained
with this first implementation of ORCA
is strongly dependent on vessel orienta-
tion (17). On in vivo IRON MR angio-
grams, both the descending aorta (ori-
ented parallel with the main magnetic
field) and the renal arteries (oriented
perpendicular to the main magnetic
field) were displayed with positive con-
trast. Similarly, in the ascending aorta
and the aortic arch, no orientation-
dependent signal attenuation was iden-
tified. This may be attributable to two
effects: First, after injection of MION-
47, both off resonance and a short T1
contribute to the signal in the blood pool
(Appendix E1, http://radiology.rsnajnls
.org/cgi/content/full/2491071706/DC1).
Since the T1 contrast is not orientation de-
pendent, a total signal void is not expected
for any orientation of the vessels relative to
the main magnetic field. Second, since the
IRON technique inherently displays both
positive and negative off resonance equally,
the signal originating from off resonance is
less dependent on orientation when com-
pared with that generated with methods
that attenuate larger parts of the frequency
spectrum. However, these effects have to
be investigated in more detail, and they will
need to be characterized more rigorously.
Simultaneously, a discrepancy between
in vitro and in vivo images was observed in
our study: Characteristic signal-enhanced
dipole formations (artifactual structures)
were present on in vitro IRON MR angio-
grams but not on in vivo images. Obvious

differences in the dimensions (higher
length-to-diameter ratio in blood vessels
than in tubes), lower blood oxygenation lev-
els in vitro versus in vivo, or clustering of
the contrast agent in vitro may have con-
tributed to the observed differences. Fur-
thermore, while positive signal was found
outside the test tube containing blood and
250 �mol/kg MION-47 in vitro, the area of
positive signal was constrained to the test
tube alone when 80 �mol/kg MION-47 was
used. For this reason and because in vivo
human applications will likely be performed
at even lower doses, this effect may be re-
duced even further. Nevertheless, with
high contrast agent doses and partic-
ularly with small vessels running per-
pendicular to the main magnetic field,
signal enhancement from outside of
the lumen blood pool is a concern and
may adversely affect lumen diameter
measurements and estimation of ste-
nosis.

Our study had some limitations. The
number of animals studied was rela-
tively small. However, to our knowl-
edge, we are the first to report use of
this technique and to demonstrate its
feasibility, both in vitro and in vivo. De-
spite the small number of animals stud-
ied, the magnitude of contrast enhance-
ment was similar among animals, as ev-
idenced by the relatively small standard
deviation of CNR measurements. The
MION-47 doses injected in rabbits were
higher than the recommended clinical
dose in humans (46 �mol/kg) (30).
However, ferumoxtran, which is highly
analogous to MION-47, has demon-
strated a satisfactory safety profile in
several animal (32) and clinical (27)
studies. Furthermore, in our study,
CNR remained high even 1 day after
injection; therefore, it can be expected
that lower doses of superparamagnetic
nanoparticles may be adequate for
steady-state MR angiography up to a
few hours after injection. Furthermore,
specific T2*-weighted imaging was not
performed in our study; thus, the rela-
tive contribution of T2* effects on T1-
weighted images and IRON images mer-
its further investigation. Nevertheless,
on a conventional MR angiogram, a sig-
nal void was observed in the aorta
shortly after contrast agent administra-

tion (Fig 3, B); this finding may be re-
lated to T2* shortening consistent with
the high concentration of the contrast
agent.

In conclusion, IRON MR angiogra-
phy generates positive signal in the
presence of superparamagnetic nano-
particles in the blood pool. Hereby, off
resonance is responsible for signal en-
hancement in the blood pool, while sig-
nal from on-resonant protons in the
background is effectively suppressed.
This leads to high contrast between the
blood pool and the surrounding tissue,
which surpasses that from more con-
ventional T1-weighted MR angiography.
Since the off-resonance effects persist
until 1 day after contrast agent admin-
istration, this method effectively sup-
ports the use of high-spatial-resolution
imaging, and repeat examinations with
only one injection of the contrast agent
may be feasible. This noninvasive tech-
nique has the potential to further im-
prove the delineation of vascular anat-
omy, and it may possibly improve the
identification of vascular disease.

Practical applications: IRON MR
angiography performed in conjunction
with administration of superparamag-
netic nanoparticles results in strong in-
travascular enhancement that is sus-
tainable over a long time. This tech-
nique may have the potential to be used
for a more comprehensive assessment
of vascular disease, since iron uptake by
macrophages in the atherosclerotic ves-
sel wall may also lead to off-resonance
signal enhancement. Furthermore, this
method may be useful for evaluation of
small collateral vessels and the progress
of arteriogenesis, as well as for monitor-
ing angiogenesis suppression therapies
in patients with cancer.
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