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Constitutional aneuploidies are rare syndromes associated with multiple developmental abnormalities and the
alterations in the risk for specific cancers. Acquired somatic chromosomal aneuploidies are the most common
genetic aberrations in sporadic cancers. Thus studies of these rare constitutional aneuploidy syndromes are
important not only for patient counseling and clinical management, but also for deciphering the mechanisms
by which chromosomal aneuploidy affect cancer initiation and progression. Here we review the major consti-
tutional aneuploidy syndromes and suggest some general mechanisms for the associated cancer predisposition.

INTRODUCTION

Somatic acquired genomic instability is one of the hallmarks of
cancer (1). This genomic instability is commonly manifested by
structural or numerical chromosomal aberrations. Structural
genomic aberrations leading to activation of oncogenes or elim-
ination of tumor suppression genes have been studied exten-
sively. However, very little is known about the oncogenic
role, if any, of numerical chromosomal aberrations, aneuploidy,
which are the most common abnormalities in cancer (2).

The association between constitutional aneuploidy and
cancer supports a causative role of aneuploidy in cancer.
The precise determination of the relative risk of cancer in
many of these syndromes is hampered by their rarity and by
the short life span of many of the patients. Notwithstanding
these difficulties these syndromes provide a unique opportu-
nity to study the neoplastic evolution during ontogeny and
the interplay between the developmental abnormalities
induced by specific chromosomal. Here we review the major
disorders; Table 1 presents a summary and description of
additional syndromes.

MOSAIC VARIEGATED ANEUPLOIDY

Unlike the rest of the constitutional aneuploidy disorders,
mosaic variegated aneuploidy (MVA) is a rare autosomal
recessive genomic instability syndrome characterized by

multiple mosaic aneuploidies in somatic cells. Clinical mani-
festations include cancer predisposition, intrauterine growth
retardation, microcephaly, mental retardation and CNS
anomalies. Out of 35 cases of MVA syndrome that have
been so far reported (3–6), 12 developed cancer: 7 had
Wilms’ tumor; 4 had rhabdomyosarcoma (one patient had
both tumors (7)) and 2 had leukemias.

More than half of the patients have inactivating mutations in
the BUB1B gene that encodes the mitotic spindle checkpoint
protein BUBR1 (4). Mitotic spindle checkpoint proteins
(MAD1, MAD2, BUB1, BUB3, BUBR1, MPS1 and other pro-
teins) arrest the metaphase by inhibiting the anaphase-
promoting complex/cyclosome until the sister chromatids are
correctly attached to the spindle (8,9). This is a central regu-
latory mechanism ensuring the maintenance of correct
chromosome numbers after cell division. Not all patients
with MVA have BUB1B mutations and these were reported
to a have a milder phenotype without cancer (10). Bub1bþ/ –

mice are developmentally normal but have defective spindle-
checkpoint activation and develop lung and colon cancers in
response to carcinogens (11). Together, the identification of
BUB1B mutations as the cause of MVA and the mouse
model provide a clear biological causal link between mitotic
spindle dysfunction, aneuploidy and cancer development.

What is the extent of similarity between the cancers
observed in patients with MVA and sporadic childhood
cancers? Hanks et al. (12) reported comparative genomic
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Table 1. Summary of major constitutional aneuploidy syndromes and associated cancers
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hybridization analysis in an embryonal rhabdomyosarcoma
(RMS) from an MVA case revealing aneuploidies typical of
sporadic embryonal RMS, with gain of chromosomes 3, 8,
13 and loss of chromosomes 9, 14, X (13–15). While
somatic BUB1B mutations are rare in sporadic childhood
malignancies (12), it is possible that the genetic progression
in RMS from MVA and non-MVA cases may be similar.
Strikingly, however, the pattern of cancers in patients with
MVA differs from sporadic childhood cancers. MVA seems
to be specifically associated with the relatively rare embryonic
myogenic and renal cancers and not with the most common
sporadic childhood cancers. Abnormal mitotic checkpoint
was described in sporadic neuroblastoma (16) but this tumor
was not reported in patients with MVA. The specific associ-
ation with RMS and Wilms’ tumors may be related to frequent
predominance of trisomy 8 and trisomy 18 in MVA (17), two
trisomies that are associated with RMS and Wilms’ tumors,
respectively (18–20). Alternatively, the pattern of tumors in
MVA possibly suggests a developmental role of BUBR1 or
the mitotic checkpoint in the development of the embryonic
kidney and muscle.

CONSTITUTIONAL ANEUPLOIDY OF THE

AUTOSOMES AND CANCER

Trisomy 8

Full constitutional trisomy 8 (cT8) is very rare, whereas cT8
mosaicism (cT8M) is more frequent—the prevalence was
estimated to be 1:25 000 (21). The full condition presents
with physical stigmata, skeletal abnormalities and a
mild-to-moderate mental retardation (22).

Trisomy 8 can be seen as a mosaic in the blood or in the
skin or both (21). At least 23 cT8M patients were reported to
have neoplasms: 18 myeloid malignancies (21,23–35) and
five solid tumors (20,36–39). Since cT8M prevalence is very
low, this probably represents an increased risk for myeloid
neoplasms.

Acquired trisomy 8, which is restricted to the malignant
cells, is the most common numeric aberration in AML and
MDS (40,41). Interestingly, it is also the most common
genetic aberration in the myeloid leukemias of Down’s syn-
drome (DS). Maserati et al. (42) suggested that some of the
myeloid malignancies with ‘acquired’ trisomy 8 are actually
undiagnosed cT8M—they have found 3 such cases out of 14
patients with myeloid malignancies and trisomy 8.

The association of both somatic and constitutional trisomy 8
with myeloid malignancies suggests a cell autonomous leuke-
mogenic role for this trisomy, although the specific oncogenes
are presently unknown (43). Interestingly, analysis of bone
marrow from a patient with cT8M revealed increased activity
of bone marrow stromal cells in supporting hematopoietic pro-
genitor cell expansion (31). In addition, characterization of
trisomy 8-positive NK cells from a cT8M patient showed an
immunosenescent phenotype that may contribute to the
escape and expansion of neoplastic cells as a result of altered
immunosurveillance (44). Hence the micro- and macro-
environment in patients with cT8M may also play an important
role in the pathogenesis of MDS.

Trisomy 18

Constitutional trisomy 18 (Edwards syndrome, cT18) is the
most common autosomal abnormality after trisomy 21, occur-
ring in 1:3000 live births (45,46). Renal abnormalities, par-
ticularly horseshoe kidney, are common (47). The chances
of survival over 1 year are only 10% (48). Therefore, most
patients with cT18 do not survive long enough to develop
cancer.

There have been nine reports of Wilms’ tumor in individ-
uals with cT18, seven of them in females (18,19,49–52).
cT18 was also found to occur at higher rates than expected
based on chromosome surveys of 5854 newborns with
Wilms’ tumor (18). Hepatoblastoma, another rare childhood
cancer (annual incidence of 1 per million children (53)), was
reported in seven patients with cT18, all females (54–60).
Thus it appears that there is an increased rate of Wilms’
tumor and hepatoblastoma in female patients with cT18,
especially for long-term survivors.

Hepatoblastoma and Wilms’ tumors are embryonal tumors
of the liver and kidney, respectively. Acquired trisomy 18 is
frequently found in sporadic Wilms’ tumors but is rare in
hepatoblastoma (http://cgap.nci.nih.gov/Chromosomes/Recur-
rentAberrations). Traditionally the hallmark of cancer predis-
position syndromes is an earlier age of cancer occurrence.
However, the age of diagnosis of Wilms’ tumor with cT18
(7 years) is double than sporadic Wilms’ tumor. This and
the specific association with the female gender argue for a
complex pathogenesis of cancer in patients with cT18.

Trisomy 21—Down’s syndrome

DS is reviewed by Weissman et al. in this issue. The reader is
also referred to comprehensive recent reviews on the leuke-
mias of DS (61–64).

The risk of most solid tumors is reduced in DS (65,66).
A mouse model suggested that this is due to a dose-dependent
tumor suppressive effect of the Hsa21 transcription factor Ets2
(67). In contrast, children (not adults) with DS have a X600
increased risk for acute myeloid (ML-DS) and X20 increased
risk for B cell precursor lymphoblastic leukemias (ALL) com-
pared with normal children (65).

The myeloid leukemias of DS (ML-DS). These are unique to
DS (68). Approximately 5% of children with DS are born
with a transient clonal megakaryocytosis syndrome, named
‘transient myeloproliferative disorder’ (TMD) (69), which
usually resolves spontaneously. Approximately 20% of DS
patients with TMD will develop, however, a full-blown malig-
nant acute myeloid leukemia with megakaryoblastic pheno-
type (AMKL) by the age of 4 years, which will not regress
without chemotherapy (70). Both TMD and DS-AMKL are
characterized by a mutation in the chromosome X transcription
factor GATA1 that occurs in utero and invariably results in the
expression of a shorter isoform GATA1s (71–73). GATA1
regulates normal development of the erythroid, megakaryocytic
and basophilic/mast cell lineages. A ‘knock-in’ experiment in
mice and gene expression analysis of DS-AMKL suggest that
GATA1s enhances the proliferation and block the differen-
tiation of immature embryonic megakaryoblasts (74,75).
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The current model of multi-step myeloid leukemogenesis in
DS (Fig. 1) suggests that trisomy 21 enhances the proliferation
and self-renewal of fetal liver megakaryo-erythroid progeni-
tors in a cell-autonomous manner (76,77). This ‘positive’
developmental pressure towards the megakaryo-erythrocytic
lineage cooperates with the somatic mutation in GATA1 that
further enhances the clonal proliferation of immature mega-
karyoblasts diagnosed at birth as TMD. GATA1 mutations
are necessary but insufficient for the development of
DS-AMKL. Additional genetic events such as activating
mutations of JAK3 (78), or trisomy 8 (79) have been proposed
to mediate the progression from TMD to DS-AMKL.

There are several candidate ‘megakaryoblastic oncogenes’
on Hsa21 including RUNX1, ETS2, ERG and miRNA 125
(80–83). Trisomies result in modest elevated expression of
multiple genes residing on the trisomic chromosome (84),
although the expression of some genes may vary in a more
drastic way (85). Thus it is possible that the tilt of normal
fetal hematopoiesis towards the megakaryocytic lineage in
DS results from the co-expression of several pro-
megakaryopoiesis genes from the trisomic Hsa21.

This cooperation between several genes on the same
chromosome may represent a general mechanism by which tri-
somies affect development and cancer.

Acute lymphoblastic leukemia of DS (DS-ALL). This is similar
to the ‘common’ B-cell precursor ALL affecting pre-school
children. Indeed it is the most common leukemia in DS, com-
prising about 1–3% of total children with ALL (86–88).
Acquired trisomy or tetrasomy 21 is the most common
genetic aberration in sporadic ALL. Hence it is tempting to
speculate that constitutional and somatic trisomy 21 may

facilitate leukemogenesis in a similar fashion. Yet recent mol-
ecular and cytogenetic studies suggest that at least some of the
DS-ALL have unique features.

Cytogenetically DS-ALL is characterized by reduced preva-
lence of the common aberrations found in childhood leukemia.
Rather there are some unique features such as an additional
chromosome X as single cytogenetic abnormality that
suggest a yet unknown, collaborating event between genes
on chromosomes 21 and X (79). More recently a mutation
in the JAK2 kinase was identified in about one-fifth of the
patients with DS-ALL (89–92). All mutant alleles centered
around a highly conserved arginine residue (R683) within
the JAK2 pseudokinase domain. The mutations immortalized
primary mouse hematopoietic progenitors, and caused consti-
tutive JAK/STAT activation and cytokine independent growth
of Ba/F3 cells that was sensitive to pharmacological inhibition
of JAK/STAT signaling. Mutations in JAK2 are characteristics
of myeloproliferative neoplasms (MPNs). However, similar to
the specificity of GATA1 mutations to DS myeloid malignan-
cies, the novel mutations in R683 of JAK2 are unique to
DS-ALL and are detected neither in MPNs nor in sporadic
ALL. Modeling of JAK2 pseudokinase domain revealed that
R683 is situated in an exposed conserved region separated
from the one involved in MPNs. These observations not
only provide the first molecular specific lesion of DS-ALL
but also suggest that these leukemias are candidates for
therapy with the novel JAK2 inhibitors. These findings also
raise many interesting questions regarding the nature of this
unique collaboration between constitutional (but not acquired)
trisomy 21 and JAK2 R683 mutations.

Clinically, DS-AMKL is highly responsive to chemotherapy
while the prognosis of DS-ALL is grimmer (93–95). This is in

Figure 1. Proposed model for the mechanism underlying DS predisposition to megakaryoblastic leukemias. Increased expression of chromosome Hsa21 genes in
fetal liver hematopoietic stem cells leads to increased production of megakaryo-erythroid progenitors (MEPs). The somatically acquired GATA1s mutation
further blocks megakaryoblastic differentiation and enhances MEPs proliferation. This can lead to transient myeloproliferative disorder (TMD) in 5% of DS
newborns. Acquisition of additional somatic genetic or epigenetic events during infancy will lead to the development of full-blown megakaryoblastic leukemia
(AMKL) in one-fifth of TMD patients.
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contrast to sporadic leukemias characterized by a better cure
rate of ALL compared with AML. The heightened sensitivity
of DS-AMKL blasts may be related to the reduced catabolism
of the chemotherapeutic ARA-C caused by genes regulated by
the mutated GATA1. In contrast, DS with ALL are highly sen-
sitive to the toxic effects of Methotrexate, a drug that is not
used in AML, due to the excess activity of the folate transpor-
ter coded by an Hsa21 gene (96). These examples demonstrate
the pharmacogenomic effects of a trisomy on drug metabolism
and response to therapy.

Aneuploidies of the sex chromosomes

Turner syndrome (45,X). This is a relatively common (1:2000)
syndrome associated with decreased adult stature, gonadal
dysgenesis, reduced female sex steroids, infertility and other
stigmata (97,98).

A cohort study of 3425 women with Turner syndrome (TS)
(99) found an increased risk of CNS tumors, ocular cancer,
gonadoblastoma and bladder and urethral cancers, while the
risk for breast cancer was found to be decreased. An increased
risk of colon cancer, which was seen in another study (100),
was not noted.

Gonadoblastoma is a rare neoplasm that develops almost
exclusively in the dysgenetic gonads of women with Y
chromosome mosaicism. Malignant transformation occurs in
60% of these tumors, with 50% developing into dysgermino-
mas and 10% into other malignant germ cell tumors (101).
The predisposition of dysgenetic gonads to develop gonado-
blastoma was postulated to be associated with one or more
genes on the Y chromosome, with the stimulatory effect
of the gonadotropins (101), and with the presence of
poorly differentiated XY gonadal tissue in an abnormal
(intra-abdominal) environment (102).

The decreased risk for breast cancer was confined to women
with 45,X monosomy, whereas women with 45,X/46,XX
mosaicism had similar risk to the general population. This
may be explained by the fact that women with 45,X/46,XX
karyotype have a less severe phenotype and have a relatively
high percentage of spontaneous menses and breast develop-
ment (101).

An interesting finding is the lack of significant increased
risk for malignant melanoma in TS, since these patients
have multiple melanocytic nevi, the strongest established
risk factor for melanoma (99). One possible explanation for
the absence of an overt increase of incidence of melanoma
is the absence of circulating sex hormones as these girls fail
to undergo normal pubertal development (103). Another
explanation for variation in non-hormonal sensitive tumors
may involve a haploinsufficiency of autosomal X linked
genes in TS (104–107).

Klinefelter syndrome (47,XXY). Klinefelter syndrome (KS) is a
group of chromosomal disorders in which there is at least one
extra X chromosome to a normal male karyotype, 46,XY.
XXY aneuploidy is the most common disorder of sex chromo-
somes in humans, with prevalence of one in 500 males (108).
KS is characterized by hypergonadotrophic hypogonadism,
small testes, infertility, reduced body hair, gynecomastia and
tall stature (109).

A cohort study of 3518 men with KS revealed increased risk
of lung cancer, breast cancer and non-Hodgkin lymphoma,
while a decreased risk of prostate cancer (110). Contrary to
an anecdotal report (111), there was no statistically significant
increase in the incidence of leukemia. The lower risk for pros-
tate cancer is in accordance with a Danish cohort (112). The
reduced prostate cancer and the increase in breast cancer
likely represent the hormonal milieu of these patients charac-
terized by high estradiol and low androgen levels.

There are contradictory reports regarding the frequency of
extragonadal (mediastinal or pineal) germ cell tumors
(EGGCT) in KS. No such tumors were reported in the
British cohort study (110), while increased prevalence was
reported in several previous studies (112–115). Studies
suggested that 15% of patients with intracranial germ cell
tumors and 8% of male patients with primary malignant med-
iastinal germ cell tumors have KS (109,113,116–119). The
increased prevalence of EGGCT in KS may reflect either the
role of extra chromosome X in these tumors (120) or a devel-
opmental defect in the migration of germ cells in KS
(109,115,121,122).

GENERAL PRINCIPLES OF THE PATHOGENESIS

OF CANCER BY CONSTITUTIONAL

CHROMOSOMAL ANEUPLOIDIES

Cancer as a developmental disease

A fundamental difference between constitutional and acquired
aneuploidy is that the former exists in many tissues from the
earliest stage of embryonic development, whereas the latter
is acquired and exists only in the transformed cells. Thus con-
stitutional aneuploidy can predispose to cancer in variety of
ways. It may exert a direct oncogenic activity in a cell auton-
omous manner. This may be the situation in cancers in which
the same aneuploidy is also common in sporadic cancers such
as trisomy 21 in ALL, trisomy 8 in myeloid leukemias and
trisomy 18 in Wilms’ tumors. Alternatively, cancer may
arise because of aberrant effects of the trisomy on immediate
microenvironment, for example the enhancement of hemato-
poietic progenitor proliferation by constitutional trisomy
8. Cancer may also arise because of abnormalities in the
‘macro-environment’—for example the hormonal abnormal-
ities in disorders of the sex chromosomes, hormonal replace-
ment therapy (99,123), susceptibility of mal-developed
organs to malignant transformation (e.g. horseshoe kidney in
cT18) (47) or even altered immunosurveillance (e.g. NK
cells in cT8M) (44) (Fig. 2).

What is common to all constitutional aneuploidies is their
marked effect on embryonic development. Indeed the types
of cancers observed reflect these abnormalities, e.g. the mega-
karyoblastic malignancies in DS and the gonadoblastomas in
TS. Even more striking is the specific association of a
general aneuploidy defect, as seen in MVA, with rather
specific embryonal tumors (RMS and Wilms’ tumors). This
type of association is seen also in other inherited cancer-
predisposing syndromes. Thus mutations in Rb and p53
tumor suppressor genes are observed in most sporadic
cancers, yet germline mutations in these genes are associated
with childhood retinoblastoma and soft tissue sarcomas,
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respectively, two rare embryonal childhood cancers (124,125).
Indeed, sporadic childhood cancer may be viewed as a devel-
opmental disorder. While this is obvious for the embryonal
cancers, such as RMS, Wilms’ tumors, neuro-, medullo- and
hepto-blastomas, the basis of the most common childhood
cancer, acute lymphoblastic leukemia (ALL), is also develop-
mental (126,127) and is reminiscent of the pattern of the
myeloid leukemias of DS. Acquired somatic structural or
numerical genetic aberration arising during embryonic lym-
phoid development leads to a proliferation of a pre-leukemic
clone that can be identified by molecular means in 1–5% of
normal newborns. One or more, less common, postnatal
somatic genetic events are needed for transformation of
these pre-leukemic cells similarly to the events required for
the evolution of TMD to AMKL in DS.

Aneuploidy and cooperating oncogenic genetic
aberrations in cancer

Aneuploidy alone is not sufficient for carcinogenesis. Most
children with DS do not develop leukemia and even in the pre-
sence of widespread aneuploidies in MVA the prevalence of
cancer is ,50%. In most of the constitutional aneuploidies,
the additional oncogenic events that cooperate with the aneu-
ploidy have not been studied. The mutations in GATA1 and
the JAK2 cooperating with cT21 in the myeloid and lymphoid
leukemias of DS are remarkably specific to DS. They have not
been described in sporadic leukemias with acquired trisomy
21. The cause of the specific association between cT21 and
these mutations, outside Hsa21, is presently unknown.

A more general model that may explain these specific coop-
erative events emerges from recent experiments by Williams
et al. (128). By generating a series of cell lines that carry an

extra copy of one of four mouse chromosomes they showed
that aneuploidy reduces cellular fitness by repressing cell pro-
liferation, alters their metabolic properties and influences their
immortalizing capabilities. This is consistent with the general
growth inhibitory role of constitutional trisomies and with the
potential for tumor suppression as observed in DS and in some
experimental aneuploidy models in mice (129,130). Overcom-
ing this proliferative block requires specific cooperating
mutations. This phenomenon is similar to classical require-
ment for cooperative oncogenic activity to overcome the
senescence or cell death induced by single oncogenes (131).
Thus the association of a constitutional trisomy with cancer
may depend on a specific ‘permissive cell type’ (e.g. an
embryonic megakaryocytic erythroid progenitor in DS) and a
specific cooperating mutation.

With few exceptions, the major challenge is in deciphering
the actual genetic elements (including all type of genes) on the
aneuplidic chromosomes involved in cancer initiation and/or
progression. The difficulties stem from the general imbalance
of expression of most genes from the aneuplidic chromosomes
and from the lack of appropriate in vitro and in vivo models.
Such models are required for clarification of the shared and
unique pathways by which constitutional and acquired aneu-
ploidies affect neoplastic transformation.
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Figure 2. Factors affecting the cancer predisposition by constitutional aneuploidy. Imbalance of pro-malignant genes expression, genomic instability and cellular
growth alterations coupled with specific acquired cooperative genetic events are the main mechanisms that underlie the neoplastic predisposition of constitutional
aneuploidy. In addition, as the constitutional aneuploidy exists from a very early developmental stage, the developmental timing of the aneuploidic effect may
have an influence on the end-point result of the aneuploidy. Moreover, as the constitutional aneuploidy resides in many tissues, it can affect the pre-neoplastic
target cell in a cell-autonomous manner, and/or affect the micro- and macro-environment of the pre-neoplastic cell in a non-cell-autonomous manner.
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