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The question of whether RNA interference (RNAi) acts as an
antiviral mechanism in mammalian cells remains controversial.
The antiviral interferon (IFN) response cannot easily be distin-
guished from a possible antiviral RNAi pathway owing to the
involvement of double-stranded RNA (dsRNA) as a common
inducer molecule. The non-structural protein 3 (NS3) protein of
rice hoja blanca virus (RHBV) is an RNA silencing suppressor
(RSS) that exclusively binds to small dsRNA molecules. Here, we
show that this plant viral RSS lacks IFN antagonistic activity, yet it
is able to substitute the RSS function of the Tat protein of human
immunodeficiency virus type 1. An NS3 mutant that is deficient in
RNA binding and its associated RSS activity is inactive in this
complementation assay. This cross-kingdom suppression of RNAi
in mammalian cells by a plant viral RSS indicates the significance
of the antiviral RNAi response in mammalian cells and the
usefulness of well-defined RSS proteins.
Keywords: RNAi suppression; complementation assay; HIV-1 Tat;
RHBV NS3
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INTRODUCTION
RNA interference (RNAi) acts as an antiviral response in plants,
insects and invertebrates (Voinnet, 2001; Galiana-Arnoux et al,
2006; van Rij et al, 2006; Wang XH et al, 2006; Ding & Voinnet,
2007). RNAi is induced by double-stranded RNA (dsRNA) viral

replication intermediates and extended secondary structures in
viral RNA (Voinnet, 2005). These dsRNA molecules are recog-
nized by Dicer proteins and processed into small interfering RNAs
(siRNAs), which guide the RNA-induced silencing complex (RISC)
to inactivate a target RNA in a sequence-specific manner
(Sontheimer, 2005). To counteract this antiviral response, plant
and insect viruses encode RNA silencing suppressor (RSS) proteins
(Voinnet, 2005). Most plant viral RSS proteins have dsRNA-
binding domains for short siRNAs (Voinnet, 2005; Lakatos et al,
2006; Merai et al, 2006) or longer dsRNAs (Merai et al, 2005;
Deleris et al, 2006). Other plant viral RSS proteins interfere with
protein components of the RNAi machinery (Deleris et al, 2006;
Levy et al, 2008).

Mammalian cells have a functional RNAi pathway that can be
instructed to become antiviral on transfection with siRNAs or
constructs that express short hairpin RNAs against viral sequences
(reviewed by Haasnoot et al, 2007; Marques & Carthew, 2007).
However, the potential role of RNAi as a natural antiviral defence
mechanism in mammalian cells remains controversial. The
characteristic of antiviral RNAi—that is, accumulation of virus-
derived siRNAs—could not be identified in infected cells (Pfeffer
et al, 2004); however, such molecules have been described more
recently for several endogenous and exogenous viruses, including
human immunodeficiency virus type 1 (HIV-1; Bennasser et al,
2005; Soifer et al, 2005; Yang & Kazazian, 2006; Parameswaran
et al, 2008), and yet the significance of these findings is still being
debated (Lin & Cullen, 2007). There is accumulating evidence that
mammalian cells use microRNAs (miRNAs) to control viruses
(Berkhout & Jeang, 2007). HIV-1 is inhibited by miR-17 and
miR-20a owing to the downregulation of histone acetylase p300/
CBP-associated factor (PCAF), a cofactor of the transactivator of
transcription (Tat) protein (Triboulet et al, 2007). miRNAs might
also regulate components of the antiviral interferon (IFN) pathway,
and thus provide a possible link between the RNAi and IFN
pathways (reviewed by Sonkoly et al, 2008). These combined
findings support the idea that RNAi, either siRNA- or miRNA-
based, is part of the innate immune system in mammals.
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Consistent with this idea, an increasing number of mammalian
viruses have been shown to encode an RSS protein, for example,
the hepatitis C virus (HCV) core and envelope protein 2
(Wang Y et al, 2006; Ji et al, 2008), vaccinia virus E3L (Li et al,
2004), Ebola virus VP35 (de Vries & Berkhout, 2008), primate
foamy virus Tas (Lecellier et al, 2005), influenza A virus NS1
(Bucher et al, 2004; Li et al, 2004; Haasnoot et al, 2007) and
HIV-1 Tat (Bennasser et al, 2005). These RSS proteins suppress
RNAi-mediated downregulation of a reporter gene construct. NS1
and VP35 can also trans-complement the production of a
Tat-negative HIV-1 variant (Haasnoot et al, 2007). HIV-1 Tat
and HCV core were proposed to block the activity of Dicer
(Bennasser et al, 2005; Chen et al, 2008), whereas NS1, E3L and
VP35 probably act by sequestering dsRNA (Bucher et al, 2004;
Li et al, 2004; Haasnoot et al, 2007). In addition, we showed that
stable expression of mammalian RSS proteins increases virus
replication (de Vries et al, 2008).

Intriguingly, most identified RSS proteins of mammalian viruses
also have IFN or protein kinase R (PKR) antagonistic properties,
and these activities usually map to the RNA-binding domain,
which is also implicated in RNAi function (Wang et al, 1999,
2000; Bucher et al, 2004). To distinguish between the IFN and
RNAi pathways, we used the NS3 protein of rice hoja blanca virus
(RHBV) that binds exclusively to small dsRNAs and shows RSS
activity in mammalian cells (Hemmes et al, 2007; Schnettler et al,
2008). Consistent with this property, we confirm that this plant
virus protein lacks IFN antagonistic activity and yet is able to
rescue a Tat-negative HIV-1 variant.

RESULTS AND DISCUSSION
The plant virus NS3 protein complements Tat
NS3 expression vectors were made that use the constitutive
elongation factor (EF)-1a promoter. First, we tested protein
expression in human embryonic kidney (HEK) 293T cells. NS3 is
expressed as a fusion protein of 66 kDa with maltose-binding
protein (MBP). The MBP domain is synthesized as a separate
43-kDa domain (Fig 1A). Functional complementation with a
well-defined RSS protein is an effective strategy to identify new
RSS functions (Li et al, 2004). For example, the Ebola virus VP35
protein can complement a Tat-negative HIV-1 variant in which the
Tet system for doxycycline (dox)-inducible gene expression
replaces the transcriptional function of Tat (Haasnoot et al,
2007). Here, we used this system to test whether the function of
Tat RSS can be complemented by the RHBV NS3 protein, which
exclusively binds to short dsRNA molecules (Hemmes et al, 2007)
and is therefore not expected to modulate the IFN pathway. An
increasing amount of NS3 expression plasmid was co-transfected
with a Tat negative HIV-1 variant (HIV-rtTA-Tatfs) construct in
HEK293T cells and the production of HIV-1 was monitored.
Markedly, the RHBV NS3 protein was able to rescue virus
production in trans to approximately the same extent as HIV-1 Tat
(Fig 1B). The reason that more NS3 than Tat vector is needed
could be due to differences in the RSS mechanism—siRNA
binding versus Dicer blocking—or the protein’s intracellular
localization/stability/concentration, but this was not investigated
further. Given the established role of NS3 in counteracting
antiviral RNAi (Bucher et al, 2003; Hemmes et al, 2007), this
result indicates that the production of HIV-1 is restricted by the
RNAi mechanism.

NS3 shows no IFN antagonistic activity
To rule out that the Tat-complementing property of NS3 was based
on the modulation of the IFN pathway, this effect was probed in
mammalian cells (HEK293T) using a firefly luciferase reporter
construct under the control of an IFN-b inducible promoter and
Renilla luciferase as an internal control (Fig 2). As a positive
control, firefly luciferase expression—as a measure of IFN
production—was induced by poly I:C, and this stimulatory effect
was significantly reduced in the presence of the IFN-antagonistic
VP35 protein of Ebola virus (Cardenas et al, 2006). As expected,
the RHBV NS3 protein showed no IFN antagonistic activity,
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Fig 1 | Plant viral RSS protein NS3 complements HIV-1 Tat. (A) Lysates

of human embryonic kidney (HEK) 293T cells, transfected with

expression plasmids for GFP, MBP-NS3, MBP-NS3m or MBP (900 ng),

were analysed for protein expression by Western blot analysis, using a

rabbit polyclonal antiserum against MBP. Immunological detection of

b-actin acted as a loading control. (B) HEK293T cells were co-transfected

with HIV-rtTA-Tatwt and HIV-rtTA-Tatfs (100 ng) in combination with

increasing amounts (10, 100, 600 and 900 ng) of NS3 or Tat expression

plasmids. The vector expressing MBP (900 ng) was used as a negative

control. The production of HIV-1 was determined 2 days post-

transfection by detecting CA-p24 in the supernatant using ELISA. The

mean of at least three independent experiments is shown with standard

error. ELISA, enzyme-linked immunosorbent assay; GFP, green

fluorescence protein; HIV-1, human immunodeficiency virus type 1;

MBP, maltose-binding protein; NS3, non-structural protein 3; NS3m,

mutant protein; RSS, RNA silencing suppressor; Tat, transactivator

of transcription.
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yielding the same firefly luciferase expression as the negative
control (empty vector). We also tested the Tat wild-type HIV-1
variant (HIV-rtTA-Tatwt) and the Tat negative HIV-1 variant
(HIV-rtTA-Tatfs) constructs for their ability to induce IFN in this
assay; no such activity was measured (data not shown). Next, the
possible involvement of the PKR component of the IFN pathway
was tested by performing NS3 complementation in the presence of
2-aminopurine, a specific PKR inhibitor (Lu & Cullen, 2004). NS3
maintained Tat-complementation activity with 2-aminopurine
(supplementary Fig S1 online), confirming that PKR is not
involved. Thus, Tat inactivation and NS3 complementation do
not have an impact on the IFN pathway.

NS3 RSS activity requires dsRNA-binding
Next, we tested whether NS3 requires its RNA-binding domain for
HIV-1 trans-complementation. By substituting a triple lysine motif
(positions 173–175) with alanines, an NS3 mutant (NS3m) was
obtained that is defective in siRNA binding (Fig 3A) and in
suppressing antiviral RNAi in plants (data not shown). As the
anti-HIV effect of the RNAi pathway might use miRNAs (Triboulet
et al, 2007), the NS3m was tested for its ability to bind to miRNAs
using an electrophoretic mobility shift assay (Fig 3B). In
comparison to wild-type NS3, which is known to bind to miRNA
and siRNA duplexes with high affinity (Fig 3C,D; Hemmes et al,
2007), this NS3m was unable to interact with miRNA molecules,
even at the highest NS3 protein concentration (Fig 3B). The NS3m
was subsequently tested in the HIV-1 trans-complementation
assay (Fig 4), after confirming that the NS3m is expressed at a
comparable level to the wild-type NS3, in the transfected cells
(Fig 1A). Unlike wild-type NS3, NS3m was not able to restore

the virus production defect of HIV-rtTA-Tatfs at any of the
concentrations tested.

Whether NS3 is able to block the miRNA pathway in human
cells was determined by using a firefly luciferase reporter
containing multiple miR-30 target sites for either the sense
(pCMV-luc-miR30-P) or antisense (pCMV-luc-miR30-AP) strand.
This reporter is normally tested in co-transfection with an excess of
miR-30 expression vector (Zeng et al, 2003), which might mask a
subsequent RNAi suppression effect. HEK293T cells that express
endogenous miR-30, where both strands can act as guide strands
(Zeng et al, 2003), were co-transfected with NS3 and either
pCMV-luc-miR30-P (Fig 5, left panel) or pCMV-luc-miR30-AP
(supplementary Fig S2 online). Several controls were included:
first, we used a control luciferase reporter with randomized
miRNA target sites (pCMV-luc-random; Fig 5, right panel); second,
NS3m and MBP were co-transfected as controls for NS3 RSS
activity. Luciferase expression was measured 2 days post-
transfection. We observed a modest stimulatory effect of NS3
on pCMV-luc-miR30-P (Fig 5, left panel) and aminopurine
(supplementary Fig S2 online), but not on the pCMV-luc-random
control (Fig 5, right panel), suggesting that NS3 is able to inhibit
endogenous miRNA action in mammalian cells.

Here, we have shown that a plant viral RSS protein that lacks
IFN antagonistic properties can functionally replace the HIV-1 Tat
RSS function and that this complementation is based on the
sequestration of small dsRNA. These results corroborate further
the RSS function of HIV-1 Tat (Bennasser et al, 2005; Haasnoot
et al, 2007), which has been questioned by others (Lin & Cullen,
2007). Although cross-kingdom suppression of RNA silencing has
been reported for several viral RSS proteins (Dunoyer et al, 2004;
Schnettler et al, 2008), this is the first report, to our knowledge, of
cross-kingdom RSS activity in a mammalian viral complementa-
tion assay. These results are in line with the observation that
knockdown of the RNAi pathway by Drosha or Dicer silencing
enhances HIV-1 replication (Triboulet et al, 2007). The ongoing
debate about the physiological relevance of RNAi as an
antiviral mechanism is spurred, in part owing to the presence of
the antiviral IFN pathway (reviewed by Gantier & Williams,
2007). The results show that a plant virus-encoded RSS
protein with well-defined biochemical activity can be used as a
powerful tool to analyse the contribution of the antiviral RNAi
pathway in mammalian systems in the presence of the IFN
pathway. It is noted that other eukaryotes encode an alternative
innate immune response next to the RNAi pathway (Dangl &
Jones, 2001; Arbouzova & Zeidler, 2006). Taken together, we
have shown that the production of HIV-1 is limited by endo-
genous small RNAs and that viral RSS function can counteract
this restriction.

METHODS
Plasmid constructs. Expression plasmids for MBP-NS3, MBP-
NS3m, VP35, Tat, HIV-rtTA-Tatwt and HIV-rtTA-Tatfs were
described previously (Haasnoot et al, 2007; Schnettler et al,
2008). miRNA-based firefly luciferase sensor constructs have also
been described previously (Zeng et al, 2003).
Cell culture and transfection. HEK293T cells were grown as a
monolayer in DMEM (Gibco BRL, Breda, the Netherlands)
supplemented with 10% FCS (Hyclone, Etten-Leur, the Netherlands),
streptomycin (100mg/ml) and penicillin (100 U/ml) at 37 1C and
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Fig 2 | NS3 has no interferon and PKR antagonistic properties. HEK293T

cells were co-transfected with expression vectors encoding firefly

luciferase under the control of an IFN-b-inducible promoter, Renilla

luciferase, and VP35, NS3 (10, 100 and 400 ng) or pBluescript (C), either

in the presence (þ ) or absence (�) of poly I:C. Luciferase expression

was measured 3 days post-transfection. A relative luciferase expression

corrected for the internal Renilla control (firefly/Renilla) is shown.

The mean of at least three independent experiments is shown with

standard error. HEK, human embryonic kidney; IFN, interferon;

NS3, non-structural protein 3; PKR, protein kinase R.
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5% CO2. To reach a confluence of 60–70% at the time of
transfection, cells were trypsinated 24 h pre-transfection and
seeded in a 24-well plate at a concentration of 1.5� 105 cells

per well. The transfection was performed using Lipofectamine
2000 (Invitrogen, Breda, the Netherlands) according to the
manufacturer’s instructions.

For the IFN assay, cells were co-transfected with 500 ng of a
firefly luciferase expression plasmid under the control of an IFN
b-inducible promoter, IFNb-luc, 2 ng of a Renilla luciferase
expression plasmid, 100 ng of poly I:C and 400 ng of pBluescript
(Stratagene, Huissen, the Netherlands) or plasmids encoding MBP-
NS3, MBP-NS3 mutant or VP35. Cells were lysed 3 days post-
transfection and luciferase expression was determined using the
dual luciferase reporter assay (Promega, Leiden, the Netherlands),
according to the manufacturer’s protocol.

For the miRNA sensor construct assay, cells were co-
transfected with 25 ng firefly luciferase expression plasmid
containing target sites for sense or antisense of human miRNA-
30 (pCMV-luc-miR30-P or pCMV-luc-miR30-AP), or random
miRNA target sites (pCMV-luc-random; Zeng et al, 2003), 0.5 ng
of a Renilla luciferase expression plasmid and constructs encoding
MBP-NS3, MBP-NS3m or MBP. At 48 h post-transfection, cells
were lysed and assayed for luciferase expression by the dual
luciferase assay (Promega).

The HIV Tat complementation assay was performed as
described previously (Haasnoot et al, 2007).
Recombinant protein expression and electrophoretic mobility
shift assay (EMSA). The wild-type and mutant MBP-NS3 proteins
were expressed in BL21 DE3 cells and purified as described by
Hemmes et al (2007). EMSA, either with radioactively labelled
siRNA or miRNA molecules, was performed in triplicate as
described previously (Lakatos et al, 2006), visualized by overnight
exposure to a phosphor screen, scanned (Molecular Dynamics
Typhoon Phosphor imager; Amersham Biosciences, Den Bosch,
the Netherlands) and a representative picture was shown.
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Protein expression in transfected HEK293T cells was analysed
by Western blot analysis using a rabbit polyclonal antiserum specific
for MBP (BioLabs, Leusden, the Netherlands). As a loading control,
b-actin was detected with a mouse monoclonal antibody after
stripping of the blot. For visualization, goat alkaline phosphatase-
conjugated secondary antibodies (Dako/Sigma, Heverlee, Belgium)
and NBT-BCIP substrate (Roche, Almere, the Netherlands) were used
according to the manufacturer’s recommendations.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org)
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embryonic kidney; MBP, maltose-binding protein; miRNA, microRNA; NS3, non-structural protein 3; NS3m, mutant protein.
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