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Abstract
Brain tumors are one of the leading causes of death in adults with cancer; however, molecular
classification of these tumors with in vivo magnetic resonance spectroscopy (MRS) is limited because
of the small number of metabolites detected. In vitro MRS provides highly informative biomarker
profiles at higher fields, but also consumes the sample so that it is unavailable for subsequent analysis.
In contrast, ex vivo high-resolution magic angle spinning (HRMAS) MRS conserves the sample but
requires large samples and can pose technical challenges for producing accurate data, depending on
the sample testing temperature. We developed a novel approach that combines a two-dimensional
(2D), solid-state, HRMAS proton (1H) NMR method, TOBSY (total through-bond spectroscopy),
which maximizes the advantages of HRMAS and a robust classification strategy. We used 2 mg of
tissue at -8°C from each of 55 brain biopsies, and reliably detected 16 different molecules. We
compared two classification strategies, the support vector machine (SVM) classifier and a feed-
forward neural network using the Levenberg-Marquardt back-propagation algorithm. We used the
minimum redundancy/maximum relevance (MRMR) method as a powerful feature-selection scheme
along with the SVM classifier. We also used the minimum redundancy/maximum relevance (MRMR)
method as a powerful feature-selection scheme along with the SVM classifier.
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Introduction
Brain tumors are the leading cause of cancer death in children, the second most common cause
of cancer in young adults, and account for a high proportion of deaths in older adults (1).
According to the US Central Brain Tumor Registry, between 2000 and 2004 35,347 males and
28,477 females died from primary malignant brain and other central nervous system (CNS)
tumors (www.cbtrus.org). With current advances in imaging, surgery, radiotherapy, and
chemotherapy, and in combination with new approaches in anti-angiogenesis, the outcome of
individuals with CNS tumors has been improving (2-4). Even some high-grade tumors, such
as ependymomas or medulloblastomas, can now be cured in children with the appropriate
therapy (5,6).

The most widely used histological system of brain tumor typing is the classification scheme
of the World Health Organization (WHO), in which tumors are classified according to
histological features characteristic of the assumed cell of origin (7). However, diagnoses are
frequently controversial, since tumors often do not follow classic histology, and pathological
diagnosis can therefore be subjective (8). Thus, a non-subjective diagnostic approach that relies
on highly informative biomarkers is needed to improve tumor typing accuracy and the
appropriateness of the treatment course chosen. Such an approach would markedly improve
the long-term prognosis, quality of life, and survival of patients with brain tumors.

Magnetic resonance spectroscopy (MRS) can provide statistically differentiable molecular
biomarkers for tumor grade differentiation, treatment and patient survival prediction (9). Ex
vivo high-resolution magic angle spinning (HRMAS) proton (1H) MRS of unprocessed tissue
samples (10) can help to interpret in vivo 1H MRS results. This technique can not only improve
micro-heterogeneity analysis of high-grade tumors (11), but can also elucidate the relationships
between clinically-relevant cell processes and specific metabolites, such as choline-containing
compounds involved in phospho-lipid metabolism and lipids involved in apoptosis leading to
necrosis (12). Two-dimensional (2D) HRMAS 1H MRS enables more detailed and unequivocal
assignments of biologically important metabolites in intact tissue samples (13-16).
Furthermore, 2D MRS sequences have been implemented in vivo with relative success
(17-20).

The use of MRS classification and statistical analyses for both in vivo and in vitro data has
been widely reported (21-33). One of the principal difficulties in such analyses is the large
number of metabolites that may contribute to the spectra, each with relative intensities that can
vary greatly even in samples of the same type (22). Nonetheless, even early studies have
reported that the spectra of body fluids obtained with MRS are systematically different between
tumor patients and healthy individuals. In many cases, successful differentiation using both
linear and nonlinear methods can be made, based on single resonance peaks or ratios of
resonance ranges (23). Recent work on brain tumors has shown that classification according
to histological type and grade is possible using similar approaches, such as linear discriminant
analysis after feature extraction with independent components analysis in a Bayesian
framework (27), correlation analysis and stepwise linear discriminant analysis (28), or belief
networks (32). Support vector machines (SVMs) and probabilistic neural networks have also
been employed in image-analysis systems to assist in brain tumor diagnosis (34-36).

Here, we present a brain tumor biopsy study that should enable the development of new clinical
tools to better assess operable cancers via tissue molecular characterization and fingerprinting.
This work should also facilitate the distinction of tumor types that cannot be readily
distinguished histopathologically (37) or with routine neuroimaging (38). Such progress will
enable neurooncologists, neuropathologists, neurosurgeons, and neurologists to make
informed decisions related to tumor type, grade, and treatment options. This work will also
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facilitate the clinical application of lower resolution in vivo MRS to inoperable cancers using
metabolic biomarkers to monitor anticancer therapies, in order to improve patient survival and
quality of life.

Materials and methods
Tissue biopsies

Fifty-five samples of control biopsies from epileptic surgeries (n=9) and tumor biopsies (n=46)
were analyzed. The tumor biopsies belonged to three categories: high-grade [20 cases: 12
glioblastoma multiforme (GBM); 8 anaplastic astrocytoma (AA)], low-grade (17 cases: 7
meningioma; 7 schwanoma; 3 pylocitic astrocytoma), and brain metastases (9 cases: 5 from
adenocarcinoma; 4 from breast cancer). Subjects ranged in age from 17 to 54 years.

HRMAS 1H MRS using adiabatic TOBSY
We previously designed a 2D ex vivo HRMAS 1H MRS procedure for brain tumors, based on
novel concepts rooted in solid-state NMR spectroscopy (39). The rationale for our approach
is that as tumor biopsies are more solid than liquid in nature, conventional liquid-state NMR
pulse sequences that rely on scalar-coupling-mediated magnetization transfer (i.e., total
correlated spectroscopy or TOCSY) may not be the best choice for these purposes. Although
magic angle spinning (MAS) averages anisotropic interactions such as chemical shielding
anisotropy (CSA) or dipolar couplings (D), these can be reintroduced unintentionally by pulse
sequences not designed to eliminate them; hence, the scalar-coupling transfer is compromised,
and the efficiency of these pulse sequences can be dramatically altered under MAS conditions.

Briefly, we designed a pulse sequence, using symmetry principles (40) to maximize scalar-
coupling transfer under MAS conditions, for samples that are predominantly solid in character.
This was done by removing, based on the 1st order Average Hamiltonian Theory, the
anisotropic interactions (CSA and D) and the offset frequency. We modified an existing pulse
sequence, C9, which is based on a concept known as TOBSY in solid-state NMR (41). The
C9 pulse sequence has been used successfully for 13C NMR spectroscopy to study the structure
and dynamics of membrane proteins in proteoliposome samples that closely mimic tissue
properties (42). For the purposes of our project, several modifications were made to: C91

15,
and b) construct C elements from adiabatic pulses [WURST (43)] that enhance signal-to-noise
ratios and robustness with respect to radio-frequency field calibration (39).

All HRMAS 1H MRS using TOBSY experiments were performed on a Bruker Bio-Spin
Avance NMR spectrometer (600.13 MHz) using a 4-mm triple resonance (1H, 13C, 2H)
HRMAS probe (Bruker). Specimens were pre-weighed and transferred to a ZrO2 rotor tube (4
mm diameter, 50 μl), containing an external standard [trimethylsilyl propionic-2,2,3,3-d4 acid
(TSP), Mw=172, d=0.00 ppm] that functioned as a reference both for both resonance chemical
shift and quantification. The HRMAS 1H MRS was performed at -8°C with 3 kHz MAS speed
to minimize tissue degradation. Typical acquisition parameters were: 2 k points direct
dimension (13 ppm spectral width), 200 points indirect dimension (7.5 ppm spectral width), 8
scans with 2 dummy scans, 1 sec water pre-saturation, 2 sec total repetition time, 45 msec
mixing time and total acquisition time 45 min.

Analysis of 2D TOBSY MR spectra
The spectra of intact specimens were analyzed using the XWINNMR 3.5 software package
(Bruker Biospin Corp, Billerica, MA). Before Fourier transformation and phasing, the 2D free
induction decays were subjected to QSINE = 3 window apodization. Baseline correction was
then performed using a low order spline function. After Lorentzian and/or Gaussian fitting, the
area under the curves or the volumes of the 15 most intense spectra resonances were calculated.
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Relative quantification using the TSP standard was performed as described below. These
resonances were identified and assigned to the corresponding metabolites.

Quantification of brain metabolites from the 2D TOBSY MR spectra
To quantify the brain metabolites, we used the ratio of the cross peak volumes of the metabolites
[CPV(M)] to the TSP diagonal peak volume [DPV(TSP)]. This ratio was further divided by
the biopsy weight (w) to yield the normalized metabolite intensity: Ic (M) = 1/w × CPV (M)/
DPV (TSP).

Brain tumor biopsy classification strategy
We applied two classifiers: a linear support vector machine (SVM) (44) and a feed-forward
neural network using the Levenberg-Marquardt back-propagation (45) algorithm for training
(NN MLP). The SVM methods classify data by first mapping the data in a hyper-dimensional
space and subsequently separating the data into distinct clusters by defining a hyper-plane that
‘cuts’ the hyper-dimensional space into disjointed regions. The data located in one such region
belong to a single cluster. The dimensionality of the hyper-dimensional space must be higher
than that of the data space. The choice of how to map the data into the hyper-dimensional space
may be informed by the problem, or the data may be embedded using some choice of basis
functions (such as polynomial or Gaussian). Linear SVM methods search for the optimal hyper-
plane to cut the hyper-dimensional space by solving a quadratic programming problem (44).
Least-squares SVM (SVM-LS) search for the optimal separating hyper-plane by minimizing
a least-squares cost function (46). The reason for trying both versions is that the computational
cost of linear SVM methods is a rapidly increasing function of the SVM training set, whereas
SVM-LS methods are far more tractable computationally.

Artificial neural networks (ANNs) have been established as useful tools for classification and
function approximation problems (47). These networks are comprised of layers of nodes
(‘neurons’). Each node receives N inputs from N other sources (the environment or other
nodes), weighs each input by a weight (N weights total), and produces a nonlinear response -
for example, a binary response (1 when a threshold is exceeded, otherwise 0) or a sigmoidal
function for continuous output. An ANN can be built as a hierarchy of neuronal layers. The
ANN computations use both forward propagation (‘feedforward’), from the input-layer to the
output-layer nodes, and reverse propagation (‘back-propagation’), from the output-layer to the
input-layer nodes, in order to satisfy criteria of numerical convergence to a solution. Typically,
weights are initially chosen randomly, and the output is compared to the correct (known) output
for the training set. A computational search is then performed to solve for the optimal set of N
weights that minimizes the distortion of the computed output relative to the true one. An
important characteristic of ANNs is that it is not necessary to have a complete knowledge of
the relationship among the variables in the problem.

Both methods, SVM and ANN, face practical limitations from their unavoidable use of training
sets. For example, the SVM hyper-plane separating disjointed regions may be erroneously
drawn so that a new datum is placed in the wrong region (cluster); this is particularly likely
when data points belonging to different clusters are close to each other in hyper-dimensional
space. Similarly, for ANNs, the optimal weights for the training set may not accurately reflect
the optimal weights for the problem. Therefore, for both methods it is important to have
databases where new data are added and the algorithms are re-trained on the increasing total
number of cases.

Fig. 1 represents the general architecture of the classification system we used. This
classification system consists of a preprocessing step, where a subset of features is selected,
and a main step, where the subset is used as input to the main body of the classifier. The primary
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reason for selecting the feature subset (or ‘reduced feature space’) was to speed up the
numerical computation process. Two MRS feature spaces were selected: the full feature space
comprised of all 16 MRS features, and a reduced feature space comprised of 4 specific features
[choline (Cho), lactate (Lac), lipids (Lip), and n-acetyl aspartate (NAA)]. In the case of the
SVM classifier, a feature selection scheme was also used, thus producing a third MRS feature
space. Specifically, we selected the minimum redundancy/maximum relevance (MRMR)
method (48), a powerful framework for feature selection that captures class characteristics in
a broader spectrum by reducing mutual redundancy within the feature set.

The classifiers were tested by comparing their discrimination behavior to a binary classification
problem; namely, each individual class was compared against all other classes. We must note
here that during all experiments with both classifiers we adopted the standard leave-one-out
training/testing scheme; all but one element of the data was used as a training set, and the left-
out case was used for testing the predictive performance of the resulting classifier. The
performance of each classifier was evaluated using the classifications of ‘accuracy’ (the
percentage of correctly classified cases), ‘sensitivity’ (the ratio of true positives to the sum of
true positives and false negatives), and ‘specificity’ (the ratio of true negatives to the sum of
false positives and true negatives).

During all SVM classification experiments we used the LIBSVM environment
(www.csie.ntu.edu.tw/∼cjlin/libsvm), where the SVM soft-margin constant C was set to 100.
For the feed-forward neural network, we used the Matlab trainlm routine, where the number
of nodes in the hidden layer was set to 10 in all examined problems, and all nodes had the
typical sigmoid function.

Results
Table I summarizes the results obtained for the three classification methods: the linear SVM
classifier, the SVM-LS classifier, and the NN-MLP classifier. The results were quantified by
three metrics, namely, sensitivity, specificity, and accuracy. Additionally, results for the linear
SVM are presented for each of the three choices for reduced feature space, 4 features, all 16
features, and MRMR feature selection. While we might expect the full 16-feature space
classifier to outperform the two reduced-feature spaces (4 feature and MRMR), it is possible
that the other two methods could slightly outperform the full-feature space in subtyping (Table
I and Fig. 2). For instance, the typing of controls was achieved with similar accuracy,
sensitivity, and specificity whether the SVM used only 4 or all 16 features. On the other hand,
in typing high-grade biopsies, although the specificity was higher based on the subset of 4
features, the accuracy and sensitivity were much higher when all 16 features were used by the
SVM classifier. In typing low-grade biopsies, all metrics except sensitivity were higher when
all 16 features were used. For biopsies of metastatic tumors, although the sensitivity was higher
with 16 features, the specificity was very high with only 4 features. Furthermore, for metastatic
tumors, the most important metric, accuracy, was the same regardless of whether 4 or 16
features were used.

In sub-typing the biopsies, the SVM showed a higher specificity for GBMs with only 4 features,
a higher sensitivity with all 16 features, and a slightly increased accuracy when all 16 features
were used. Similar results were observed for AAs and meningiomas. In schwanomas, the
metrics did not differ whether 4 or 16 features were used, and in pilocytics, only the sensitivity
seemed to increase when more features were used. Similarly, for sub-typing metastases, more
features increased the sensitivity but did not necessarily improve the other metrics.

When feature selection was applied first using the MRMR method, most metrics increased,
with some more than others (Table I). In particular, certain metrics reached 100%. For instance,
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the accuracy, specificity, and sensitivity in typing controls, and the specificity in typing
metastases and in subtyping meningiomas, schwanomas, pilocytics, and breast cancer
metastases reached 100%.

When an SVM-LS with a radial basis function kernel (RBF Kernel) was used, the SVM-LS
slightly over-performed the linear SVM in some cases, but not consistently (Table I). For
example, the accuracy in the high-grade group was higher using the LS-SVM than using the
linear SVM with 4 features, but was less accurate than the linear SVM with 16 features or with
MRMR feature selection. The sensitivity, as a rule, was considerably worse (reduced by 50%
or more).

When we used NN MLP instead of the linear SVM (Table I), we received better results in a
few cases. For instance, the accuracy in typing low-grade brain tumor biopsies was increased,
as were the sensitivity and specificity of subtyping pilocytic astriocytomas (although the same
accuracy was obtained). Fig. 2 summarizes the performance of the linear SVM classifier
evaluated by the three metrics (sensitivity, specificity, and accuracy), for each of the three
feature selection schemes (4 features, feature selection, all features), and for tumor types
(normal, high-grade, low-grade) and subtypes [GBM, AA, meningioma, schwanoma,
pylocytic, metastasis (aden.) and metastasis (breast cancer)].

All 16 metabolites were assigned by comparison to literature data (49-51) and Tugnoli et al
(14) using 2D TOBSY spectra. Representative TOBSY MR spectra are shown in Fig. 3. Both
saturated Lip and polyunsaturated fatty acids (PUFAs), proposed to be due to apoptosis, are
prominent in high-grade tumors (i.e, GBM) and metastases. Also note that Asp is detected in
metastases from breast cancer, while GPC has not been detected in metastases. Finally, PC
levels seem to be highest in metastases. The rest of the metabolites are detected at various
levels in all tumors.

Discussion
Herein, we demonstrated for the first time that the novel 2D HRMAS 1H MRS method, which
employs the adiabatic, solid-state NMR technique TOBSY, can be used in small intact samples
to reliably detect at least 16 metabolites or biologically-relevant molecular species. We further
showed that this can be achieved on a relatively short time scale of 45 min, which is shorter
than has previously been discussed by others (52). This method was performed in combination
with a robust artificial intelligence system to characterize brain tumor biopsies with high
sensitivity, specificity, and accuracy. One principal finding of our study is that of the two
classifiers used, a linear SVM and a feed-forward neural network, the linear SVM performs
better. Also, feature selection using the MRMR method results in more robust selection of the
reduced feature space, and provides a data-driven criterion for generalizing the feature selection
as the training set changes (e.g., increases in size as more data are added). This leads to
markedly improved classification performance, which is comparable to that obtained when
using the full-feature space (Fig. 2).

Because we used a 2D MRS method, we were able to produce excellent quality data with little
overlap (Fig. 3). This might be one reason why our accuracy is better than that reported by
Poullet et al (33) who used a 1D HRMAS technique and found that SVM-LS performed better
than linear SVM. This implies that the use of SNM-LS may further improve our accuracy,
although we did find that the SVM-LS with the RBF Kernel performed worse than our linear
SVM (Table I). Central nervous system tumor biopsies are often highly size restricted, which
can make their analysis technically challenging, in particular for producing accurate MRS data.
Our more sensitive TOBSY NMR approach (39) is optimal for identifying biomarkers that can
facilitate the typing of tumor biopsies of only 2 mg in size. While we focused on brain tumors,
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the MRS of small biospecimens is equally relevant to other medically important tissues that
are size limited, such as other clinical biopsies or stem cell populations.

The findings here enhance our knowledge from prior studies (9,11,12,24,26-33,53), since they
suggest that the inclusion of more metabolites increases the performance of a given
classification system, especially its sensitivity, resulting in increased accuracy. The use of in
vivo MRS at higher field strengths, with 2D methods that allow the detection at least the same
16 metabolites that we reliably quantified here, should enable clinicians to characterize and
diagnose even inoperable brain tumors with high accuracy. This should allow appropriate
therapy selection and the non-invasive monitoring of such therapies in vivo, thereby avoiding
serial biopsies. Indeed, using molecular information to guide brain tumor therapy has been
previously suggested (54).

This study also demonstrates the feasibility of a novel and sensitive method for the molecular
or metabolic assessment of brain tumor biopsies. Since this assessment is performed at a low
temperature (-8°C), the tissue integrity is maintained, allowing clinicians to run the subsequent
histopathological, genomic, and/or proteomic analyses needed to construct molecular cancer
signatures (55-62). The biomarkers revealed by this method can be combined with those found
by the aforementioned technologies and by clinical and demographic data (i.e., tumor location,
MRI degree of contrast enhancement, MR perfusion and diffusion, age of the patient, treatment
response, and survival), enabling the unique fingerprinting of brain tumors (54). Indeed, the
impact of tumor location on the brain tumor classification by MRS has been recently reported
(32).

In addition to demonstrating the capability of HRMAS 1H MRS to classify brain tumors, we
also demonstrate here that certain molecules, or metabolites, may be putative biomarkers of
importance in certain tumors. For instance, upon visual inspection of the TOBSY spectra,
polyunsaturated fatty acids, PUFAs, a biomarker of apoptosis (63), Lip, proposed to predict
clinical grade of brain tumors (53), accumulate in malignant tumors (i.e., GBMs and
metastases) (Fig. 3). Despite being found in schwannomas, Lip were not detected in pilocytic
astrocytomas, both of which are low-grade tumors (Table I and Fig. 3). Gln and Asp were the
most significant features of pilocytic astrocytomas (an often difficult to diagnose tumor) and
metastases, respectively. Also, the significant features for GBM and anaplastic astrocytomas
were different - a distinction that is often difficult to make clinically (Table I). Others have
claimed that glycine (not shown here) may be an important biomarker for glioma
characterization (64,65), and taurine has been suggested as a putative biomarker for
medulloblastomas and PNET (12,14,66-68). Although we cannot address this here, we did note
that taurine was present in both high-grade and low-grade tumors, such as meningiomas; this
is a finding that is in agreement with Tugnoli et al who analyzed in detail different types of
meningiomas (15). As anticipated, the PC/GPC ratio, which corresponds to oncogenic
transformation, was found to be highest in metastasis (9). In order to evaluate the biological
significance of metabolites, we must first correlate metabolites with gene expression in the
tumors (16). Once done, certain genes may be implicated and particular networks identified
that will further assist the clinical guiding of brain tumor therapy and will further reveal
molecular targets for novel therapies (54,69).

Finally, the current study has certain limitations. Specifically, the number of metabolites can
be increased by further analysis of the 2D TOBSY spectra and we can train our classifiers with
a greater number of samples. This will enhance the sensitivity and specificity, thereby allowing
more accurate classification. On the other hand, we must again stress that our classification
scheme was almost acceptable, even with only 4 metabolites being used. Based on this, we
propose that the value of current clinical in vivo MRS, although revealing information of only
a few metabolites, may have additional value when combined with conventional, perfusion,
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and diffusion MRIs, clinical and demographic data, and a powerful classification strategy.
Although we are not aware of such on-going studies, certain prior reports also recommend this
approach (32,70-73).

We conclude that the use of a sensitive multidimensional MRS technique, at higher magnetic
fields and with a robust classification approach, should improve the characterization, typing,
and prognostication of brain tumors in vivo. This approach should assist in stratifying patients
for appropriate therapeutic protocols and in the monitoring of new therapies.
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Figure 1.
Building blocks of the classification system. Support vector machine (SVM) and neural
network Levenberg-Marquardt back-propagation (NN-MLP) classifiers were used. First, the
feature space is selected. All three selected feature spaces (full feature space with all 16 MRS
features, reduced feature space using the MRMR feature selection, 4 MRS features) were input
into the linear and least-squares SVM classifiers; and two feature spaces (all 16 MRS features,
4 MRS features) were input into the NN-MLP classifier. The SVM classifiers separate the data
into clusters by drawing an optimal hyperplane through the hyper-dimensional space in which
the original feature space is embedded such that it separates said hyper-dimensional space into
respective disjointed regions. In the schematic, the nearest data points from the two regions
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(two clusters) are equidistant to the optimal hyperplane at a distance Δ. The NN classifiers use
an iterative technique that combines the input/output of artificial neurons to achieve a similar
result.
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Figure 2.
Performance of the linear SVM classifier. The performance of the linear SVM classifier was
evaluated by three metrics (sensitivity, specificity, and accuracy), for each of the three feature
selection schemes (4 features, feature selection, all features), and for tumor type (normal, high-
grade, low-grade) and subtype [GBM, AA, meningioma, schwanoma, pylocytic, metastasis
(aden.) and metastasis (breast cancer)]. Sensitivity was primarily increased with the combined
SVM+MRMR approach (black bars) in high-grade biopsies, specificity was increased in low-
grade biopsies, and both sensitivity and specificity were affected in metastases, resulting in
higher accuracy.
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Figure 3.
Total through-bond spectroscopy (TOBSY) using ex vivo HRMAS MRS on control and tumor
tissue biopsies. HRMAS 1H MR spectra using TOBSY, with 45 msec mixing time, 3 kHz MAS
speed, and -8°C at 600 MHz. A, Control; B, Glioblastoma multiforme (GBM); C, Schwannoma
(Sch); D, Pilocytic astrocytoma (PA); E, Metastasis from adenocarcinoma (Met Aden); F,
Metastasis from breast cancer (Met BCa). (Ala, alanine; Cho, choline; GABA, γ-amino-butyric
acid; Gln, glutamine; Glu, glutamate; GPC, glycerophosphocholine; Lip, lipids; Myo,
myoinositol; PC, phosphocholine; PE, phosphoethanolamine; PUFA, polyunsaturated fatty
acids; Tau, taurine). Note that Cho, PC, GPC, PE, Etn, are clearly separable here due to the
use of the 2D TOBSY method.
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