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Approximate Bayesian computation (ABC) methods can be used to evaluate posterior
distributions without having to calculate likelihoods. In this paper, we discuss and apply an
ABC method based on sequential Monte Carlo (SMC) to estimate parameters of dynamical
models. We show that ABC SMC provides information about the inferability of parameters
and model sensitivity to changes in parameters, and tends to perform better than other ABC
approaches. The algorithm is applied to several well-known biological systems, for which
parameters and their credible intervals are inferred. Moreover, we develop ABC SMC as a
tool for model selection; given a range of different mathematical descriptions, ABC SMC is
able to choose the best model using the standard Bayesian model selection apparatus.
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1. INTRODUCTION

Most dynamical systems studied in the physical, life
and social sciences and engineering are modelled by
ordinary, delay or stochastic differential equations.
However, for the vast majority of systems and particu-
larly for biological systems, we lack reliable information
about parameters and frequently have several competing
models for the structure of the underlying equations.
Moreover, the biological experimental data are often
scarce and incomplete, and the likelihood surfaces of
large models are complex. The analysis of such dynamical
systems therefore requires new, more realistic quantita-
tive and predictive models. Here, we develop novel
statistical tools that allow us to analyse such data in
terms of dynamical models by (i) providing estimates for
model parameter values, and (ii) allowing us to compare
the performance of different models in describing the
overall data.

In the last decade, extensive research has been
conducted on estimating the parameters of deterministic
systems.Muchattentionhas been given to local and global
nonlinear optimization methods (Mendes & Kell 1998;
Moles et al. 2003) and, generally, parameter estimation
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has been performed by maximum-likelihood estimation
(Muller et al. 2004; Timmer & Muller 2004; Baker et al.
2005; Bortz & Nelson 2006). The methods developed
for ordinary differential equations have been extended
to ordinary differential equations with time delays
(Horbelt et al. 2002). Deterministic models have
also been parametrized in a Bayesian framework
using Bayesian hierarchical models (Putter et al.
2002; Banks et al. 2005; Huang et al. 2006). Simulated
annealing, which attempts to avoid getting trapped in
local minima, is another well-known optimization
algorithm that has been found successful in various
applications (Kirkpatrick et al. 1983; Mendes & Kell
1998). There are also several Monte Carlo-based
approaches applied to the parameter estimation of
deterministic (Battogtokh et al. 2002; Brown & Sethna
2003) and stochastic (Sisson et al. 2007) systems.
The parameter estimation for stochastic models has
been extensively explored in financial mathematics
(Johannes & Polson 2005) and has been applied to
biological systems in a frequentist maximum likelihood
(Reinker et al. 2006) and Bayesian (Golightly &
Wilkinson 2005, 2006; Wilkinson 2006) framework.

Most commonly, model selection has been performed
by likelihood ratio tests (in the case of nested models)
or the Akaike information criterion (in the case of
non-nested models). Recently, Bayesian methods have
increasingly been coming into use. Vyshemirsky &
Girolami (2008) have investigated different ways
of computing the Bayes factors for model selection
of deterministic differential equation models, and
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Brown & Sethna (2003) have used the Bayesian
information criterion. In population genetics, model
selection has been performed using approximate
Bayesian computation (ABC) in its basic rejection
form (Zucknick 2004; Wilkinson 2007) and coupled
with multinomial logistic regression (Beaumont 2008a;
Fagundes et al. 2007).

There is thus a wide variety of tools available
for parameter estimation and, to a lesser extent, model
selection. However, to our knowledge, no method avail-
able can be applied to all different kinds of modelling
approaches (e.g. ordinary or stochastic differential
equations with and without time delay) without sub-
stantial modification, estimate credible intervals from
incomplete or partially observed data, reliably explore
the whole parameter space without getting trapped in
local extrema and be employed for model selection.

In this paper, we apply an ABC method based on
sequential Monte Carlo (SMC) to the parameter
estimation and model selection problem for dynamical
models. In ABC methods, the evaluation of the
likelihood is replaced by a simulation-based procedure
(Pritchard et al. 1999; Beaumont et al. 2002; Marjoram
et al. 2003; Sisson et al. 2007). We explore the
information provided by ABC SMC about the infer-
ability of parameters and the sensitivity of the model to
parameter variation. Furthermore, we compare the
performance of ABC SMC with other ABC methods.
The method is illustrated on two simulated datasets
(one from ecology and another from molecular systems
biology), and real and simulated epidemiological
datasets. As we will show, ABC SMC yields reliable
parameter estimates with credible intervals, can be
applied to different types of models (e.g. deterministic
as well as stochastic models), is relatively computa-
tionally efficient (and easily parallelized), allows for
discrimination among sets of candidate models in a
formal Bayesian model selection sense and gives us an
assessment of parameter sensitivity.
2. METHODS

In this section, we review and develop the theory
underlying ABC with emphasis on applications to
dynamical systems, before introducing a formal Baye-
sian model selection approach in an ABC context.

2.1. Approximate Bayesian computation

ABC methods have been conceived with the aim of
inferring posterior distributions where likelihood func-
tions are computationally intractable or too costly to
evaluate. They exploit the computational efficiency
of modern simulation techniques by replacing the
calculation of the likelihood with a comparison between
the observed and simulated data.

Let q be a parameter vector to be estimated. Given
the prior distribution p(q), the goal is to approximate
the posterior distribution, p(qjx)ff(xjq)p(q), where
f(xjq) is the likelihood of q given the data x. The ABC
methods have the following generic form.

1. Sample a candidate parameter vector q� from some
proposal distribution p(q).
J. R. Soc. Interface (2009)
2. Simulate a dataset x� from the model described by a
conditional probability distribution f(xjq�).

3. Compare the simulated dataset, x�, with the experi-
mental data, x0, using a distance function, d, and
tolerance e; if d(x0, x

�)%e, accept q�. The tolerance
eR0 is thedesired level of agreementbetweenx0 andx

�.

The output of an ABC algorithm is a sample of
parameters from a distribution p(qjd(x0, x�)%e). If e is
sufficiently small, then the distribution p(qjd(x0, x�)%e)
will be a good approximation for the posterior distri-
bution p(qjx0). It is often difficult to define a suitable
distance function d(x0, x

�) between the full datasets, so
one may instead replace it with a distance defined on
summary statistics, S(x0) and S(x

�), of the datasets. That
is, the distance function may be defined as d(x0, x

�)Z
d 0(S(x0), S(x

�)), where d 0 is a distance function defined
on the summary statistic space. However, here, as we
consider values of a dynamical process at a set of time
points, we are able to compare the datasets directly
without the use of summary statistics. In any case, the
algorithms take the same form.

The simplest ABC algorithm is the ABC rejection
sampler (Pritchard et al. 1999), which is as follows.

R1 Sample q� from p(q).
R2 Simulate a dataset x� from f(x jq�).
R3 If d(x0, x

�)%e, accept q�, otherwise reject.
R4 Return to R1.

The disadvantage of the ABC rejection sampler is
that the acceptance rate is low when the prior distri-
bution is very different from the posterior distribution.
To avoid this problem, anABCmethod based onMarkov
chain Monte Carlo was introduced (Marjoram et al.
2003). The ABC MCMC algorithm proceeds as follows.

M1 Initialize qi , iZ0.

M2 Propose q� according to a proposal distribution
q(qjqi).

M3 Simulate a dataset x� from f(x jq�).
M4 If d(x0, x

�)%e, go to M5, otherwise set qiC1Zqi
and go toM6.

M5 Set qiC1Zq� with probability

aZmin 1;
pðq�Þqðqijq�Þ
pðqiÞqðq�jqiÞ

� �

and qiC1Zqi with probability 1Ka.
M6 Set iZiC1, go toM2.

The outcome of this algorithm is a Markov chain with
the stationary distribution p(qjd(x0, x�)%e) (Marjoram
et al. 2003). That is, ABC MCMC is guaranteed to
converge to the target approximate posterior distri-
bution. Note that if the proposal distribution is sym-
metric, q(qi jq�)Zq(q�jqi), then a depends only on the
prior distribution. Furthermore, if the prior is uniform,
then aZ1 in M5. Potential disadvantages of the ABC
MCMC algorithm are that the correlated nature of
samples coupled with the potentially low acceptance
probability may result in very long chains and that the
chain may get stuck in regions of low probability for long
periods of time.



Table 1. Interpretation of the Bayes factor (adapted from
Kass & Raftery 1995).

the value of the Bayes
factor B12

evidence against m2

(and in favour of m1)

1–3 very weak
3–20 positive
20–150 strong
O150 very strong
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The above-mentioned disadvantages of ABC rejec-
tion and ABC MCMC methods can, at least in part, be
avoided in ABC algorithms based on SMCmethods, first
developed by Sisson et al. (2007). In this paper, we derive
ABC SMC from a sequential importance sampling (SIS)
algorithm (Del Moral et al. 2006); see appendix A for
the derivation and appendix B for a comparison with the
algorithm of Sisson et al. (2007).

In ABC SMC, a number of sampled parameter values
(called particles), {q(1),., q(N )}, sampled from the prior
distribution p(q), are propagated through a sequence of
intermediate distributions, p(qjd(x0, x�)%ei), iZ1,.,
TK1, until it represents a sample from the target
distribution p(qjd(x0, x�)%eT). The tolerances ei are
chosen such that e1O/OeTR0, thus the distributions
gradually evolve towards the target posterior. For
sufficiently large numbers of particles, the population
approach can also, in principle, avoid the problem of
getting stuck in areas of low probability encountered in
ABC MCMC. The ABC SMC algorithm proceeds
as follows.1

S1 Initialize e1,., eT.
Set the population indicator tZ0.

S2.0 Set the particle indicator iZ1.
S2.1 If tZ0, sample q�� independently from p(q).

Else, sample q� from the previous population
1For a mo
applicatio

J. R. Soc.
fqðiÞtK1g with weights wtK1 and perturb the
particle to obtain q��wKt(qjq�), where Kt is a
perturbation kernel.
If p(q��)Z0, return to S2.1.
Simulate a candidate dataset x�wf ðxjq��Þ.
If d(x�, x0)Ret, return to S2.1.
S2.2 Set q
ðiÞ
t Zq�� and calculate the weight for

particle q
ðiÞ
t ,

w
ðiÞ
t Z

1; if t Z 0;

pðqðiÞt Þ
XN
jZ1

w
ð jÞ
tK1Ktðq

ð jÞ
tK1; q

ðiÞ
t Þ

; if tO0:

8>>>>><
>>>>>:

If i!N, set iZiC1, go to S2.1.

S3 Normalize the weights.

If t!T, set tZtC1, go to S2.0.

Particles sampled from the previous distribution are
denoted by a single asterisk, and after perturbation these
particles are denoted by a double asterisk. Here, we
choose the perturbation kernel Kt to be a random walk
(uniform or Gaussian). Note that for the special case
when TZ1, the ABC SMC algorithm corresponds to the
ABC rejection algorithm.
2.2. Model selection

Here, we introduce an ABC SMC model selection
framework that employs standard concepts from
Bayesian model selection, including Bayes factors
(a comprehensive review of Bayesian model selection
can be found in Kass & Raftery 1995). Let m1 and
re general version of the algorithm, suitable especially for
n to stochastic models, see appendix A.

Interface (2009)
m2 be two models; we would like to choose which
model explains the data x better. The Bayes factor is
defined as

B12 Z
Pðm1jxÞ=Pðm 2jxÞ
Pðm1Þ=Pðm 2Þ

; ð2:1Þ

where P(mi) is the prior and P(mijx) is the marginal
posterior distribution of model mi , iZ1, 2. If the priors
are uniform, then (2.1) simplifies to

B12 Z
Pðm1jxÞ
Pðm 2jxÞ

: ð2:2Þ

The Bayes factor is a summary of the evidence provided
by the data in favour of one statistical model over
another (see table 1 for its interpretation).

There are several advantages of Bayesian model
selection when compared with traditional hypothesis
testing. First, the models being compared do not need to
be nested. Second, the Bayes factors do not only weigh
the evidence against a hypothesis (in our case m2), but
can equally well provide evidence in favour of it. This is
not the case for traditional hypothesis testing where a
small p-value only indicates that the null model has
insufficient explanatory power. However, one cannot
conclude from a large p-value that the two models are
equivalent, or that the null model is superior, but only
that there is not enough evidence to distinguish between
the two. In other words, ‘failing to reject’ the null
hypothesis cannot be translated into ‘accepting’ the null
hypothesis (Cox & Hinkley 1974; Kass & Raftery 1995).
Third, unlike the posterior probability of the model, the
p-value does not provide any direct interpretation of the
weight of evidence (the p-value is not the probability
that the null hypothesis is true).

Here, we approach the model selection problem by
including a ‘model parameter’ m2{1,.,M}, where M
is the number of models, as an additional discrete
parameter and denote the model-specific parameters as
qðmÞZðqðmÞð1Þ;.; qðmÞðkmÞÞ, mZ1,.,M, where km
denotes the number of parameters in model m.

In each population, we start by sampling a model
indicator m from the prior distribution p(m). For model
m, we then propose new particles by perturbing the
particles from the previous population specific tom; this
step is the same as in the parameter estimation
algorithm. The weights for particles q(m) are also calcu-
lated in a similar way as in the parameter estimation
algorithm for m.

TheABC SMC algorithm for model selection proceeds
as follows.2
2In the stochastic framework, we again suggest using the general form
of the algorithm with BtO1; see appendix A.
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MS1 Initialize e1,., eT.
Set the population indicator tZ0.
MS2.0 Set the particle indicator iZ1.
MS2.1 Sample m� from p(m).

If tZ0, sample q�� from p(q(m�)).

If tO0, sample q� from the previous population
J. R. So
{q(m�)tK1} with weights w(m�)tK1.
Perturb the particle q� to obtain q��w
Kt(qjq�).
If p(q��)Z0, return to MS2.1.
Simulate a candidate dataset x�wf(xjq��,m�).
If d(x�, x0)Ret, return to MS2.1.
MS2.2 Setm
ðiÞ
t Zm� and add q�� to the population of

particles {q(m�)t}, and calculate its weight as,

w
ðiÞ
t Z

1; if t Z 0;

pðq��Þ
XN
jZ1

w
ðjÞ
tK1Ktðq

ðjÞ
tK1; q

��Þ
; if tO0:

8>>>>><
>>>>>:

If i!N, set iZiC1, go to MS2.1.

MS3 For every m, normalize the weights.

If t!T, set tZtC1, go toMS2.0.
The outputs of the ABC SMC algorithm are the
approximations of the marginal posterior distribution
of the model parameter P(mjx) and the marginal
posterior distributions of parameters Pðqijx;mÞ, mZ
1,.,M, iZ1,., km. Note that it can happen that a
model dies out (i.e. there are no particles left that belong
to a particular model) if it offers only a poor description
of the data. In this case, the sampling of particles
continues from the remaining models only.

The Bayes factors can be obtained directly from
P(mjx) using equation (2.2). However, in many cases
there will not be a single best and most powerful/explan-
atory model (Stumpf & Thorne 2006). More commonly,
different models explain different parts of the data to a
certain extent. One can average over these models to
obtain a better inference than from a single model only.
The approximation of the marginal posterior distri-
bution of the model, P(mjx), which is the output of
the above algorithm, can be used for Bayesian model
averaging (Hoeting et al. 1999).

The parameter estimation for each of the models is
performed simultaneously with the model selection. The
model with the highest posterior probability will
typically have the greatest number of particles, thereby
ensuring a good estimate of the posterior distribution of
the parameters. However, some models are poorly
represented in the marginal posterior distribution of m
(i.e. only a small number of particles belong to these
models), and so the small number of particles does not
provide a very good estimate of the posterior distri-
butions of the parameters. Therefore, one might wish
to estimate parameters for these models independently.

We note that the ABC SMC model selection
algorithm implicitly penalizes the models with a large
number of parameters; the higher the parameter
dimension is, the smaller is the probability that the
perturbed particle is accepted.
c. Interface (2009)
2.3. Implementation of the algorithm

The algorithm is implemented in CCC. For the ODE
solver code, the fourth-order classical Runge–Kutta
algorithm from the GNU Scientific Library (Galassi
2003) is used; for the simulation of stochastic models,
we use the Gillespie algorithm (Gillespie 1977); and for
the simulation of delay differential equations, we
implemented the algorithm based on the adaptive step-
size ODE solvers from Numerical recipes in C (Press
et al. 1992) extended by code handling the delay part
according to Paul (1992) and Enright & Hu (1995).
3. RESULTS

We demonstrate the performance of the ABC algori-
thms using the simulated data from deterministic and
stochastic systems. The data points were obtained by
solving the systems for some fixed parameters at chosen
time points. The sizes of the input datasets were chosen
to reflect what can typically be expected in real-world
datasets in ecology, molecular systems biology and
epidemiology. The first two examples highlight the
computational performance of ABC SMC, the problem
of inferability of dynamical models and its relationship
to parameter sensitivity. The third example illustrates
the use of ABC SMC for model selection, which is then
further demonstrated in an application to a real dataset.
3.1. Parameter inference for the deterministic
and stochastic Lotka–Volterra model

The first model is the Lotka–Volterra (LV) model
(Lotka 1925; Volterra 1926) describing the interaction
between prey species, x, and predator species, y, with
parameter vector qZ(a, b),

dx

dt
Z axKxy; ð3:1aÞ

dy

dt
Z bxyKy: ð3:1bÞ

3.1.1. Computational efficiency of ABC SMC applied
to deterministic LV dynamics. The data {(xd, yd)} are
noisy observations of the simulated system with
parameter values set at (a, b)Z(1, 1). We sample eight
data points (for each of the species) from the solution of
the system for parameters (a, b)Z(1, 1) and add
Gaussian noise N (0, (0.5)2) (figure 1a). Let the distance
function d((xd, yd), (x, y)) between the data {xd[i ], yd[i ]},
iZ1, ., 8, and a simulated solution for proposed
parameters, {(x[i ], y[i ])}, be the sum of squared errors,

dððx; yÞ; ðxd ;ydÞÞZ
X
i

ðx½i �Kxd ½i �Þ2Cðy½i �Kyd ½i �Þ2
� �

:

ð3:2Þ
In appendix C we show that this distance function is,
in fact, related to the conventional likelihood treatment
of ODEs.

The distance between our noisy data and the
deterministic solution for (a, b)Z(1, 1) from which the
data were generated is 4.23, so the lowest distance to be



Table 2. Cumulative number of data generation steps needed
to accept 1000 particles in each population for deterministic
LV dynamics.

population 1 2 3 4 5

data generation
steps

26 228 36 667 46 989 49 271 52 194

0 5 10 15

0

1

2

3

4
(b)(a)

0.7 0.9 1.1 1.3 0.6 1.0 1.4

0

500

300

100

Figure 1. (a) Trajectories of prey (solid curve) and predator (dashed curve) populations of the deterministic LV system and the
data points (circles, prey data; triangles, predator data). (b) Parameters inferred by the ABC rejection sampler.
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reached is expected to be close to this number and we
choose the tolerance e accordingly.

First, we apply the ABC rejection sampler approach
with eZ4.3. The prior distributions for a and b are taken
to be uniform, a, bwU(K10, 10). In order to obtain 1000
accepted particles, approximately 14.1 million data
generation steps are needed, which means that the
acceptance rate (7!10K5) is extremely low. The inferred
posterior distributions are shown in figure 1b.

Applying the ABC MCMC scheme outlined above
yields results comparable to those of ABC rejec-
tion, and after a careful calibration of the approach
(using an adaptive Gaussian proposal distribution),
we manage markedly to reduce the computational
cost (including burn-in, we had to generate between
40 000 and 60 000 simulations in order to obtain 1000
independent particles).

Next, we apply the ABC SMC approach. The prior
distributions for a and b are taken to be uniform, a,
bwU(K10, 10), and the perturbation kernels for both
parameters are uniform, KtZsU(K1, 1), with sZ0.1.
The number of particles in each population is NZ1000.
To ensure the gradual transition between populations,
we take TZ5 populations with eZ(30.0, 16.0, 6.0,
5.0, 4.3). The results are summarized in table 2 and
figure 2. From the last population (population 5), it can
be seen that both parameters are well inferred
(a: medianZ1.05, 95% quantile rangeZ[1.00,1.12];
b: medianZ1.00, 95% quantile rangeZ[0.87,1.11]). The
outcome is virtually the same as previously obtained by
the ABC rejection sampler (figure 1b); however, there is
a substantial reduction in the number of steps needed to
reach this result. For this model, the ABC SMC
algorithm needs 50 times fewer data generation steps
than the ABC rejection sampler, and about the same
J. R. Soc. Interface (2009)
number of data generation steps as the adaptive ABC
MCMC algorithm.

The analyses were repeated with different distance
functions, such as

dððx; yÞ; ðxd ; ydÞÞZ
X
i

jx½i�K xd ½i�jC jy½i�K yd ½i�jð Þ

ð3:3Þ
and

dððx; yÞ; ðxd ; ydÞÞZ 2K
x$xd

kxkkxdk
K

y$yd
kykkydk

; ð3:4Þ

where the dot denotes the inner product. As expected,
the resulting approximations of posterior distributions
are very similar (histograms not shown). Replacing the
uniform perturbation kernel by a Gaussian kernel also
yields the same results, but requires more simulation
steps (results not shown).
3.1.2. ABC SMC inference for stochastic LV dynamics.
Having obtained good estimates for the deterministic
case, next, we try to infer parameters of a stochastic LV
model. The predator–prey process can be described by
the following rate equations:

aCX/2X with rate c1; ð3:5aÞ

X CY/2Y with rate c2; ð3:5bÞ

Y/0/ with rate c3; ð3:5cÞ
where X denotes the prey population; Y is the predator
population; anda is thefixedamountof resourceavailable
to the prey (we fix it to aZ1). These reactions define
the stochastic master equation (van Kampen 2007)

vPðx; y; tÞ
vt

Z c1aðxK1ÞPðxK1; y; tÞ

Cc2ðxC1ÞðyK1ÞPðxC1; yK1; tÞ
Cc3ðyC1ÞPðx; yC1; tÞ
Kðc1axCc2xyCc3yÞPðx; y; tÞ: ð3:6Þ

The ABC approach can easily be applied to inference
problems involving master equations, because there
exists anexact simulationalgorithm(Gillespie algorithm;
Gillespie 1977; Wilkinson 2006).

Our simulated data consist of 19 data points for each
species with rates (c1, c2, c3)Z(10, 0.01, 10) and initial
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Figure 2. Histograms of populations (a) 0 (uniform prior
distribution), (b) 1, (c) 2, (d ) 3, (e) 4 and ( f ) 5 (approximation
of posterior distribution) of parameters (i) a and (ii) b of the
LV system.
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Figure 3. Histograms of the approximated posterior distri-
butions of parameters (a) c1, (b) c2 and (c) c3 of the
stochastic LV dynamics.
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conditions (X0, Y0)Z(1000, 1000). The distance func-
tion is the square root of the sum of squared errors (3.2)
and the SMC algorithm is run for TZ5 populations with
eZ(4000, 2900, 2000, 1900, 1800). Especially in labora-
tory settings, the results from several replicate experi-
ments are averaged over; here, we therefore also use
data averaged over three independent replicates.
The simulated data at every run are then, just as the
experimental data, averaged over three runs. For
inference purposes, the average over several runs tends
to hold more information about the system’s mean
dynamics than a single stochastic run. If the experi-
mental data consisted of one run only, i.e. if there
were no repetitions, then the inference could in principle
proceed in the sameway, by comparing the experimental
data with a single simulated run. This would result in
a lower acceptance rate and, consequently, more data
generation steps to complete the inference.

We generate NZ100 particles per population and
assign the prior distributions of the parameters to
be p(c1)ZU(0, 28), p(c2)ZU(0.0, 0.04) and p(c3)Z
U(0, 28), reflecting the respective orders of magnitude
of the simulated parameters (if a larger domain for p(c2)
J. R. Soc. Interface (2009)
is taken, there are no accepted instances for c2O0.04).
Perturbation kernels are uniform with sc1Z sc 3

Z1:0
and sc 2Z0:0025, and BtZ10. The results are sum-
marized in figure 3.
3.2. Parameter inference for the deterministic
and stochastic repressilator model

The repressilator (Elowitz & Leibler 2000) is a popular
toy model for gene regulatory systems and consists
of three genes connected in a feedback loop, where
each gene transcribes the repressor protein for the next
gene in the loop. The model consists of six ordinary
differential equations and four parameters, which are
as follows:

dm1

dt
ZKm1 C

a

1Cpn3
Ca0; ð3:7aÞ

dp1
dt

ZKbðp1Km1Þ; ð3:7bÞ

dm 2

dt
ZKm 2 C

a

1Cpn1
Ca0; ð3:7cÞ
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Figure 4. (a) Histograms of the approximate marginal posterior distributions of parameters a0, n, b and a of the deterministic
repressilator model. (b) The normalized 95% interquantile ranges (qr) of each population. The narrower the interval for a given
tolerance et, the more sensitive the model is to the corresponding parameter. The interquantile range reached in population 9 is
determined by the added experimental noise. As e9 was chosen accordingly, one cannot proceed by lowering the tolerance further.
The sharp change in the interquantile ranges, which occurs, for example, for parameter a0 between populations 1 and 2, can be
explained by the steep gradient of the likelihood surface along a0. (c) The output (i.e. the accepted particles) of the ABC SMC
algorithm as two-dimensional scatterplots. The particles from population 1 are in yellow, particles from population 4 in black,
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dp2

dt
ZKbðp2Km 2Þ; ð3:7dÞ

dm 3

dt
ZKm 3 C

a

1Cpn2
Ca0; ð3:7eÞ

dp3
dt

ZKbðp3Km3Þ: ð3:7f Þ
J. R. Soc. Interface (2009)
3.2.1. Inferability and sensitivity in deterministic repres-
silator dynamics. Let qZ(a0,n, b, a) be the parameter
vector. For the simulated data, the initial conditions are
(m1, p1,m2, p2,m3, p3)Z(0, 2, 0, 1, 0, 3) and the values of
parameters are qZ(1, 2, 5, 1000); for these parameters
the repressilator displays limit-cycle behaviour. We
assume that only the mRNA (m1,m2,m3) measurements
are available and the protein concentrations are
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considered as missing data. Gaussian noise N (0, 52) is
added to the data points. The distance function is
defined to be the square root of the sum of squared
errors. The prior parameter distributions are chosen
as follows: p(a0)ZU(K2, 10); p(n)ZU(0, 10); p(b)Z
U(K5, 20); and p(a)ZU(500, 2500). We assume that
the initial conditions are known.

The results are summarized in figure 4a–d, where
we show the approximate posterior distributions, the
changes in 95% interquantile ranges of parameter
estimates across the populations and scatterplots of
some of the two-dimensional parameter combinations.
Each parameter is easily inferred when the other three
parameters are fixed (histograms not shown). When the
algorithm is applied to all four parameters simultaneously,
parameter n is inferred the quickest and has the smallest
posterior variance, while parameter a is barely inferable
and has large credible intervals (figure 4a,c).

We find that ABC SMC recovers the intricate link
between model sensitivity to parameter changes and
inferability of parameters. The repressilator system is
most sensitive to changes in parameter n and least
sensitive to changes in a. Hence, the data appear to
contain little information about a. Thus, ABC SMC
provides us with a global parameter sensitivity analysis
(Sanchez & Blower 1997) on the fly as the intermediate
distributions are being constructed. Note that the
intermediate distributions are nested in one another
(as should be the case in SMC; figure 4c). An attempt to
visualize the four-dimensional posterior distributions
can be accessed in the electronic supplementary material
where we provide an animation in which the posterior
distribution in the four-dimensional parameter space is
projected onto two-dimensional planes.

The interquantile ranges and the scatterplots provide
an initial impression of parameter sensitivity; however,
the first problem with scatterplots is that it is increas-
ingly difficult to visualize the behaviour of the model
with increasing parameter dimension. Second, we have to
determine the sensitivity when a combination of para-
meters is varied (andnot just individual parameters), and
this cannot be visualized via simple one-dimensional
interquantile ranges or two-dimensional scatterplots.

We can use principal component analysis (PCA) to
quantify the sensitivity of the system (Saltelli et al. 2008).
The output of the ABC SMC algorithm, which we are
going to use for our sensitivity analysis, is the last
population of N particles. Associated with the accepted
particles is their variance–covariance matrix, S, of
rank p, where p denotes the dimension of the parameter
vector. The principal components (PCs) are the eigen-
vectors of S, which define a set of eigenparameters,
ciZai1q1C/Caipqp. Here, aiZ(ai1, ., aip) is the
normalized eigenvector associated with the ith eigenvalue
of S, li, and aij describes the projection of parameter qj
onto the ith eigenparameter. The PCA provides an
orthogonal transformation of the original parameter
space and the PCs can be taken to define a p-dimensional
ellipsoid that approximates the population of data points
(i.e. the accepted particles), and the eigenvalues specify
the p corresponding radii. The variance of the ith PC is
given by li and the total variance of all PCs equalsPp

iZ1 liZtraceðSÞ. Therefore, the eigenvalue li
J. R. Soc. Interface (2009)
associated with the ith PC explains a proportion
li

traceðSÞ ð3:8Þ

of thevariation in thepopulationofpoints.The smaller the
li, the more sensitive the system is to the variation of the
eigenparameter ci. The PCA yields only an approximate
accountof sensitivity similar towhatwouldbeobtainedby
computing the Hessian around the mode of the posterior
distribution.

Figure 4d summarizes the output of the PCA. It
shows how much of the variance is explained by each
PC, and which parameters contribute the most to these
PCs. In contrast to the interest in the first PC in most
PCA applications, our main interest lies in the smallest
PC. The last PC extends across the narrowest region
of the posterior parameter distribution, and therefore
provides information on parameters to which the model
is the most sensitive. In other words, the smaller PCs
correspond to stiff parameter combinations, while the
larger PCs may correspond to sloppy parameter
combinations (Gutenkunst et al. 2007).

The analysis reveals that the last PC mainly extends
in the direction of a linear combination of parameters n
and b, from which we can conclude that the model is
most sensitive to changes in these two parameters.
Looking at the third component, the model is somewhat
less sensitive to variation in a0. The model is therefore
the least sensitive to changes in parameter a, which is
also supported by the composition of the second PC.
This outcome agrees with the information obtained from
the interquantile ranges and the scatterplots.
3.2.2. Inference of the stochastic repressilator dynamics.
Next, we apply ABC SMC to the stochastic repressilator
model. We transformed the deterministic model (3.7)
into a set of the following reactions:

0//mi with hazard
a

1Cpnj
Ca0; ð3:9aÞ

mi/0/ with hazard mi; ð3:9bÞ

mi/mi Cpi with hazard bmi; ð3:9cÞ

pi/0/ with hazard bpi; ð3:9dÞ

where iZ1, 2, 3 and, correspondingly, jZ3, 1, 2. The
stochastic process defined by these reactions can
be simulated with the Gillespie algorithm. True
parameters and initial conditions correspond to
those of the deterministic case discussed previously.
The data include both mRNA and protein levels
at 19 time points. Tolerances are chosen as
eZ{900, 650, 500, 450, 400}, the number of parti-
cles NZ200 and BtZ5. The prior distributions are
chosen as follows: p(a0)ZU(0, 10); p(n)ZU(0, 10);
p(b)ZU(K5, 20); and p(a)ZU(500, 2500).

The inference results for comparing the average
over 20 simulations with the data generated from the
average of 20 simulations are summarized in figure 5a,b.
Figure 5a,b shows that parameters n and b get
reasonably well inferred, while a0 and a are harder to
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infer. It is clearly noticeable that parameters are better
inferred in the deterministic case (figure 4a).
3.2.3. Contrasting inferability for the deterministic and
stochastic dynamics. Analysing and comparing the
results of the deterministic and stochastic repressilator
dynamics shows that parameter sensitivity is intimately
linked to inferability. If the system is insensitive to
a parameter, then this parameter will be hard (or even
impossible) to infer, as varying such a parameter does
not vary the output—which here is the approximate
posterior probability—very much. In stochastic pro-
blems, we may furthermore have the scenario where the
fluctuations due to small variations in one parameter
overwhelm the signals from other parameters.
3.3. Model selection on different SIR models

We illustrate model selection using a range of simple
models that can describe the epidemiology of infectious
diseases. SIR models describe the spread of such disease
in a population of susceptible (S ), infected (I ) and
recovered (R) individuals (Anderson & May 1991). The
simplest model assumes that every individual can be
infected only once and that there is no time delay
between the individual getting infected and their ability
to infect other susceptible individuals,

_S ZaKgSIKdS; ð3:10aÞ

_I ZgSIKvIKdI ; ð3:10bÞ

_RZ vIKdR; ð3:10cÞ
where _x denotes the time derivative of x, dx/dt.
Individuals, who are born at rate a, are susceptible; d
is thedeath rate (irrespectiveof thedisease class,S, IorR);
g is the infection rate; and v is the recovery rate.

The model can be made more realistic by adding a
time delay t between the time an individual gets infected
and the time when they become infectious,

_S ZaKgSI ðtKtÞKdS; ð3:11aÞ
_I ZgSI ðtKtÞKvIKdI ; ð3:11bÞ

_RZ vIKdR: ð3:11cÞ
Another way of incorporating the time delay into

the model is by including a population of individuals
in a latent (L) phase of infection; in this state, they
are infected but cannot yet infect others. The equations
then become

_S ZaKgSIKdS; ð3:12aÞ
_LZgSIKdLKdL; ð3:12bÞ
_I Z dLKvIKdI ; ð3:12cÞ

_RZ vIKdR: ð3:12dÞ
Here, d denotes the transition rate from the latent to the
infective stage.

Another extension of the basic model (3.10) allows
the recovered individuals to become susceptible again
J. R. Soc. Interface (2009)
(with rate e),

_S ZaKgSIKdSCeR; ð3:13aÞ

_I ZgSIKvIKdI ; ð3:13bÞ

_RZ vIKðdCeÞR: ð3:13cÞ
There are obviously manymore ways of extending the

basic model, but here we restrict ourselves to the four
models described above. Given the same initial con-
ditions, the outputs of all models are very similar, which
makes it impossible to choose the right model by visual
inspection of the data alone. Therefore, some more
sophisticated, statistically based methods need to be
applied for selecting the best available model. Therefore,
we apply the ABC SMC algorithm for model selection,
developed in §2.2. We define a model parameter m2
{1, 2, 3, 4}, representing the above models in the same
order, and model-specific parameter vectors q(m): qð1ÞZ
ða;g; d; vÞ; qð2ÞZða;g; d; v; tÞ; qð3ÞZða;g; d; v; dÞ;
and qð4ÞZða;g; d; v; eÞ.

The experimental data consist of 12 data points from
each of the three groups (S, I and R). If the data are very
noisy (Gaussian noise with standard deviation sZ1 was
added to the simulated data points), then the algorithm
cannot detect a single best model, which is not surprising
given the high similarity of model outputs. However, if
intermediate noise is added (Gaussian noise with
standard deviation sZ0.2), then the algorithm produces
a posterior estimate with the most weight on the correct
model. An example is shown in figure 6, where the
experimental data were obtained from model 1 and
perturbed by Gaussian noise, N (0, (0.2)2). Parameter
inference is performed simultaneously with the model
selection (posterior parameter distributions not shown).

The Bayes factor can be calculated from the marginal
posterior distribution of m, which we take from the final
population. From 1000 particles, model 1 (basic model)
was selected 664 times, model 2 230 times, model 4 106
times and model 3 was not selected at all in the
final population. Therefore, we can conclude from the
Bayes factors

B1;2 Z
664

230
Z 2:9; ð3:14Þ

B1;4 Z
664

106
Z 6:3; ð3:15Þ

B2;4 Z
230

106
Z 2:2; ð3:16Þ

that there is weak evidence in favour of model 1 when
compared with model 2 and positive evidence in favour
of model 1 when compared with model 4. Increasing the
amount of data will, however, change the Bayes factors
in favour of the true model.
3.4. Application: common-cold outbreaks on
Tristan da Cunha

Tristan da Cunha is an isolated island in the Atlantic
Ocean with approximately 300 inhabitants, and it was
observed that viral diseases, such as common cold, break
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out on the island after the arrival of ships from Cape
Town. We use the 21-day common-cold data
from October 1967. The data, shown in table 3, were
obtained from Hammond & Tyrrell (1971) and Shibli
et al. (1971). The data provide only the numbers of
infected and recovered individuals, I(t) and R(t),
whereas the size of the initial susceptible population
S(0) is not known. Therefore, S(0) is an extra unknown
parameter to be estimated.

The four epidemic models from §3.3 are used and
because there are no births and deaths expected in the
short period of 21 days, parameters a and d are set to 0.
The tolerances are set to eZ{100, 90, 80, 73, 70, 60, 50,
40, 30, 25, 20, 16, 15, 14, 13.8} and 1000 particles are
used. The prior distributions of parameters are chosen
as follows: gwU(0, 3); vwU(0, 3); twU(K0.5, 5);
dwU(K0.5, 5); ewU(K0.5, 5); S(0)wU(37, 100); and
mwU(1, 4), where S(0) andm are discrete. Perturbation
kernels are uniform, KtZsU(K1, 1), with sgZsvZ0.3,
stZsdZseZ1.0 and sS(0)Z3.

The target and intermediate distributions of
model parameters are shown in figure 7. The model
selection algorithm chooses model (3.12), i.e. the
model with a latent class of disease carriers, to be
the most suitable one for describing the data; however, it
is only marginally better than models (3.10) and (3.11).
Therefore, to draw reliable conclusions from the inferred
parameters, one might wish to use model averaging over
models (3.10)–(3.12). The marginal posterior distri-
butions for the parameters of model (3.12) are shown
in figure 8. However, the estimated initial susceptible
population size S(0) is low compared with the whole
population of the island, which suggests that either the
majority of islanders were immune to a given strand of
cold or (perhaps more plausibly) the system is not well
J. R. Soc. Interface (2009)
represented by our general epidemic models with
homogeneous mixing. The estimated durations of the
latent period t (from model (3.11)) and 1/d (from model
(3.12)), however, are broadly in line with the established
aetiology of common cold (Fields et al. 1996). Thus,
within the set of candidate epidemiological models, the
ABC SMC approach selects the most plausible model
and results in realistic parameter estimates.



Table 3. Common-cold data from Tristan da Cunha collected in October 1967.

day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

I(t) 1 1 3 7 6 10 13 13 14 14 17 10 6 6 4 3 1 1 1 1 0
R(t) 0 0 0 0 5 7 8 13 13 16 16 24 30 31 33 34 36 36 36 36 37
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Figure 7. Populations of the marginal posterior distribution
of m. Models 1–4 correspond to equations (3.10)–(3.13),
respectively. An interesting phenomenon is observed in
populations 1–12, where model 2 has the highest probability,
in contrast tomodel 3 having the highest inferred probability in
the last population. The most probable explanation for this is
that a local maximum favouring model 2 has been passed on
route to a global maximum of the posterior probability
favouring model 3. Populations (a–o) 1–15. Population 0
(discrete uniform prior distribution) is not shown.
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4. DISCUSSION

Our study suggests that ABC SMC is a promising tool
for reliable parameter inference and model selection for
models of dynamical systems that can be efficiently
simulated. Owing to its simplicity and generality, ABC
SMC, unlike most other approaches, can be applied
without any change in both deterministic and stochastic
contexts (including models with time delay).

The advantage of Bayesian statistical inference, in
contrast to most conventional optimization algorithms
(Moles et al. 2003), is that the whole probability
distribution of the parameter can be obtained, rather
J. R. Soc. Interface (2009)
than merely the point estimates for the optimal para-
meter values. Moreover, in the context of hypothesis
testing, the Bayesian perspective (Cox & Hinkley 1974;
Robert & Casella 2004) has a more intuitive meaning
than the corresponding frequentist point of view. ABC
methods share these characteristics.

Another advantage of our ABC SMC approach is that
observing the shape of intermediate and posterior
distributions gives (without any further computational
cost) information about the sensitivity of the model to
different parameters and about the inferability of para-
meters. All simulations are already part of the parameter
estimation, and can be conveniently re-used for the
sensitivity analysis via scatterplots or via the analysis of
the posterior distribution using, for example, PCA. It can
be concluded that the model is sensitive to parameters
that are inferred quickly (in earlier populations) and that
have narrow credible intervals, while it is less sensitive
to those that get inferred in later populations and are
not very localized by the posterior distribution. If the
distribution does not change much between populations
and resembles the uniform distribution from population
0, then it can be concluded that the corresponding
parameter is not inferable given the available data.

While the parameter estimation for individual
models is straightforward when a suitable number
of particles are used, more care should be taken in
model selection problems; the domains of the uniform
prior distributions should be chosen with care and
acceptance rates should be closely monitored. These
measures should prevent models being rejected in
early populations solely due to inappropriately chosen
(e.g. too large) prior domains. Apart from a potentially
strong dependence on the chosen prior distributions
(which is also inherent in the standard Bayesian
model selection; Kass & Raftery 1995), we also observe
the dependency of the Bayes factors on changes in the
tolerance levels et and perturbation kernel variances.
Therefore, care needs to be taken when applying the
ABC SMC model selection algorithm.

Finally, we want to stress the importance of moni-
toring convergence in ABC SMC. There are several ways
to see whether a good posterior distribution has been
obtained: we can use interquantile ranges or tests of
goodness of fit between successive intermediate distri-
butions. A further crucial signature is the number of
proposals required to obtain a specified number of
accepted particles. This will also impose a practical
limit on the procedure.

For the problems in this paper, the algorithm was
efficient enough. Examples here were chosen to highlight
different aspects of ABC SMC’s performance and
usability. However, for the use on larger systems, the
algorithm can bemademore computationally efficient by
optimizing the number of populations, the distance
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function, the number of particles and perturbation
kernels (e.g. adaptive kernels). Moreover, the algorithm
is easily parallelized.
5. CONCLUSION

We have developed a SMC ABC algorithm that can be
used to estimate model parameters (including their
credible intervals) and to distinguish among a set of
competing models. This approach can be applied to
deterministic and stochastic systems in the physical,
chemical and biological sciences, for example bio-
chemical reaction networks or signalling networks.
Owing to the link between sensitivity and inferability,
ABC SMC can, however, also be applied to larger
systems: critical parameters will be identified quickly,
while the system is found to be relatively insensitive to
parameters that are hard to infer.
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APPENDIX A. DERIVATION OF ABC SMC

Here we derive the ABC SMC algorithm from the
SIS algorithm of Del Moral et al. (2006) and in
appendix B we show why this improves on the ABC
partial rejection control (PRC) algorithm developed
by Sisson et al. (2007). We start by briefly explaining
the basics of importance sampling and then present
the SIS algorithm.
J. R. Soc. Interface (2009)
Let p be the distribution we want to sample from,
our target distribution. If it is impossible to sample
from p directly, one can sample from a suitable
proposal distribution, h, and use importance sampling
weights to approximate p. The Monte Carlo approxi-
mation of h is

ĥN ðxÞZ
1

N

XN
iZ1

dX ðiÞ ðxÞ;

where X ðiÞwiidh and dx 0
ðxÞ is the Dirac delta function,

defined by ð
x
f ðxÞdx 0

ðxÞdx Z f ðx 0Þ:

If we assume p(x)O00h(x)O0, then the target
distribution p can be approximated by

p̂N ðxÞZ
1

N

XN
iZ1

wðX ðiÞÞdX ðiÞ ðxÞ;

with importance weights defined as

wðxÞZ pðxÞ
hðxÞ :

In other words, to obtain a sample from the target
distribution p, one can instead sample from the
proposal distribution, h, and weight the samples by
importance weights, w.

In SIS, one reaches the target distribution pT

through a series of intermediate distributions, pt,
tZ1, ., TK1. If it is hard to sample from these
distributions, one can use the idea of importance
sampling described above to sample from a series of
proposal distributions ht and weight the obtained
samples by importance weights

wtðxtÞZ
ptðxtÞ
htðxtÞ

: ðA 1Þ

In SIS, the proposal distributions are defined as

htðxtÞZ
ð
htK1ðxtK1ÞktðxtK1; xtÞdxtK1; ðA 2Þ

where htK1 is the previous proposal distribution and kt
is a Markov kernel.

In summary, we can write the SIS algorithm
as follows.

Initialization Set tZ1.
For iZ1,., N, draw X

ðiÞ
1 wh1.

Evaluate w1ðX
ðiÞ
1 Þ using (A 1) and normalize.

Iteration Set tZtC1, if tZTC1, stop.

For iZ1,., N, draw XtwktðX
ðiÞ
tK1; $Þ.

Evaluate wtðX
ðiÞ
t Þ using (A 1) with ht(xt) from (A 2)

and normalize.

To apply SIS, one needs to define the intermediate
and the proposal distributions. Taking this SIS frame-
work as a base, we now define ABC SMC to be a special
case of the SIS algorithm, where we choose the
intermediate and proposal distributions in an ABC
fashion, as follows. The intermediate distributions are
defined as

ptðxÞZ
pðxÞ
Bt

XBt

bZ1

1 dðD0;DðbÞðxÞÞ%et
� �

;



3See also http://web.maths.unsw.edu.au/scott/papers/paper_sm-
cabc_optimal.pdf.
4This, including the experiment below, was suggested by Beaumont
(2008b).
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where p(x) denotes the prior distribution; Dð1Þ;.;DðBtÞ
are Bt datasets generated for a fixed parameter x,
DðbÞwpðDjxÞ; 1(x) is an indicator function; and et
is the tolerance required from particles contributing
to the intermediate distribution pt. This allows us to
define btðxÞZ

PBt

bZ1 1 dðD0;DðbÞðxÞÞ%et
� �

. We define
the first proposal distribution to equal the prior
distribution, h1Zp. The proposal distribution at time
t (tZ2,., T ), ht, is defined as the perturbed inter-
mediate distribution at time tK1, ptK1, such that for
every sample, x, from this distribution we have

(i) bt(x)O0 (in other words, particle x is accepted at
least one out of Bt times), and

(ii) p(x)O0 (in order for a condition pt(x)O
00ht(x)O0 to be satisfied),

htðxtÞZ1ðptðxtÞO0Þ1ðbtðxtÞO0Þ
!

ð
ptK1ðxtK1ÞKtðxtK1; xtÞdxtK1

Z1ðptðxtÞO0Þ1ðbtðxtÞO0Þ
!

ð
htK1ðxtK1ÞwtK1ðxtK1ÞKtðxtK1;xtÞdxtK1;

ðA3Þ
where Kt denotes the perturbation kernel
(random walk around the particle).

To calculate the weights defined by

wtðxÞZ
ptðxtÞ
htðxtÞ

; ðA 4Þ

we need to find an appropriate way of evaluating ht(xt)
defined in equation (A 3). This can be achieved through
the standard Monte Carlo approximation,

htðxtÞZ1ðptðxtÞO0Þ1ðbtðxtÞO0Þ

!

ð
ptK1ðxtK1ÞKtðxtK1;xtÞdxtK1

z1ðptðxtÞO0Þ1ðbtðxtÞO0Þ 1
N

X
x
ðiÞ
tK1wptK1

Kt x
ði Þ
tK1;xt

� �
;

where N denotes the number of particles and fx ðiÞ
tK1g,

iZ1,., N, are all the particles from the intermediate
distribution ptK1. The unnormalized weights (A 4) can
then be calculated as

wtðxtÞZ
pðxtÞbtðxtÞP

x
ðiÞ
tK1

wptK1
Ktðx

ðiÞ
tK1; xtÞ

;

where p is the prior distribution; btðxtÞZ
PBt

bZ1 1 dðD0;ð
DðbÞðxtÞÞ%etÞ; and D(b), bZ1,., Bt, are the Bt simu-
lated datasets for a given parameter xt. For BtZ1, the
weights become

wtðxtÞZ
pðxtÞP

x
ðiÞ
tK1

wptK1
Kt x

ðiÞ
tK1; xt

� � ;

for all accepted particles xt.
The ABC SMC algorithm can be written as follows.

S1 Initialize e1,., eT.
Set the population indicator tZ0.
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S2.0 Set the particle indicator iZ1.
S2.1 If tZ0, sample x�� independently from p(x).

If tO0, sample x� from the previous population

fx ðiÞ

tK1g with weights wtK1 and perturb the
particle to obtain x��wKt(x jx�), where Kt is a
perturbation kernel.
If p(x��)Z0, return to S2.1.
Simulate a candidate dataset DðbÞðx��Þw
f ðDjx��Þ Bt times (bZ1,., Bt) and calculate
bt(x

��).
If bt(x

��)Z0, return to S2.1.
S2.2 Set x
ðiÞ
t Zx�� and calculate the weight for

particle x
ðiÞ
t ,

w
ðiÞ
t Z

btðx
ðiÞ
t Þ; if t Z 0;

pðxðiÞt Þbtðx
ðiÞ
t Þ

XN
jZ1

w
ðjÞ
tK1Ktðx

ðjÞ
tK1; x

ðiÞ
t Þ

; if tO0:

8>>>>>><
>>>>>>:

If i!N, set iZiC1, go to S2.1.

S3 Normalize the weights.

If t!T, set tZtC1, go to S2.0.

When applying ABC SMC to deterministic systems, we
take BtZ1, i.e. we simulate the dataset for each particle
only once.
APPENDIX B. COMPARISON OF THE ABC SMC
ALGORITHM WITH THE ABC PRC
OF SISSON et al.

In this section, we contrast the ABC SMC algorithm,
which we developed in appendix A, and the ABC PRC
algorithm of Sisson et al. (2007). The algorithms are
very similar in principle, and the main difference is that
we base ABC SMC on an SIS framework whereas Sisson
et al. use a SMC sampler as a basis for ABC PRC, where
the weight calculation is performed through the use of
a backward kernel. Both algorithms are explained in
detail in Del Moral et al. (2006). The disadvantage of
the SMC sampler is that it is impossible to use an
optimal backward kernel and it is hard to choose a
good one. Sisson et al. choose a backward kernel
that is equal to the forward kernel, which we suggest
can be a poor choice.3 While this highly simplifies
the algorithm since in the case of a uniform prior
distribution all the weights become equal, the resulting
posterior distributions can result in bad approxi-
mations to the true posterior. In particular, using
equal weights can profoundly affect the posterior
credible intervals.4

Here, we compare the outputs of both algorithms
using the toy example from Sisson et al. (2007). The
goal is to generate samples from a mixture of two
normal distributions, ð1=2Þfð0; 1=100ÞCð1=2Þfð0; 1Þ,
wheref(m,s2) is thedensity functionof aN(m, s2) random

http://web.maths.unsw.edu.au/scott/papers/paper_smcabc_optimal.pdf
http://web.maths.unsw.edu.au/scott/papers/paper_smcabc_optimal.pdf
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Figure 9. (a) The probability density function of a mixture of two normal distributions, ð1=2Þfð0; 1=100ÞCð1=2Þfð0; 1Þ, taken as
a toy example used for a comparison of ABC SMC with ABC PRC. (b,c) Plots show how the variance of approximated
intermediate distributions pt changes with populations (tZ1,., 10 on the x -axis). The red curves plot the variance of the ABC
SMC population and the blue curves the variance of the non-weighted ABC PRC populations. The perturbation kernel in both
algorithms is uniform, KtZsUðK1; 1Þ. In (b), sZ1.5 and this results in poor estimation of the posterior variance with the ABC
PRC algorithm. In (c), s is updated in each population so that it expands over the whole population range. Such s is big enough
for non-weighted ABC PRC to perform equally well as ABC SMC.
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variable (figure 9a). Sisson et al. approximate the dis-
tribution well by using three populations with e1Z2,
e2Z0.5 and e3Z0.025, respectively, starting from a
uniform prior distribution. However, ABC PRC would
perform poorly if they had used more populations. In
figure 9b,c, we show how the variance of the approxi-
mated posterior distribution changes through popu-
lations. We use 100 particles and average over 30 runs
of the algorithm,with tolerance schedule eZ{2.0, 1.5, 1.0,
0.75, 0.5, 0.2, 0.1, 0.075, 0.05, 0.03, 0.025}. The red
line shows the variance from ABC SMC, the blue line
the variance from the ABC PRC and the green line the
variance from the ABC rejection algorithm (figure 9b,c).
In the case when the perturbation is relatively small,
we see that the variance resulting from improperly
weighted particles in ABC PRC is too small (blue line
in figure 9b), while the variance resulting fromABCSMC
is ultimately comparable to the variance obtained by the
ABC rejection algorithm (green line).

However, we also note that when using many
populations and too small a perturbation, e.g. uniform
perturbationKtZsU(K1, 1) with sZ0.15, the approxi-
mation is not very good (results not shown). One
therefore needs to be careful to use a sufficiently large
perturbation, irrespective of the weighting scheme.
However, at the moment, there are no strict guidelines
of how best to do this and we decide on the perturbation
kernel based on experience and experimentation.

For the one-dimensional deterministic case with a
uniform prior distribution and uniform perturbation,
one can show that all the weights will be equal when s of
the uniform kernel is equal to the whole parameter
range. In this case, the non-weighted ABC PRC yields
the same results as ABC SMC (figure 9c). However,
when working with complex high-dimensional systems,
it simply is not feasible to work with only a small
number of populations, or a very big perturbation
kernel spreading over the whole parameter range.
Therefore, we conclude that it is important to use the
ABC SMC algorithm owing to its correct weighting.

Another difference between the two algorithms is
that ABC PRC includes the resampling step in order
to maintain a sufficiently large effective sample size
J. R. Soc. Interface (2009)
(Liu & Chen 1998; Liu 2001; Del Moral et al. 2006). In
contrast to non-ABC SIS or SMC frameworks, ABC
algorithms, by sampling with weights in step S2.1 prior
to perturbation, we suggest, do not require this
additional resampling step.

We note that in SIS, the evaluation of weights after
each population is computationally more costly, i.e.
O(N 2), than the calculation of weights in SMC with a
backward kernel, which is O(N ), where N denotes the
number of particles. However, this cost is negligible in
the ABC case, because the vast proportion of
computational time in ABC is spent on simulating
the model repeatedly. While thousands or millions of
simulations are needed, the weights only need to be
updated after every population. Therefore, we can
easily afford spending a bit more computational time
in order to use the correctly weighted version
and circumvent the issues related to the backward
kernel choice.
APPENDIX C. ABC AND FULL LIKELIHOOD FOR
ODE SYSTEMS

We would like to note that the ABC algorithm with
the distance function chosen to be squared errors
is equivalent to the maximum-likelihood problem for a
dynamical system forwhichGaussian errors are assumed.
In other words, minimizing the distance function

Xn
iZ1

Xm
jZ1

ðxijK gjðti; qÞÞ2; ðC 1Þ

where gðt; qÞ2R
m is the solution of the m-dimensional

dynamical system and DZðxiÞfiZ1;.;ng, xi 2R
m, are

(m-dimensional) data pointsmeasured at times t1,., tn,
is equivalent to maximizing the likelihood function

Yn
iZ1

1

ð2pÞm=2jSj1=2
eKð1=2ÞðxiKgðti ;qÞÞTSK1ðxiKgðti ;qÞÞ;

where S is diagonal and its entries equal. This can
straightforwardly be generalized for the case of multiple
time-series measurements. Thus, ABC is for determinis-
tic ODE systems closely related to standard Bayesian
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inference where the likelihood is evaluated. This is
because ODEs are not based on a probability model,
and likelihoods are therefore generally defined in a
nonlinear regression context (such as assuming that the
data are normally distributed around the deterministic
solution; e.g. Timmer & Muller 2004; Vyshemirsky &
Girolami 2008).
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