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Distributed robustness in cellular networks:
insights from synthetic evolved circuits
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Evolved natural systems are known to display some sort of distributed robustness against the
loss of individual components. Such type of robustness is not just the result of redundancy.
Instead, it seems to be based on degeneracy, i.e. the ability of elements that are structurally
different to perform the same function or yield the same output. Here, we explore the problem
of how relevant is degeneracy in a class of evolved digital systems formed by NAND gates,
and what types of network structures underlie the resilience of evolved designs to the removal
or loss of a given unit. It is shown that our fault tolerant circuits are obtained only if
robustness arises in a distributed manner. No such reliable systems were reached just by
means of redundancy, thus suggesting that reliable designs are necessarily tied to degeneracy.
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1. INTRODUCTION

One remarkable feature of many biological systems is the
presence of a high degree of robustness against pertur-
bations. Such robustness appears at multiple scales
(Alon et al. 1999; Tononi et al. 1999; Edelman & Gally
2001; Gibson 2002; Krakauer & Plotkin 2002; Li et al.
2004; Jen 2005; Wagner 2005). Specifically, it is often
found that temporal failure or permanent loss of some
components has very often little or no impact on overall
performance. In this context, such entities as a whole are
able to cope with a changing world even under the loss of
single units. A standard illustration of such robustness
(or fault tolerance) is provided by gene knockouts
through directed homologous recombination. In a large
number of cases (close to 30%), little or no phenotypic
effects are observed (Melton 1994). What is more
surprising, it was shown that the mechanisms underlying
such reliable behaviour are not based on redundancy. By
redundancy, we refer to the presence of multiple copies of
a given component: the failure of one of them would be
compensated by another identical (isomorphic) copy.
Instead, robustness in biology is largely associated with a
distributed property, which has been dubbed either
degeneracy (Tononi et al. 1999; Edelman & Gally 2001)
or distributed robustness (Wagner 2005). By degeneracy,
we refer to ‘the ability of elements that are structurally
different to perform the same function’ (Tononi et al.
1999; Edelman & Gally 2001).

The problem of robustness was a hot topic in the
1950s, in parallel with the design of the first electronic
computers. Back then, vacuum tube technology was
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rather unreliable and John von Neumann and others
(von Neumann 1952; Cowan & Vinograd 1963)
explored the problem of how to design reliable
computers from unreliable elements. Most of this
work was based on digital designs described in terms
of logic gates (figure la). The main conclusion from
these studies was that a high degree of redundancy was
required in order to achieve such a goal. Since nature
seems to deal with faulty behaviour by using non-
redundant mechanisms, something different must be at
stake. Exploring the problem of degeneracy involves a
number of difficulties. Since redundancy does not
explain robustness (at least not most of it), we cannot
understand the problem in terms of repeated, disso-
ciated pieces. In this paper, we want to address this
problem using evolved synthetic circuits performing
simple computations.

Digital and switching circuits have been widely used
in modelling gene and signalling networks (Kauffman
1962, 1993; Wuensche & Lesser 1992; Mendoza &
Alvarez-Buylla 1998; Mendoza et al. 1999; Astor &
Adami 2000; Kauffman et al. 2003; Solé et al. 2003;
Weiss et al. 2003; Sauro & Khodolenko 2004; Simpson
et al. 2004; Alvarez-Buylla et al. 2006; Braunewell &
Bornholdt 2007; Willadsen & Wiles 2007), as well as
other more general problems concerning the evolution
of technology (Arthur & Polak 2006). Evolved circuits
provide a good framework where our questions can be
explored in a sensible way (Koza 1992; Miller et al.
2000). These systems, resulting from artificial
evolution, allow one to obtain new designs without
direct human intervention, in many cases displaying a
higher efficiency (Koza 1992). Our goal here is the
generation of digital circuits by evolution under
different external conditions, with the purpose of

This journal is © 2008 The Royal Society
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Figure 1. A logic gate, such as the NAND gate shown here, can
be easily implemented using a molecular system. In (a) the
standard symbol for the (i) NAND gate and (ii) its Boolean
table representation are shown. In (b) is shown an example of
the molecular implementation based on two proteins (A and
B, which can be present or absent) activating a given gene
coding for a protein C which defines the output of the gate.
Moreover, signalling cascades also allow defining logic blocks.
In (¢) we give an example of such scenario for our NAND
system. Here a protein P can be activated if two inputs A and
B (external signals) are present. In that case, it makes a
transition P— P* to an active form. If C=[P] is the measured
output, then a NAND gate is obtained.

exploring the emergence of fault tolerance and how it
relates to redundancy and degeneracy. Although the
digital metaphor has some limitations, it has been
widely used in computational systems biology to
address very diverse types of questions. It seems to
define an appropriate level of description to the
switching behaviour found in many biological systems,
from gene regulation to cell signalling (figure 1b,¢). The
study of the behaviour of these models has been shown
to provide deep insight into the origins and importance
of robustness (Bornholdt & Sneppen 2000; Klemm &
Bornholdt 2005; Ciliberti et al. 2007; Fernandez & Solé
2007). In this context, although previous studies have
shown that robust structures emerge as a consequence
of evolutionary rules, the exact origin of such robust-
ness is often missing. Here, using the formal definitions
introduced by Tononi et al. (1999) and Edelman &
Gally (2001), we show that robust designs are achieved
by means of distributed robustness.

2. MEASURING DISTRIBUTED ROBUSTNESS

A first step before we present our results on evolved
networks is to properly define a set of quantitative
measures of network redundancy and degeneracy. To
this goal, we will make use of previous measures from
Tononi et al. (1999) and Edelman & Gally (2001).
These information-based measures can be quantified
using statistical measures of entropy and mutual
information (Ash 1965; Adami 1998). We build these
measures on a network X of Z interacting units where
some computation is being performed. This is the case
of logic circuits, such as the one shown in figure 2a.
Here, each unit is a NAND gate. The reason for
choosing this particular gate is that it allows one to
build any possible digital circuit. Specifically, together
with the so-called NOR gate, it is one of the two sole
sufficient operators that can be used to express all of
the Boolean functions of propositional logic (http://en.
wikipedia.org/wiki/Shefferstroke).
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Several measures can be defined on X based on
information theory. An appropriate combination of
them allows one to properly define robustness and
measure it. The basic measure of information theory is

the entropy, defined as (Ash 1965; Adami 1998)

H(X) =— p(z)log p(x), (2.1)
r€X
for one single variable z, and similarly we have
HX,Y)==> > pz, y)logp(x, y),  (2.2)

reEXyeyY

for two variables z and y. Here, p(z) is the probability
distribution for the possible values of z and p(z, y) is the
joint probability distribution associated with (z, y)-
pairs. From these basic measures, it is possible to define
the mutual information I(X, Y) in terms of the
entropies as

I(X,Y)=H(X)+H(Y)—H(X,Y). (2.3)

Mutual information is the key quantity in theoretical
approaches to the study of communication systems
(Ash 1965; Adami 1998). It measures the information
transmitted through the underlying channel. It has also
been used as a measure of complexity, since it also
describes the presence of (non-trivial) correlations
(Solé & Goodwin 2001).

In order to define robustness, we need to provide a
quantitative measure where interdependencies among
not only elements but also subsets are properly
weighted. Such measure must be able to quantify to
what extent information transfer among different parts
overlaps. Since the success of a given computation is
tied to the generation of a right output, the definition of
degeneracy (distributed robustness) must somehow
incorporate the relation between different subsets and
the set of output units (Tononi et al. 1998).

In their analysis of robustness, Tononi et al. (1999)
define the degeneracy D of the system as

D) =Y (x5 0D = 1x 0] (24
which we adopt here as our definition of robustness
(and in the following we will use both terms as
equivalent). Here, Xik represents the ith subset of &
elements, which is possible to build from the Z elements
of the network and O is the subset of elements which
form the output layer. The average ( ) is computed over
all the possible subgroups X with size k in which we
can divide the system. As defined, it compares the
average information transfer between every subset of
size k and the expected value of the whole information
between system and output, weighted by k/Z.
A different (and more convenient) way of writing this
function reads

Dz(X)

- % Ié <](X}', 0) + I(Xf 0) —I(X, O)>. (2.5)

In this expression, the balance of mutual information
takes into account the possible overlapping of the
information being processed by a subset XFcC X
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Figure 2. (a) An example of a small digital circuit. Gates 1, 2 and 3 are the elements of the set X. Gates 4 and 5 define the output
layer O. (b—d) Three possible subsets of size two that can be constructed (see text).

formed by k elements and the rest of the network,
e X f = X — X}. In the case of two independent sub-
groups, the balance is simply I(XF, 0)+ I()A(,];, 0)—1
(X, 0)=0. This case corresponds to the lower bound
of degeneracy. In any other case, it measures the overlap
between subgroups. The upper bound corresponds to the
extreme case of full degeneracy. In this case, the mutual
information between one subgroup of the network
and the output layer must be similar to the mutual
information between the rest of the network and the
output layer and similar to the mutual information
between the total network and the output layer:

I(xF, 0) = J(X’Z, 0) ~I(X, 0). (2.6)

Building a network with such extreme degeneracy is
likely to be impossible, but considering this situation it is
possible to define an upper bound for degeneracy as

DAX)< 3 I(X,0) =D}, (2.7)

which is obtained from (2.4) using the condition given
in (2.5).

These measures allow one to unambiguously
determine the presence and impact of degeneracy, but
they are also involved and computationally costly. For
the example chosen in figure 2, the mutual information
for the subset X7 (gates 1 and 2) is (I)=0.21. This
value means that part of the computation performed by
the network from the input to the output involves some
overlap between the subset X? and the rest of the
network X — X7 (gate 3). In other words, two subsets of
the network that are structurally different perform,
at least partially, the same computation process.
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To compute the degeneracy values with (2.4), we
need to calculate the average value of the mutual
information for all the possible subsets for a given size
(in the example if the size is 2, there are three possible
subsets depicted in figure 15-d) and perform the sum
over all possible sizes, from k=1 to Z. Such a scenario
implies that, even for small networks, we require a very
large number of subset combinations to be considered.
This limits the total size of circuits that can be used in
our analysis, which in our study is limited to Z=15.
Additionally, we can also estimate the redundancy
of our system using the following definition (Tononi
et al. 1999):
Z
—1(X, 0). (2.8)
i=1

Ry(X) = [Z 1(X;, 0)

2

This expression measures the overlap of the infor-
mation processed by one given element and the rest of
the network. If the different elements of the network are
independent, then R;(X)=0. Otherwise, some of the
elements of the network are redundant.

Finally, a complexity measure can be also defined as
(Tononi et al. 1999)

oy =%i<1(xkx’”)> (2.9)

This expression measures the level of coherent inte-
gration of the different parts of the system (Tononi
et al. 1998). It takes into account the average mutual
information between each possible subset and the rest
of the network. If the different subsets X* have lower
values of mutual information [/ (Xl’”,f(]f), this implies
that there is lower overlap between the information
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Table 1. Different states for each element (here NAND gates)
for the circuit shown in figure 2a.

Table 2. Different possible states for the subset X? and the
rest of the network X; = X — X2.

input Gy Go Gs Gy Gs output
00 1 1 1 1 1 11
01 1 0 0 1 1 11
10 1 1 1 0 1 01
11 0 1 1 0 0 00

processed by each subset and the rest of the network. In
this case, the network has a low integration and does
not work as a whole, but as a set of more or less
independent parts. This case corresponds to small
values of C}.

To illustrate the estimation of degeneracy as defined
above, we can use a simple logic network as the one
shown in figure 2a. It is formed by five NAND gates.

Table 1 shows all possible states for each gate for
each input combination. Gates G4 and Gy define the
output layer. To compute the degeneracy values, we
must build all the subsets of NAND gates. It is possible
to define three subsets of one gate each, X} (i=1, 2, 3),
three subsets of two gates X? (i=1, 2, 3) as displayed in
figures 2b-d and one subset of three gates X;. Here, we
illustrate the calculation method for one of these
subsets of size two, i.e. X7. First, we must calculate
the different entropy values using the standard
definitions (2.1) and (2.2). Table 2 shows the different
states for the subset X7, shown in figure 2b.

In table 3, we give the probabilities associated with
the different possible input combinations and the
associated entropy calculated directly from the possible
states given in table 2.

Finally, different mutual information values can be
computed from the previous measures. The results are
summarized in table 4.

3. EVOLVING CIRCUITS

Different evolutionary rules have been used for the
synthesis of circuits (Iba et al. 1997; Yu & Miller 2001;
Arthur & Polak 2006; Banzhaf & Leier 2006). Some of
these methods have been able to produce systems with
high levels of fault tolerance and robustness. In our
study, the circuits start from a randomly wired set of
NAND gates. These circuits evolve until they are able to
implement a certain N-input, M-output target binary
function ¢, this function being a member of the set of
possible Boolean functions described as a mapping

¢, 2V — M (3.1)

with ¥={0,1}. In our study, we will use N=3 and
M=2. The only topological limitation considered here is
that there are no backward connections, in order to
avoid temporal dependencies. In other words, only
downstream effects are considered. The evolutionary
rules follow previous work on circuit evolution (Miller &
Hartmann 2001) with additional selection constraints in
order to canalise the evolution process in two different
scenarios: evolutions using correct computation and a
fault tolerance measure as an additional constraint.

J. R. Soc. Interface (2009)

. 2
input X{(Grp)  X1(Gy) X(Gi23)  O(Gyp)
00 11 1 111 11
01 10 0 100 11
10 11 1 111 01
00 01 1 011 00

3.1. Selection for accurate computation

The goal of this selection using as fitness measure the
correctness of the Boolean computation being
implemented. It is thus defined in terms of the matching
between the desired target function with no further
constraints. The idea here is to see whether circuits that
just correctly perform the desired computation are also
robust for free. The target functions ¢ are chosen at
random: the set of outputs for each input combination
are generated using 0 and 1 with equal probability. The
steps of the algorithm are the following.

(i) Create arandom generated population formed by
S individuals (candidate circuits) Xj, ..., Xs.
Each one of these individuals is formed by Z
randomly wired gates, with no backward connec-
tions. All circuits start with Z=5 NAND gates. In
each one of these nodes, there is a NAND gate of
two inputs and one output. This population
constitutes the starting generation. Here, given
the computational constraints, we fixed the
number of candidate solutions to S=10.

(ii) The behaviour of each individual solution is
simulated for the 2% possible inputs, comparing
its outputs with the target function outputs. The
fitness for the kth circuit X}, is defined as

1 M2V . L
OL_EL ’
A[QN ;;;| |

where { OF} is the set of outputs of the circuit for
the different inputs; M is the number of output
bits; and {E}} is the set of (expected) target
function outputs.

(iii) The individual with greater fitness is chosen to
create a new generation formed by the selected
individual and S—1 random mutations of it. The
random mutations (always respecting the back-
ward patterning) can be: (a) elimination of
an existing connection, with probability FE.,
(b) creation of a new connection with probability
C., (c) elimination of a node (gate removal) with
probability I,, and (d) creation of a new node
(gate addition) with probability C,. Here, we use
E.=0.8, C.=0.8, I,=0.3 and C,=0.6.

(iv) Repeat step (ii) until a fitness F'=1 is reached.

F,=1- (3.2)

3.2. Selection using fault tolerance

This algorithm differs from the previous one in that
selection of the most optimal individual of each
generation introduces fault tolerance as an additional
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Table 3. Entropy values for the different elements necessary for mutual information calculations. (The probability distributions

are directly obtained from table 2.)

entropy
entropy probability distribution value
H(X%) p(11)=2/4, p(10)=1/4 p(01)=1/4 1.04
H(X?) p(1)=3/4, p(0)=1/4 0.56
H(X) p(111)=2/4, p(100)=1/4 p(011)=1/4 1.04
H(O) p(11)=2/4, p(01)=1/4 p(00)=1/4 1.04
H(X2, 0) p(11,11)=1/4, p(01,11)=1/4 p(10,01)=1/4, p(11,00)=1/4 1.39
H(X?,O) p(1,11)=1/4, p(0,11)=1/4 p(1,01)=1/4, p(1,00)=1/4 1.39
H(X, 0) p(111,11)=1/4, p(100,11)=1/4 p(111,01)=1/4, p(011,00)=1/4 1.39

Table 4. Mutual information calculations from entropy values
of table 2.

mutual information (I) Ivalue
I(Xt, 0) 0.69
I(X},0) 0.21
(X, 0) 0.69
I(X?,0)+ I(X],0)~ (X, 0) 0.21

requirement. Fault tolerance p; is measured as

1 z (M2 i
Pk=1_mz Z;‘Oi_oi ) (3.3)
p= 1=

where {OF} is the output set of the circuit for the
different inputs and {0} is the output set of the kth
circuit under a perturbation of the pth node. For each
input, all the gates are in a binary state 0 or 1. The
perturbation consists of the inversion of the logical level
of the gate located at the pth node. This perturbation is
applied for each node p.

In this case, the individual chosen to create a new
generation must satisfy two conditions, namely greater
fitness and higher fault tolerance. This additional
condition of higher fault tolerance on the evolutionary
process is prevailing (i.e. we give priority to F}, on top of
pr, when Fj,<1). The selection process, in this case, does
not stop when F=1. Once F=1, the individuals can
continue evolving until p reaches a stable value. In this
approach, we want to compare the final designs with
those resulting from the first evolution approach.
Looking at the final circuits generated, we can measure
redundancy and degeneracy and see how they contrib-
ute to the network robustness.’

4. RESULTS

In figure 3, we show two examples of the synthetic
circuits obtained from the two previous algorithms.
Figure 3a shows a circuit obtained from fault tolerance
selection, with a final value p=0.944. For the same
Boolean function, figure 3b shows the corresponding

'In our numerical experiments, the specific set of parameters used was
chosen in such a way that evolution was fast enough to be efficient.
Other combinations provided similar results but displayed slower
convergence.
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Figure 3. Examples of evolved circuits resulting from a
process of evolutionary optimization. In (a) a circuit obtained
by conditional evolution is shown. All gates are identical
(NAND gates). The first two nodes are the input units. The
circuit outputs are located after nodes 11 and 12. This circuit
has a very high fault tolerance value (p=0.944). In (b) we
show a circuit obtained using a BFM. This circuit implements
the same logic function as the circuit in (@) but involves a
smaller fault tolerance of p=0.54.

outcome of the first evolution strategy with a much
lower fault tolerance of p=0.54. As a general trend, we
have found that evolved circuits from selection using just
correct computation are typically smaller than the
corresponding circuits selected using a fault tolerance
evolutionary dynamics. This is an expected result, since
it seems clear that robustness against gate failure must
require some kind of internal capacity of reorganization.
In order to see what emerges in terms of robustness, we
measured redundancy and degeneracy in a set of evolved
circuits under both types of selection pressures.

In figure 4a, we show the relationship between
redundancy and degeneracy (our measure of robust-
ness) for our evolved circuits under both modes of
evolution. The figure clearly shows that circuits evolved
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Figure 4. (a) Robustness, as measured in terms of degeneracy
Dy, increases with redundancy Ry in a nonlinear fashion.
Here, the first and second algorithms are indicated by means
of triangles and circles, respectively. When the first is used,
low levels of robustness are achieved, whereas evolution using
fault tolerance leads to high robustness, provided that enough
redundancy is at play. The inset shows the same results in
log—log scale. In (b) we show the correlation between system
size Z and fault tolerance. Here, we can clearly see that high
levels of reliability are achieved by increasing the system’s
size. The inset shows the same plot in log—log scale, where we
can appreciate a scaling behaviour.

under properly computing the Boolean function ¢ have
diverse levels of redundancy but very small degeneracy.
Two relevant implications of this result can be
obtained. The first is that an active selection for
robustness may be required in order to achieve highly
reliable designs. The second is that circuits obtained
under selection for fault tolerance can achieve large
levels of robustness and that such robustness is
distributed, but requires some amount of internal
redundancy (as shown by the rapid increase of Dy at
high Rz values). Let us note that the circuit with
greater fault tolerance has a degeneracy value of
D=6.28, closer to the upper bound value of D} =7.79
obtained from (2.6).

These results support the view that biological
designs, which are expected to experience different
sources of noise and perturbation, make use of
degeneracy, instead of redundancy, in order to properly
function. As far as we know, it is actually the first
accurate demonstration of such relationship based on a
well-defined measure of robustness. Moreover, as shown
in figure 4b, there is a growing trend relating fault
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Figure 5. Correlations between circuit complexity and robust-
ness (a) indicate that the system’s integration rapidly increases
with Dy, reaching a plateau. On the other hand, fault tolerance
seems well correlated with complexity, as shown in (b) thus
indicating that an appropriate internal integration allows the
system to be more reliable under failure of single units.

tolerance and the system size achieved through the
evolutionary dynamics. Specifically, a power law
increase, i.e. p~Z" with y=4. This trend is highly
nonlinear, with a rapid increase in reliability as Z grows
for conditional selection. This implies that high
increases in robustness can be achieved by properly
adding a single new element to the system.

In figure 5a,b, we also compare our measures of
robustness and fault tolerance with the internal
organization of the circuits as measured in terms of
complexity. In our circuits, we see that large levels
of complexity and circuit integration closely follow high
degeneracy levels. This is consistent with previous
findings using neural networks (Tononi et al. 1998).
Such high complexity levels indicate that circuits
evolve towards structures in which the different parts
act with greater levels of coherent integration.

As figure 5a shows, an increase in degeneracy implies
an increase in the complexity of the circuits, although a
saturation is observed beyond some point (probably
due to the small circuit sizes, which does not allow
further increases). Such a relation does not happen with
the redundancy (not shown): high redundancy levels
are not consistent with more complex circuits. Simi-
larly, complexity and fault tolerance are related,
although the tendency towards higher fault tolerance
with network integration is more obvious in circuits
obtained through fault tolerant evolution (figure 5b).
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5. DISCUSSION

The evolution of complex life forms seems to be
inextricably tied to robustness. The problem of how
complexity, modularity, adaptation and reliability are
connected is an old one (Conrad 1983) but far from
being closed (Hogeweg 2002; Lenski et al. 2003; Wagner
et al. 2007). Capturing the details of such relations is a
difficult task, and theoretical approaches require strong
simplifications that are typically based on a compu-
tational picture of the system under consideration. In
this paper, we have explored the possible origins of
robustness in networks performing computations by
using evolved artificial circuits. Although the approach
taken is not a realistic biological implementation, it
captures some of the logic of cellular networks at least
at the level of computation. Nevertheless, our main goal
was to determine the possible forms of reaching reliable
systems under different selection pressures and under-
standing how robust designs can be obtained. Given the
two potential origins of robust responses, namely either
redundancy or degeneracy, we measured the resulting
structures in order to determine what are the contri-
butions of each to the observed levels of fault tolerance.

As found in biological systems, we can see that the
origins of robustness against the failure of a given element
are largely associated with a distributed mechanism of
network organization. Both degeneracy and complexity
(a measure of network integration and coherence) have
been shown to reach high levels provided that redun-
dancy is high enough. In this context, the use of an
explicit measure of network reliability based on infor-
mation exchanges between different subparts allows us to
reach well-defined conclusions. Redundancy, on the other
hand, is shown to be less relevant to the fault tolerant
behaviour of our circuits. However, high redundancy
might be needed in order to properly build degeneracy
into the system, although what is likely to happen here is
that an inevitable, positive correlation is at work.

An important point to be made here concerns the
levels of fault tolerance achievable under the first
selection criterion. Although maximal levels of fault
tolerance have been found in connection to large
degeneracy, high levels can also be achieved without
explicitely introducing p in the selection process. This is
shown for example in figure 5b, where we can see
(triangles) that some networks achieving the correct
computations are also fault tolerant. Although
maximal levels might be interesting for designed
systems, the implications for evolved networks are
clear: fault tolerance might emerge ‘for free’ as a
consequence of the evolutionary rules. This seems
consistent with our previous work on evolving networks
suggesting that the generative rules of network com-
plexity might pervade many of their desirable
functional traits (Solé & Valverde 2006, 2007).

We thank Alfred Borden and the members of the Complex
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