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Recent advances in experimental neuroscience allow
non-invasive studies of the white matter tracts in the
human central nervous system, thus making available
cutting-edge brain anatomical data describing these
global connectivity patterns. Through magnetic reso-
nance imaging, this non-invasive technique is able to
infer a snapshot of the cortical network within the living
human brain. Here, we report on the initial success of a
new weighted network communicability measure in
distinguishing local and global differences between
diseased patients and controls. This approach builds
on recent advances in network science, where an
underlying connectivity structure is used as a means to
measure the ease with which information can flow
between nodes. One advantage of our method is that it
deals directly with the real-valued connectivity data,
thereby avoiding the need to discretize the correspond-
ing adjacency matrix, i.e. to round weights up to 1 or
down to 0, depending upon some threshold value.
Experimental results indicate that the new approach is
able to extract biologically relevant features that are not
immediately apparent from the raw connectivity data.
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1. MOTIVATION

In recent years, complex networks have received a
significant amount of attention (Strogatz 2001; Albert &
Barabasi 2002; Newman 2003). The need to study
apparently disparate real-world networks using a single
unified language has led to the growth of an inter-
disciplinary field that involves mathematicians, physi-
cists, computer scientists, engineers and researchers
from both the natural and social sciences. In this work,
we are interested in nature’s most complex system, the
human cerebral cortex (Sporns & Zwi 2004). The
development of diffusion magnetic resonance imaging
(MRI) has enabled neuroscientists to construct
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connectivity matrices for the human brain and ‘proof-
of-principle’ work has shown that existing biological
knowledge can be recovered from these connectivity
data (Klein et al. 2007).

Our ability to understand and compare different
connectivity structures can be greatly facilitated by the
introduction of easily computable measures that
characterize the network topology. Typically, measures
of this type rely heavily on the idea that communi-
cation, to be understood here as the ease of information
spread between nodes on the network, takes place along
geodesics. However, in many real-world networks,
information can disseminate along non-shortest paths
(Borgatti 2005; Newman 2005), and for such networks
any meaningful measure of ‘communicability’ should
account not only for the shortest path between two
nodes but also for all other possible routes. Motivated
by this consideration, Estrada & Hatano (2008)
recently advanced a new definition of communicability
that takes non-shortest paths into account with an
appropriate length-based weighting. This definition
applies to networks with unweighted edges. In the
case where the connectivity information is real valued,
converting this information into the required binary
format is undesirable because (i) it requires a cut-off
value to be determined and (ii) fine details about
connectivity strengths are lost.

This report has two main aims: (i) the introduction
of a new computable measure of connectivity for a
weighted network, and (ii) the application of this new
measure to the case of cutting-edge anatomical
connectivity data for the brain. In §2, we develop the
new measure by extending the definition of communic-
ability to the case of weighted networks, taking care to
deal with the issue of normalization. We then present a
comparison of connectivity data for stroke patients and
healthy control subjects in §3.
2. NETWORK COMMUNICABILITY

Suppose we are given a network consisting of a list of
(i) nodes and (ii) edges connecting the nodes. In the
language of graph theory, this is an undirected,
unweighted graph that could be defined in terms of the
adjacency matrix A2R

N!N, which has aijZajiZ1 if
nodes i and j are connected, and aijZajiZ0 otherwise.
We will always set aiiZ0, so that self-links, also called
loops, are disallowed. Estrada &Hatano (2008) recently
put forward the concept of communicability to address
the issue that the existence or non-existence of an edge
does not necessarily capture the degree of ‘connected-
ness’ between a pair of nodes. For example, two nodes
that are not themselves connected, but have many
neighbours in common, should be regarded as closer
together than the two unconnected nodes that can only
be joined through a long chain of edges. An extremely
useful observation is that if we raise the adjacency
matrix to the kth power, then its i,j th element

ðAkÞijd
XN

r1Z1

XN

r2Z1

.
XN

rkZ1

ai;r1ar1;r2ar2;r3.arkK1;rk ark ;j ð2:1Þ

counts the number ofwalks of length k that start at node i
and finish at node j. Here, the term walk refers to any
possible traversal through the network that follows
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edges, and length refers to the number of edges involved.
Estrada and Hatano argued that a level of communic-
ability between twonodes could be assigned by summing
the number of walks of length 1, 2, 3,.. Because short
walks are more important than long ones, e.g. in a
message-passing scenario shorter walks are faster and
cheaper, to arrive at a single real number, walks of
length k are penalized by the factor 1/(k!). This leads to a
definition of communicability between nodes i and j, for
isj, given by

PN
kZ1 A

k=ðk!Þ
� �

ij , or, more compactly,
exp(A)ij (Estrada & Hatano 2008). We also note that in
addition to giving a neat characterization in terms of the
matrix exponential, the choice of scaling factor k! can
also be justified from the perspective of statistical
mechanics (Estrada & Hatano 2007).

In our context, the connectivity information arises in
the form of real-valued, non-negative weights, where a
larger weight aij indicates that nodes i and j are
more strongly connected. The identity (2.1) remains
valid in this more general setting, but now the term
ai;r1ar1;r2ar2;r3.arkK1;rk ark ;j does not give a zero/one
contribution depending on whether the walk i1r11
r21r31/1rk1 j is possible. Instead, it contributes
the product of the weights along all the edges in the
walk. Down-weighting the contribution of longer walks
is especially relevant here, since experimental uncer-
tainty generally increases with length.

Although it is appealing to use exp(A) in this way to
define communicability for a weighted network, such a
measure is likely to suffer from difficulties if the weights
are poorly calibrated. A highly promiscuous node with
large weights is liable to have an undue influence.
Similar effects have been observed in the context of
spectral clustering (Higham et al. 2007), where it has
proved successful to judge the size of a cluster not by
the number of nodes, but by the total weight of
connections that they possess. This results in a natural
normalization step in which the weight aij is divided by
the product

ffiffiffiffiffiffiffiffi
didj

p
, where did

PN
kZ1 aik is the general-

ized degree of node i. An example illustrating the
benefits of this normalization step can be seen in §3.2.
By analogy, we therefore define the communicability
between distinct nodes i and j in a weighted network by

ðexpðDK1=2ADK1=2ÞÞij ; ð2:2Þ

where the diagonal degree matrix D2R
N!N has the

form Dddiag(di).
In §3, we show that this new measure extracts useful

information from brain connectivity networks.
3. BRAIN NETWORK

3.1. Data and acquisition

As noted by Sporns et al. (2005), a major challenge
facing any attempt to model the human brain using
complex network theory is that the basic structural
units, in terms of network nodes and links, are not well
defined. Indeed, at least three levels of description
are possible: (i) individual neurons and synapses
(microscale), (ii) neuronal groups and populations
(mesoscale), and (iii) anatomically distinct brain
regions and the corresponding inter-regional pathways
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(macroscale). In this work, owing to the resolution
limits of MRI data, we focus on the macroscale
description of the human brain. We define a network
using the Harvard-Oxford cortical and subcortical
structural atlases as implemented in FSLVIEW, part of
FSL (Smith et al. 2004), thereby partitioning the brain
into 56 anatomically distinct regions: 48 cortical and
8 subcortical. This produces a weighted, undirected
graph with 56 nodes. In our experiments, we have
structural diffusion-weighted imaging data for nine
stroke patients (at least six months following first,
left-hemisphere, subcortical stroke) and 10 age-
matched controls.

A more detailed description of the materials and
methods is provided in the electronic supplementary
material.
3.2. Spectral clustering

We have set ourselves the task of unsupervised
clustering of the patients, to check how accurately we
can recover the known stroke/control groupings.
A patient dataset consists of (562K56)/2Z1540 dis-
tinct values, giving the connectivity strength between
each pair of distinct brain regions. We used each of
the 19 patient datasets to create the columns of a
matrix W2R

1540!19, so that wij gives the connectivity
strength for the ith pair of brain regions in patient j.
Unsupervised clustering on the 19 columns of this
matrix was performed using the singular value decom-
position (SVD; Higham et al. 2007). This approach is
closely related to many other techniques, such as
principal components analysis, support vector
machines/kernel-based methods, machine learning
and multidimensional scaling (Cox & Cox 1994;
MacKay 2003; Skillicorn 2007).

The second right singular vector, v[2]2R
19, can

be used to assign a value (v[2])j to the jth patient, and
the aim is that patients with similar connectivity
profiles will be assigned nearby values. This is a
classical dimension reduction technique, where a vast
amount of information is compressed into a single one-
dimensional summary that is much easier to visualize
and interpret. In particular, a large gap between
successive components, especially a gap that straddles
the origin, is an indication that the nodes on either side
are the members of distinct subgroups.

Figure 1a shows the values of v[2], plotted in
increasing order. Components corresponding to stroke
patients are labelled with crosses, and circles denote
controls. We see from figure 1a that although the SVD
has placed the strokes and controls approximately in
order, a stroke and control (in positions 9 and 10) have
been misordered and there is no clear gap separating
strokes and controls. Figure 1b shows the corresponding
plot when the SVD is applied to the normalized data
matrix D

K1=2
left WD

K1=2
right, with ðD leftÞid

P19
jZ1 wij and

ðDrightÞjd
P1540

iZ1 wij , and the normalized left singular

vector D
K1=2
rightv

½2� is displayed, as discussed for the case of
microarray data in Higham et al. (2007). We see that
the classification is improved by the normalization
process in the sense that strokes and controls appear
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Figure 1. Components corresponding to stroke patients are labelled with crosses, and circles denote controls. Components of the
(a) right singular vector, v[2], of the original data matrix (raw); (b) scaled right singular vector D

K1=2
rightv

½2� (normalized) and

(c) second right singular vector, v[2], of the data matrix after post-processing using communicability.
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sequentially. Closer inspection of the raw data showed
that for the two patients who were originally ordered
incorrectly, one had unusually large and the other had
unusually small overall connectivity weights, (Dright)i;
this is precisely the situation where normalization is
designed to be beneficial. We note, however, that
normalization has not dealt successfully with the
separation issue. There is no obvious gap between
strokes and controls, and a cut-off at the origin would
place a stroke among the controls.
3.3. Communicability

We motivated the new weighted communicability
measure by arguing that the higher order terms in the
power series of equation (2.2) contain important additio-
nal information. We now provide evidence that weighted
communicability does indeed add value to the raw data.
3.3.1. Spectral clustering based on weighted communic-
ability.We now repeat the unsupervised clustering task
for the new data matrix, C2R

1540!19, whose columns
are constructed from the respective communicability
networks, so that cij gives the communicability
strength for the ith pair of brain regions in patient j.
Figure 1c shows the values of the second right singular
vector, v[2], plotted in increasing order. We see that
post-processing the data using communicability signi-
ficantly improves the results of the clustering algo-
rithm, giving a correct ordering and a clear separation,
with the two groups having opposite signs, negative for
strokes and positive for controls. Using the second left
singular vector, u[2], we may proceed to identify those
connections that enable us to distinguish between
stroke and control classes; further details are provided
in the electronic supplementary material.
J. R. Soc. Interface (2009)
3.3.2. Statistical validation. To quantify the effect of
using weighted communicability, we applied the mean-
centred partial least-squares (PLS) approach of McIn-
tosh and colleagues (McIntosh & Lobaugh 2004).
Through the SVD, PLS analysis returns latent variable
pairs (left/right singular vectors containing the con-
nection/group saliences) that describe a particular
pattern of connectivity covariance according to the
subject. The statistical significance of each latent
variable was determined using permutation tests of
500 permutations, while the reliability of saliences of
the individual connections in contributing to the
pattern of covariance identified by the latent variables
was determined using 100 bootstrap analyses.

The PLS analysis returned one significant (p%0.01)
latent variable pair for each of the three datasets
described above. In each case, PLS was able to
distinguish between stroke and control classes; however,
this should not be too surprising since PLS is a
supervised method. Perhaps more importantly, the
number of connections that returned saliences in the
99th percentile was the greatest for communicability
(318), then the normalized data (290) and the lowest in
the rawdata (266), suggesting that communicability has
the effect of reducing the influence of noise in the data.
4. DISCUSSION

Our new network measure extends the concept of
communicability in a natural manner to the case of
weighted networks. Initial tests reported here on
cutting-edge anatomical brain connectivity data show
that this measure can give statistically significant
enhancement to the performance of standard data
analysis tools. In future work, we are planning to study
networks relating to a range of brain disorders and
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investigate the underlying changes in connectivity
structure that are revealed through the new measure.

We are very grateful to Tim Behrens, Heidi Johansen-Berg,
Saad Jbabdi and Rose Bosnell for providing access to the
connectivity data and valuable feedback on this work, which
was supported by the Medical Research Council under project
no. MRC G0601353.
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