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Abstract
In organ transplantation, blood borne cells and macromolecules (e.g. antibodies) of the host immune
system are brought into direct contact with the endothelial cell (EC) lining of graft vessels. In this
location, graft ECs play several roles in allograft rejection, including the initiation of rejection
responses by presentation of alloantigen to circulating T cells; the development of inflammation and
thrombosis; and as targets of injury and agents of repair.
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Introduction
In this review we will summarize the roles that graft endothelial cells (ECs) play in various
stages of the rejection of allografts.

Endothelial Cells as Initiators of Rejection
T cells recognize allografts as non-self either by direct or indirect recognition of alloantigens
(signal 1) (1,2). Direct recognition is initially dominant, involving many more T cell clones,
whereas indirect recognition may become more important at later times. The adaptive immune
response is altered by experience and at least half of all circulating T cells in an adult human
are memory cells (3,4). Naïve and memory T cells have different requirements for activation
(5–7) and patterns of recirculation (8). Memory cells are further subdivided into effector
memory T cells that home to sites of inflammation and central memory T cells that recirculate
through secondary lymphoid organs (8). Memory T cells generally have lesser requirements
for costimulation (signal 2) and are less subject to modulation of their patterns of response by
cytokines (signal 3) (9). They are also harder to immunosuppress, and to regulate (10). There
is a high frequency of alloreactive memory T cells in humans that correlates with the outcome
of clinical transplantation (11). As we will discuss shortly, memory T cells have a special
relationship with ECs that will be described below.

Signals 1 and 2 are normally typically presented to naïve T cells by dendritic cells (DCs),
referred to as “professional” antigen presenting cells (APCs). DCs increase their expression of
MHC peptide complexes and co-stimulators (undergo “maturation”) in response to microbe-
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derived “pathogen-associated molecular patterns” (12) or signals released by injured cells
(“damage-associated molecular patterns” or “alarmins”) (13). The latter may be more relevant
in transplantation because ischemia/reperfusion (I/R) injury during organ transplantation
releases alarmins, maturing DCs within the graft. Alarmins may also directly influence
alloreactive memory T cell responses independently of DCs (14). In a rat kidney transplant
model, graft-derived DCs (“passenger leukocytes") may be required to initiate graft rejection
(15). In mice, allograft rejection by adoptively transferred naïve CD8+ T cells requires their
activation within secondary lymphoid organs by graft-derived DCs (16), but rejection by
adoptively transferred memory CD8+ T cells may occur in the absence of secondary lymphoid
organs (17) and without a need for graft DCs (18). Passenger leukocyte depletion with antibody
failed to prevent rejection of human kidneys although it is difficult to ascertain the completeness
of depletion in this case. Nevertheless, these observations suggest that cells other than DCs
may initiate allograft rejection perhaps through activation of alloreactive memory T cells
(19). Several lines of evidence suggest that human (or mouse) ECs serve as this alternative
initiator of rejection:

(1). In human allografts, vascular ECs basally express both class I and class II MHC molecules
(20,21). (see Table I). In culture, human ECs reduce class I and completely lose expression of
class II molecules; cytokines, including TNF, IFN-α, IFN-β and IFN-γ, can restore class I MHC
molecule expression, but only IFN-γ restores class II expression (22). Human ECs also process
protein antigens to peptides that can be recognized by T cell clones (23). It is unknown if human
ECs process antigens differently from other cell types, although this has been suggested for
viral antigens (24). However, CTL produced by culturing human CD8+ T cells with allogeneic
B lymphoblastoid cells readily recognize allogeneic ECs, implying that common peptides are
generated (25,26). Human ECs differ from mouse ECs in several respects relevant for antigen
presentation (see Table II), and this must be considered when interpreting rodent transplant
experiments.

(2), Cultured human ECs display functional co-stimulators that enhance T cell IL-2 production
(27). While unable to express either CD80 or CD86, the principal costimulators required by
naïve T cells, human ECs express other costimulators that are relevant for the activation of
memory T cells. (see Table I).

(3). Human ECs cultured with resting allogeneic T cells in the absence of professional APCs
stimulate IL-2 production by and proliferation of memory but not naïve T cells (4,7,27). This
capacity distinguishes human ECs from most other cell types in peripheral tissues (28) as well
as from DCs (see Table III). Once activated by ECs, memory T cells can subsequently respond
to other cell types expressing relevant MHC molecules (28). Activation by ECs causes effector
cytokine production from memory CD4+ T cells (29) and maturation of memory CD8+ T cells
into cytolytic T lymphocytes (CTL), some of which are specific for EC targets (30). In mice,
CD8+ but not CD4+ T cells proliferate to cultured allogeneic ECs (31,32). CD4+ T cell
responses to cultured mouse ECs may largely involve activation of regulatory T cell
populations (33). Significantly for transplant rejection, adoptive transfer of resting human
effector memory T cells to an immunodeficient mouse host in the absence of professional APCs
can injure allogeneic human ECs within a human skin graft (29).

Although human graft ECs are capable of directly activating T cells, ECs may play additional
roles in the process of alloantigen recognition. First, EC may promote differentiation of
monocytes into competent APCs (34) and may actually contribute to their differentiation into
DCs (35). Second, host ECs may pick up graft antigens and present them to CD8+ T cells,
displaying the property of "cross-presentation" sometimes proposed as unique to DCs (36).
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The ability of ECs to stimulate alloreactive effector memory CD4+ T cells to secrete IFN-γ
may have a special role in chronic allograft vasculopathy. This lesion, which is the major cause
of late cardiac graft loss (and probably late renal graft loss as well) may depend on local IFN-
γ production within the vessel wall (37). Histological analysis of these lesions in allograft
coronary arteries suggests the persistence of graft ECs (38) in direct contact with subjacent
host T cells (39). ECs may further contribute to chronic allograft vasculopathy by acting as a
source of signals that induce bystander T cells to express inducible nitric oxide synthase, a
signal that may help sustain alloresponses (40).

ECs as Participants in Rejection
Allograft rejection involves recruitment and activation of circulating leukocytes in response
to co-ordinated changes in microvascular ECs (reviewed in (41)). Pro-inflammatory alterations
in ECs is termed “activation” (41). Type I activation is mediated in response to ligands such
as histamine or thrombin, and occurs independently of protein synthesis within minutes.
Examples are NO or prostaglandin production or P-selectin translocation from storage
organelles (Weibel-Palade bodies) to the cell surface. Type II activation is induced by cytokines
such as TNF or IL-1, and involves transcription of new genes such as the adhesion molecules
E-selectin, ICAM-1 and VCAM-1. Both responses may contribute to vascular leakiness, a
cardinal feature of inflammation, although type II activation causes more sustained junctional
changes and vascular leak. Key changes in activated venular ECs that contribute to leukocyte
recruitment are expression of adhesion molecules that bind leukocytes and display of
chemokines that activate the captured leukocytes. (see Table IV). The relevant EC adhesion
molecules and activating chemokines responsible for leukocyte recruitment vary with
particular leukocyte populations. Monocyte recruitment into rejecting human renal allografts
may depend particularly upon EC selectins and the chemokines MCP-1 (CCL2) and RANTES
(CCL5) that bind to chemokine receptors CCR1, CCR2 and CCR5 (42). Inflammatory T cells,
especially those that have differentiated into effector memory T cells, more readily interact
with VCAM-1 and with chemokines that bind to the receptor designated CXCR3, namely Mig
(CXCL9) IP-10 (CXCL10) and ITAC (CXCL11) (43) and ENA-78 (CXCL5) (44). Both
RANTES and IP-10 expression correlate with T cell infiltration into rejecting renal allografts
(45,46). In vitro, T cells, but not monocytes, require shear stress to initiate transmigration
(43,47). ECs may further contribute to leukocyte recruitment by forming a cup-like extension
of the plasma membrane at sites of transmigration (48). This structure may form away from
intercellular junctions allowing leukocytes to pass through the EC body.

EC functions related to antigen presentation and leukocyte recruitment may be linked. Antigen-
activated T cells are a major source of cytokines that mediate type II EC activation, including
TNF and lymphotoxin (LT, also called LTα or TNFβ). Antigen-activated T cells may also
activate ECs through a contact-dependent pathway utilizing CD154 (49). EC antigen
presentation to effector memory T cells may trigger T cell diapedesis involving the cytokine-
inducible transmembrane chemokine fractalkine (CX3CL1) and its receptor (CX3CR1) on
effector memory T cells (50).

ECs may also contribute to graft vessel thrombosis that can exacerbate graft injury (51). Resting
ECs keep blood fluid (41) by preventing platelet activation and displaying tissue factor pathway
inhibitors and inhibitors of thrombin, such as heparan sulfates (51). If thrombin is generated,
resting ECs capture the active enzyme on thrombomodulin and use it to activate protein C,
which degrades clotting factors. ECs also produce plasminogen activators that lead to lysis of
fibrin thrombi. Type II activated EC synthesize express pro-coagulant molecules. At the same
time EC injury (see below) abrogates EC anti-coagulant properties. Although thrombosis may
be observed in acute cell-mediated rejection (ACR), it is more characteristically associated
with antibody-mediated rejection (AMR) (52).
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ECs as Targets of Rejection
Allograft ECs are a primary target of rejection. Cells and molecules that contribute to rejection
through their actions on ECs include:

(1). Cytolytic T Lymphocytes (CTL)
Direct recognition of a specific complex of peptide and non-self class I MHC molecules on
graft EC by host CTL is a major mechanism of ACR in immunosuppressed patients, leading
to graft cell apoptosis (53,54). The presence of CTL and CTL-specific mRNAs in biopsies
correlates with ACR (55). CTL generated from CD8+ memory T cells by co-culture with
allogeneic ECs may only kill ECs (30), and EC-selective CTL have been recovered from
rejecting grafts (56). EC lysis by CTL involves either T cell ligands that engage death receptors
(DRs, see below) on ECs or granule exocytosis of effector molecules (57). Both pathways
require cell-cell contact and are initiated by recognition of non-self class I MHC/peptide
complexes. Granule exocytosis deposits perforin and granzyme B from the CTL on the target
cell surface. Perforin facilitates entry of granzyme B, a serine protease that cleaves and activates
pro-capsase 3, an effector of apoptosis. The activation and activity of caspase 3 may be held
in check by X-linked Inhibitor of Apoptosis Protein (x-IAP). Granzyme B also cleaves and
activates pro-caspase 8, which may cleave and activate pro-caspase 3, and may also cleave and
activate the cytosolic protein Bid. Activated Bid interacts with Bax, a pro-apoptotic member
of the Bcl-2 family, inducing Bax to dimerize in the outer mitochondrial membrane and initiate
release of proteins that promote cell death, including cytochrome c, Apoptosis Inducing Factor
(AIF) and Second Mediator of Apoptotic Cell death (SMAC, also known as Diablo). This Bax-
mediated release reaction is antagonized by anti-apoptotic members of the Bcl-2 family,
including Bcl-2 itself. SMAC/Diablo prevents x-IAP from inhibiting caspase 3 activation.
Cytochrome c interacts with Apoptotic Protein Activating Factor-1 (APAF-1) to activate
procaspase 9, an alternative activator of caspase-3. AIF leads to cell death independent of
caspases. CTL-mediated killing of cultured human ECs depends granule exocytosis and can
be inhibited by overexpression of Bcl-2, implying a role for mitochondrial release of SMAC-
Diablo in this cell type (58).

(2). Natural Killer (NK) cells
NK cells infiltrate grafts shortly after transplantation (59) and typically recognize targets by a
combination of activating and inhibitory receptors (60). Activating receptors recognize ligands
such as the Fc portions of antibodies, enabling antibody-dependent cell-mediated cytotoxicity
(ADCC), or molecules such as MHC class I-related antigen-A-1 (MICA-1). ADCC may be a
major component of acute AMR in which ECs are primary targets of alloantibody (see below).
NK cell inhibitory receptors often recognize specific allelic forms of class I MHC molecules
complexed to self-peptides but cannot recognize allogeneic cells that lack these molecules
(“absent self”). In the absence of inhibitory signals, host NK cells will recognize and kill
allogeneic ECs (61). NK cell-mediated EC killing has been invoked as a primary pathway of
hyperacute and accelerated acute rejection of xenografts (62) and has been proposed to play a
role in chronic allograft vasculopathy (63). A role for NK cells in ACR of allografts is less
clear. NK cell killing utilizes the same mechanisms as CTL, namely engaging DR ligands and
granule exocytosis of effector molecules.

(3). Macrophages
Monocytes infiltrate kidneys undergoing ACR or AMR and differentiate into macrophages,
which contribute to rejection (64). Macrophages have been associated with capillary regression
during development by inducing EC apoptosis (65); similar events may occur during rejection.
EC injury by macrophages may involve multiple effector mechanisms including elaboration
of TNF, TRAIL, reactive oxygen species (ROS) and NO. The expression of these effectors can
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be enhanced by IFN-γ-mediated macrophage activation (66). Macrophages may undergo an
alternative pathway of activation, differentiating into “M2 cells” that are distinct from IFN-γ-
activated “M1 cells”. M2 cells are associated with tissue repair but may also promote fibrosis
in late graft loss (66).

(4). Neutrophils
Neutrophils are usually the first cell type recruited into inflammatory responses and their
paucity in the infiltrates associated with ACR is striking. It is possible that they are transiently
recruited at the very earliest stages of the acute rejection process and have disappeared by the
time biopsies are taken. This idea is supported by the observation that E-selectin expression
by ECs in human cardiac biopsies, which is important for neutrophil recruitment, is transient
and predictive of imminent rejection and absent during rejection responses (67,68). Neutrophils
are more common in AMR or in non-immune injury to ECs (see below) and reduction of
neutrophil infiltrates in the peri-operative period reduces subsequent T cell-mediated rejection
of mouse cardiac allografts (69). Injury of EC depends on neutrophil activation and neutrophils
may be activated by cytokines, chemokines, antibodies and complement products. Activated
neutrophils may release both ROS and degradative enzymes that contribute to killing of
microbes; these effector molecules are also capable of injuring or killing ECs.

(5). Death receptor ligands
DRs are members of the TNF receptor superfamily that contain an intracellular protein-protein
interaction domain called a death domain (DD) (70,71). DRs expressed on ECs include TNFR1
(also known as DR1), Fas (also known as DR2), DR3, TRAIL-R1 (also known as DR4) and
TRAIL-R2 (also known as DR5). TNFR1 binds both TNF and lymphotoxin, made primarily
by activated leukocytes, whereas DR3 binds TNF-like molecule 1A (TL1A), which is made
by ECs and activated leukocytes (72). TNF, LT and TL1A are found in rejecting allografts
(73). Fas binds FasL, whereas the two TRAIL receptors bind TRAIL. These membrane-
associated ligands are expressed on activated effector cells, such as CD4+ effector T cells,
CD8+ CTL, NK cells or macrophages, and can mediate cell-cell contact-dependent killing. In
most cells, DR-initiated killing involves activation of DR-linked pro-caspase 8. This has been
shown to occur in cultured human ECs and is enhanced by IFN-γ treatment which increases
pro-caspase 8 expression (74). IFN-γ also allows TNFR1 to initiate a caspase-independent
death pathway in ECs that is initiated by the lysosomal enzyme cathepsin B and involves Bid-
independent release of AIF from mitochondria (75).

In the kidney TNFR1 is expressed basally on glomerular and vascular ECs and is
downregulated during ACR or ischemia/reperfusion (I/R) injury (76). Transcripts and protein
for DR3 are induced in vascular ECs (and renal tubular epithelial cells) in human kidney
allografts undergoing either ACR or I/R injury (77). TNFR1 signaling appears responsible for
TNFR1 downregulation (78). Signaling through TNFR2, which is not a DR and which is
minimally expressed in normal kidney, upregulates TNFR2 expression on ECs and on tubular
epthelial cells (78). Whereas TNFR1 signals lead to inflammation and apoptosis, TNFR2
signals promote proliferation and repair (78). Signals that induce DR3 are unknown and signals
through DR3 are initiated by binding of TL1A (72). TL1A protein is synthesized by ECs in
normal human kidney and synthesis is increased in rejection (73). In organ cultures of normal
human kidney and wild-type mice, TL1A activates NF-κB, induces caspase-3 and apoptosis,
and upregulates TNFR2 in TEC. In DR3 null mice, TL1A does not induce NF-κB or caspase-3
activation but still upregulates TNFR2, suggesting there is a second receptor for TL1A (73).

(6). Antibodies and complement
AMR is characterized by monocyte margination against EC and by capillaries containing
thrombi and fibrinoid arterial necrosis (52). Antibody and complement components are present
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on the EC surface, and C4d deposition is now taken as evidence of AMR (79) but the lectin
pathway of complement activation, which can be triggered by ischemia, could also lead to
endothelial C4d deposits. The diagnosis of AMR is supported by detection of circulating
antibodies that recognize graft ECs (54). Such antibodies most often react with HLA-A, B, C
and DR antigens, but circulating anti-EC antibodies that react with non-HLA alloantigens have
been detected in patients (80). Some non-HLA alloantigens are shared by ECs and monocytes
but not lymphocytes (E-M antigens), and some are only found on ECs (E antigens). MICA on
renal endothelium is also a potential target for AMR. AMR to ECs may involve complement
and complement-induced inflammation and/or NK cells, which recognize bound antibodies
via Fc receptor and mediate ADCC (81).

In addition to killing ECs via complement activation or targeting NK cells for ADCC,
alloantibodies may activate ECs. Anti-MHC antibodies activate ECs to degranulate Weibel-
Palade bodies, leading to release of IL-8 and display of P-selectin. In culture and in humans
skin grafts placed on immunodeficient mice, F(ab)’ fragments of an HLA-A,B,C antibody can
exert such effects despite their inability to engage Fc receptors or active complement (82).
Anti-class I antibodies may also be mitogenic for ECs, although the role of this response to
allograft rejection is unclear. Activation of the complement system may also affect ECs
independent of antibody, causing perturbation in EC barrier function retraction of EC plasma
membrane from the underlying substrate, release of preformed von Willebrand factor and P-
selectin from Weibel-Palade bodies to the cell surface, and production of cytokines including
IL-α, IL-8 and MCP-1 (83). The combination of C5a and antibody binding can cause ECs to
shed anti-coagulant heparan sulfates (84). ECs express a variety of complement receptors and
complement regulatory proteins that may modulate these responses (85,86). There is little
evidence to date that any of these are actively regulated in allograft rejection. Deposition of
complement membrane attack complex on ECs usually does not, by itself, kill ECs but may
induce endothelial microparticle (EMP) formation and thrombosis (see below) (87).

(7). Non-immune injuries
Hemodynamic factors combined with mediators such as cytokines have profound effects on
EC injury. Disturbances in flow patterns in atherosclerosis, post-surgical, intimal hyperplasia
and I/R injury or infection (e.g., with cytomegalovirus) can influence EC-T cell interactions
through expression of alarmins and adhesion molecules promoting rejection (88–90). These
responses may explain why renal allografts from living-related donors which are healthy,
generally have a higher graft survival than cadaver donor transplants, involving injured
kidneys.

(8). Thrombosis
Injury to ECs from whatever cause may lead to graft vessel thrombosis. Circulating
procoagulant EMPs, which are shed plasma membrane components, are markers of vascular
damage produced by EC apoptosis or deposition of the complement membrane attack complex,
but are also generated in response to thrombin, collagen, and/or shear stress (91,92). EMPs
impair EC function in vitro, diminishing acetylcholine-induced vasorelaxation and NO
production, and increasing superoxide production (93). At the same time, cytokine-activated
EC lose some anti-coagulant properties, such as expression of thrombomodulin and acquire
pro-coagulant properties such as expression of tissue factor and fibrinogen-like protein 2
(41). As noted earlier, EC injury and type II-activation may thus combine to promote
thrombosis.
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ECs Resistance to Injury and Repair
ECs can acquire resistance to injury by up-regulating a number of cytoprotective genes such
as hemoxygenase-1 (HO-1), A20, Bcl-2, and Bcl-xL, which protect cells from cytokine-
mediated apoptosis (94). Many of these gene products are regulated by NF-κB and are induced
by TNF. Induction of protective genes may contribute to resistance against AMR, a
phenomenon called “accommodation.” (94). Accommodated grafts function without rejection
despite the presence of recipient-specific antibodies. Although many genes contributing to
resistance to injury are regulated by NF-κB, activation of the serine/threonine kinase Akt via
the PI3K signaling pathway and/or of ERK-1,2 in response to TNF (95) or growth factors,
(96–98) can also contribute to cytoprotection. IL-11 and IL-6, which signal via STAT3, have
also been shown to render EC resistant to immune-mediated injury (99,100).

Graft vessels containing injured ECs may undergo repair. For injuries of limited extent,
neighboring ECs may simply spread to cover the defect and then divide. In cases of more
extensive vessel injury (e.g., vascular rejection), vessels of transplant recipients may display
endothelial chimerism through replacement of damaged donor endothelium by host-derived
precursors (101). The percentage of recipient ECs in the peritubular capillaries correlates with
the type of renal transplant rejection, being predominantly found in vascular rejection. It is
likely that ECs are lost from the vessel as a result of rejection and are replaced by circulating
endothelial progenitor cells (EPCs) that have the capacity to differentiate into mature ECs. The
markers that define circulating EPCs are controversial and true EPCs must be distinguished
from hematopoietic cells that stimulate angiogenesis but do not give rise to long-lived ECs
(102). The signals that recruit EPCs are also unknown, but both VEGF (103) and SDF-1
(104) are thought to be important. Both may be detected in allografts.

Conclusions
We have reviewed evidence that graft ECs are critical players in all stages of the host response
to allografts, contributing to the initiation and effector phases of rejection. We have also noted
that ECs may resist injury or contribute to repair. Despite these central roles performed by ECs,
it is striking that none of the existing therapeutic strategies to improve the outcome of
transplantation have focused on improving EC health or function. Development of such
strategies may not only protect the graft, but may also improve the cardiovascular health of the
host, a major complication of current transplantation medicine.
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HO, hemoxygenase
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SMAC, second mediator of apoptotic cell death
TL1A, TNF-like molecule 1A
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Table I
Molecules Expressed by Human Endothelial Cells Relevant for Antigen Presentation

Category Molecule Comment Rels

MHC HLA-A,B,C Constitutive; increased by IFN-α,β,γ TNF (20,21)

TAP1,2 Constitutive; increased by IFN-α,β,γ TNF (105)

LMP2,7 Constitutive; increased by IFN-α,β,γ TNF (105)

HLA-DR, DP, DQ Basal and induced further by IFN-γ (106)

Invariant Chain Basal and induced further by IFN-γ (106)

Costimulators LFA-3 (CD58) Constitutive (Ig superfamily) (107)

PDL-1 Constitutive; increased by IFN-γ (Ig superfamily) (108)

PDL-2 Constitutive; increased by IFN-γ (Ig superfamily) (108)

ICOS-Ligand Constitutive; increased by TNF (Ig superfamily) (109)

4-1BB Ligand Constitutive; increased by IFN-γ (TNF superfamily) (7)

CD40 Constitutive; increased by IFN-γ and TNF (TNFR
superfamily)

(110)

Ox40-Ligand Constitutive (TNF superfamily) (7)

GITR-Ligand Induced by TNF (TNF superfamily) (108)

Cytokines IL-1α Constitutive; increased by IL-1, TNF (111)

IL-6 Induced by IL-1, TNF (112)

Other Indolamine 2,3 dioxygenase Induced by IFN αβγ (113)
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Table II
Some Molecular Difference between Human and Mouse Endothelial Cells Relevant for Rejection

Molecule Human Mouse Rel

Class II MHC basal and inducible absent (114)

LFA-3 constitutive absent (114)

CD80 absent constitutive and inducible (114)

P-selectin constitutive and mobilizable cytokine inducible (114)

IL-8 inducible absent (114)

Activation of CD4+ T cells central and effector memory cells regulatory cells only (29,32)

Activation of CD8+ T cells memory cells only naïve and memory cells (4,31)
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Table III
Some Comparisons of Antigen Presentation by Human Endothelial Cells (115) vs. Human Dendritic Cells (116)

Property Endothelial Cell Dendritic Cell

Phagocytosis absent (in vitro only) present (when immature)

Pinocytosis active active

MHC expression basal; regulated by cytokines regulated by maturation

Cross presentation probable yes

Costimulation LFA-3 dominant; no B7 (CD80, CD86); B7 (CD80, CD86) dominant

Adhesion selective for memory T cells Cluster with naïve T cells

Activation of T cells selective for (effector) memory T cells Preferential with naïve T cells

Transplantation. Author manuscript; available in PMC 2009 November 27.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Al-Lamki et al. Page 19

Table IV
Some Molecules Expressed by Human Endothelial Cells Relevant for Inflammation/Rejection

Category Molecules Comment Rels

Leukocyte Adhesion E-selectin Induced by TNF, IL-1 (117)

ICAM-1 Constitutive; increased by TNF, IL-1
IFN-γ

(118)

VCAM-1 Induced by TNF, IL-1, IL-4, IL-13 (119,120)

P-selectin Constitutive: sequestered until
translocated

(121)

ICAM-2 Constitutive (122)

Leukocyte Transmigration PECAM-1 Constitutive (123)

CD99 Constitutive (124)

Leukocyte Activation Platelet activating factor Synthesized in response to thrombin,
histamine

(125)

IL-8, Gro-α Induced by TNF, IL-1 (126,127)

IP-10 Induced by IFN-γ (129)

ITAC Induced by IFN-γ (129)

Mig Induced by IFN-γ (130)

ENA-78 Induced by IL-1 (44)

MCP-1 Induced by TNF, IL-1, IFN-γ IL-4, IL-13 (131,132)

Rantes Induced by TNF plus IFN-γ (133)

Eotaxin 3 Induced by IL-4 (134)

Fractalkine Induced by TNF, IL-1, IFN-γ (135)

Vasoactive Cyclo-oxygenase 2 Induced by TNF, IL-1 (136)

Endothelial NOS Constitutive; decreased by TNF (137)

Procoagulant Tissue factor Induced by TNF, IL-1, CD40L (138,139)

Heparan sulfate Shed by Ab + C' (84)

Thrombomodulin Constitutive; decreased by TNF, CD40L (139,140)
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