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Abstract: The behavior of electrons in general many-electronic systems throughout the 
density functionals of energy is reviewed. The basic physico-chemical concepts of density 
functional theory are employed to highlight the energy role in chemical structure while its 
extended influence in electronic localization function helps in chemical bonding 
understanding. In this context the energy functionals accompanied by electronic 
localization functions may provide a comprehensive description of the global-local levels 
electronic structures in general and of chemical bonds in special. Becke-Edgecombe and 
author’s Markovian electronic localization functions are discussed at atomic, molecular 
and solid state levels. Then, the analytical survey of the main workable kinetic, exchange, 
and correlation density functionals within local and gradient density approximations is 
undertaken. The hierarchy of various energy functionals is formulated by employing both 
the parabolic and statistical correlation degree of them with the electronegativity and 
chemical hardness indices by means of quantitative structure-property relationship (QSPR) 
analysis for basic atomic and molecular systems. 

Keywords: density functional theory, electronic localization function, kinetic energy, 
exchange energy, correlation energy, exchange-correlation energy, electronegativity, 
chemical hardness, QSPR. 
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1. Introduction 

In Walter Kohn’s lecture, with the occasion of receiving his Nobel Prize in Chemistry [1], back in 
1998, for density functional theory (DFT) theory [2-4], there was formulated a quite provoking 
assertion affirming that, heuristically, the general eigen-wave-function ),...,( 1 NrrΨ associated to a 

system of N electrons fails to be a legitimate scientific concept when N ≥ N0 ≈ 103.  
Nevertheless, this affirmation may be at any time turned in a theorem, eventually as Kohn’s zero 

DFT theorem, with a proof following the van Vleck prescription of the so called „exponential wall”, 
leaving with the applicability limits of the conceptually eigen-wave function of multi-electronics 
systems. However, before proceeding to demonstration, there must be noted that such reality limitation 
characterized by eigen-wave-function of the multi electronic-systems is not transferable at the 
quantum mechanics postulates, but providing an alternative quantum scheme, thus paralleling 
Schrödinger equation, however in a more generally integrated level.  

The demonstration of the non-representability of the eigen-function for systems containing more 
than N0 ≈ 103 electrons involves two aspects: the accuracy of representation by using the eigen-wave 
function and the possibility of measuring it.  

Regarding the accuracy of the ),...,( 1 NrrΨ  representation there is widely known that it associates 

with the density of probability smoothly approaching unity, written in the “liberal” form (according to 
Kohn):  

2
11

* 10,1),...,(),...( −=−=ΨΨ εεNN rrrr  (1)

Now, considering a collection of N’ molecules the total density of probability of this multi-
molecular system (and implicit a multi-electronic one) will consequently be: 

( ) ( ) ( ) [ ]'10exp)'exp(1... 2'
'

*
1

* NNN
N

−−=−≅−=ΨΨΨΨ εε  .       (2)

For N’=103 molecules in whatever aggregates, e.g. solids, clusters, super-molecules, or biological 
macro-molecules, the total density of probability will result from (2) as exp[-10]≈5×10-5, meaning that 
it is determined with much less accuracy compared with the degree of individual eigen-function 
localization precision in (1). Since each molecular system has at least one electron there follows the 
threshold limit of N0 ≈ 103 electrons from where the lost in associated wavefunction nature is recorded.  

This result, relaying on the exponential form (2), justifies the title of „ exponential wall” for the 
wavefunction limitation.   

Then, going to the measurable issue of such eigenfunctions, let’s ask how many bits are necessary 
for recording its quantum dimension? Assume, again, the working wavefunction ),...,( 1 NrrΨ for all 

the N electrons in a concerned system. The N electrons in system have a total of 3N space variables (in 
the configuration space); let’s now assume an average of q bits necessary in measuring a single 
variable from the total of 3N; there results a total information of    

NqB 3=  (3)
bits for recording (storing) the total eigen-wave-function of the system. However, a simple evaluation 
of the dimension (3) shows that for a minimum of q=3 bits/variable and for the above consecrated 
minimum limit of N=N0≈103 electrons in the system the total yield of necessary bits for recording is 
about of 101000 order – a truly non-realistic dimension. This can be immediately visualized if one 
recalls that the total number of baryons (i.e. all fermions and elementary particles of protonic and 



Int. J. Mol. Sci. 2008, 9  1052
 

 

neutronic type, but not limited only to these) estimated in entirely Universe (summing up all existing 
atoms and free nuclei in the plasma state, but not only limited to these) gives a result of about 1080 
order.  

Definitely, the concept of eigen-wave function must be enlarged or modified in such a manner that 
the quantum description does not be blocked by the exponential wall: from where we can start? Firstly, 
as was exposed, the eigen-wave function in the configuration space multiplies in an exponential 
manner the variables accounting for the number and the position of the electrons; thus, the 
configuration space must be avoided. Then, the density of probability must be reformulated as such the 
exponential wall for a poly-electronic system be avoided while preserving the dependency of the total 
number of electrons N. 

Fortunately, the above described conceptual project was unfolded in 1963 when Walter Kohn met 
in Paris (at École Normale Supérieure), during his sabbatical semester, the mate Pierre Hohenberg who 
was working at the description of the metallic alloys (specially the CuxZn1-x systems) by using 
quantum traditionally methods of averaging crystalline periodic field. Studies of this type of problems 
often start from the level of the uniform electronic density referential upon which specific perturbation 
treatments are applied. From this point Kohn and Hohenberg made two crucial further steps in 
reformulation of the quantum picture of the matter structure: one referred at the electronic density, and 
another at the relation between electronic density with the externally applied potential on the electronic 
system; they were consecrated in the so called Hohenberg-Kohn (KH) theorems [2, 5-7]. They were 
the fundaments of new emerging quantum density functional theory that mostly impacted the 
reformation of the quantum chemistry itself and its foreground principles of structure and 
transformation.  

The present work likes to review some fundamental aspects of density functional theory 
highlighting on the primer conceptual and computational consequences in electronic localization and 
chemical reactivity.     

2. Primary Density Functional Theory Concepts 

2.1. Hohenberg-Kohn theorems  

The first Hohenberg-Kohn (HK1) theorem gives space to the concept of electronic density of the 
system ρ(r) in terms of the extensive relation with the N electrons from the system that it characterizes 
[8]:    

Nd =∫ rr)(ρ    .                                                (4)
The relation (4) as much simple it could appears stands as the decisive passage from the eigen-wave 

function level to the level of total electronic density [9-11]: 

∫ ΨΨ= NNN ddN rrrrrrrrr ...),...,,(),...,,()( 222
*ρ    .                 (5)  

Firstly, Eq. (5) satisfies Eq. (4); this can be used also as simple immediate proof of the relation (4) 
itself. Then, the dependency from the 3N-dimensions of configuration space was reduced at 3 
coordinates in the real space, physically measurable.  

However, still remains the question: what represents the electronic density of Eq. (5)? Definitely, it 
neither represents the electronic density in the configuration space nor the density of a single electron, 
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since the N-electronic dependency as multiplication factor of the multiple integral in (5). What remains 
is that ρ(r) is simple the electronic density (of the whole concerned system) in „r” space point. Such 
simplified interpretation, apparently classics, preserves its quantum roots through the averaging 
(integral) over the many-electronic eigenfunction ),...,( 1 NrrΨ  in (5). Alternatively, the explicit non-

dependency of density on the wave function is also possible within the quantum statistical approach 
where the relation with partition function of the system (the global measure of the distribution of 
energetic states of a system) is mainly considered.   

The major consequence of this theorem consists in defining of the total energy of a system as a 
function of the electronic density function in what is known as the density functional [8, 9, 12]:    

][][][ ρρρ AHK CFE += ,   (6)
from where the name of the theory. The terms of energy decomposition in (6) are identified as: the 
Hohenberg-Kohn density functional 

][][][ ρρρ eeHK VTF +=  (7)
viewed as the summed electronic kinetic ][ρT  and electronic repulsion ][ρeeV , and the so called 

chemical action term [12-14]: 
rrr dVCA ∫= )()(][ ρρ , (8)

being the only explicit functional of total energy.   
Although not entirely known the HK functional has a remarkably property: it is universally, in a 

sense that both the kinetic and inter-electronic repulsion are independent of the concerned system. The 
consequence of such universal nature offers the possibility that once it is exactly or approximately 
knew the HK functional for a given external potential V(r) remain valuable for any other type of 
potential V’(r) applied on the concerned many-electronic system. Let’s note the fact that V(r) should 
be not reduced only to the Coulombic type of potentials but is carrying the role of the generic potential 
applied, that could beg of either an electric, magnetic, nuclear, or even electronic nature as far it is 
external to the system fixed by the N electrons in the investigated system.  

Once “in game” the external applied potential provides the second Hohenberg-Kohn (HK2) 
theorem. In short, HK2 theorem says that “the external applied potential is determined up to an 
additive constant by the electronic density of the N-electronic system ground state”.  

In mathematical terms, the theorem assures the validity of the variational principle applied to the 
density functional (6) relation, i.e. [6]  

0][][][ =⇔≥ ρδρρ EEE  (9)
for every electronic test  density ρ   around the real density ρ of the ground state.  

The proof of variational principle in (9), or, in other words, the one-to-one correspondence between 
the applied potential and the ground state electronic density, employs the reduction ad absurdum 
procedure. That is to assume that the ground state electronic density ρ(r) corresponds to two external 
potentials (V1, V2) fixing two associate Hamiltonians (H1, H2) to which two eigen-total energy (E1, E2) 
and two eigen-wave functions (Ψ1, Ψ2) are allowed. Now, if eigen-function Ψ1 is considered as the 
true one for the ground state the variational principle (9) will cast as the inequality: 

τττρ dHHHdHdHE ∫∫∫ Ψ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ −+Ψ=ΨΨ<ΨΨ=
∧∧∧∧∧

2212
*
221

*
211

*
11 ][  (10)

which is further reduced, on universality reasons of the HK functional in (6), to the form:          
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[ ] rrrr dVVEE ∫ −+< )()()(][][ 2121 ρρρ . (11)
On another way, if the eigen-function Ψ2 is assumed as being the one true ground state 

wavefunction, the analogue inequality springs out as: 
[ ] rrrr dVVEE ∫ −+< )()()(][][ 1212 ρρρ  .                                 (12)

Taken together relations (11) and (12) generate, by direct summation, the evidence of the 
contradiction [2]: 

][][][][ 2121 ρρρρ EEEE +<+ . (13)
The removal of such contradiction could be done in a single way, namely, by abolishing, in a 

reverse phenomenologically order, the fact that two eigen-functions, two Hamiltonians and 
respectively, two external potential exist for characterizing the same ground state of a given electronic 
system. With this statement the HK2 theorem is formally proofed.  

Yet, there appears the so called V-representability problem signaling the impossibility of an a priori 
selection of the external potentials types that are in bi-univocal relation with ground state of an 
electronic system [15-18]. The problem was revealed as very difficult at mathematical level due to the 
equivocal potential intrinsic behavior that is neither of universal nor of referential independent value. 
Fortunately, such principial limitation does not affect the general validity of the variational principle 
(9) regarding the selection of the energy of ground state level from a collection of states with different 
associated external potentials.  

That because, the problem of V-representability can be circumvented by the so called N-
contingency features of ground state electronic density assuring that, aside of the N – integrability 
condition (4), the candidate ground state densities should fulfill the positivity condition (an electronic 
density could not be negative) [17, 18]:   

ℜ∈∀≥ rr ,0)(ρ , (14)
as well as the non-divergent integrability condition on the real domain (in relation with the fact that 
the kinetic energy of an electronic system could not be infinite – since the light velocity restriction): 

∞<∇∫
ℜ

rr d
22/1)(ρ . (15)

Both (14) and (15) conditions are easy accomplished by every reasonable density, allowing the 
employment of the variational principle (9) in two steps, according to the so called Levy-Lieb double 
minimization algorithm [19]: one regarding the intrinsic minimization procedure of the energetic terms 
respecting all possible eigen-functions folding a trial electronic density followed by the external 
minimization over all possible trial electronic densities yielding the correct ground state (GS) energy 
density functional   

( )⎥⎦
⎤

⎢⎣
⎡ Ψ++Ψ= ∫→Ψ

τ
ρρ

dVVTE eeGS )(minmin *  

( ) ⎥⎦
⎤

⎢⎣
⎡ +Ψ+Ψ= ∫∫→Ψ

rrr dVdVT ee )()()(minmin * ρτ
ρρ

 

( )][][min ρρ
ρ AHK CF += ( )][min ρ

ρ
E=  .                               (16)

One of the most important consequences of the HK2 conveys the rewriting of the variational 
principle (9) in the light of above N-contingency conditions of the trial densities as the working Euler 
type equation:  
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0]}[][{ =− ρμρδ NE  (17)
from where, there follows the Lagrange multiplication factor with the functional definition: 

)(

][

V

E

ρρδρ
ρδμ

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  (18)

this way introducing the chemical potential as the fundamental quantity of the theory. At this point, the 
whole chemistry can spring out since identifying the electronic systems electronegativity with the 
negative of the density functional chemical potential [9]:   

μχ −= . (19)
Up to now, the Hohenberg-Kohn theorems give new conceptual quantum tools for physico-

chemical characterization of an electronic sample by means of electronic density and its functionals, 
the total energy and chemical potential (electronegativity). These positive density functional premises 
are in next analyzed towards elucidating of the quantum nature of the chemical bond and reactivity 
[20]. 

2.2. Optimized energy-electronegativity connection  

Back from Paris, in the winter of 1964, Kohn met at the San Diego University of California his new 
post-doc Lu J. Sham with who propose to extract from HK1 & 2 theorems the equation of total energy 
of the ground state. In fact, they propose themselves to find the correspondent of the stationary eigen-
equation of Schrödinger type, employing the relationship between the electronic density and the wave 
function.  

Their basic idea consists in assuming a so called orbital basic set for the N-electronic system by 
replacing the integration in the relation (5) with summation over the virtual uni-electronic 
orbitals Nii ,1, =ϕ  , in accordance with Pauli principle, assuring therefore the HK1 frame with 

maximal spin/orbital occupancy [21]: 

Nnnn
i

ii

N

i
ii =≤≤= ∑∑ ,10,)()( 2rr ϕρ   .                 (20)

Then, the trial total eigen-energy may be rewritten as density functional of eq. (6) nature expanded 
in the original form [22, 23]: 

where, the contribution of the referential uniform kinetic energy contribution  

rrr dnT i

N

i
iis )(

2
1)(][ 2* ϕϕρ ∑∫ ⎥⎦

⎤
⎢⎣
⎡ ∇−= , (22)

with the inferior index „s” referring to the „spherical” or homogeneous attribute together with the 
classical energy of Coulombic inter-electronic repulsion 

21
12

21 )()(
2
1][ rr

rr
dd

r
J ∫∫=

ρρ
ρ  (23)

][][][ ρρρ AHK CFE +=  
][][][ ρρρ Aee CVT ++=  

{ } ][])[][(])[][(][][ ρρρρρρρ Aeess CJVTTJT +−+−++=  

∫∫∫∑ ∫ +++⎥⎦
⎤

⎢⎣
⎡ ∇−= rrrrrrrrrr dVEdd

r
dn xci

N

i
ii )()(][)()(

2
1)(

2
1)( 21

12

212* ρρ
ρρ

ϕϕ  (21)
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were used as the analytical vehicles to elegantly produce the exchange-correlation energy Exc 
containing exchange ])[][( ρρ JVee − and correlation ])[][( ρρ sTT − heuristically introduced terms as 

the quantum effects of spin anti-symmetry over the classical interelectronic potential and of corrected 
homogeneous electronic movement, respectively. 

Next, the trial density functional energy (21) will be optimized in the light of variational principle 
(17) as prescribed by the HK2 theorem. The combined result of the HK theorems will eventually 
furnish the new quantum energy expression of multi-electronic systems beyond the exponential wall of 
the wave function.  

An instructive method for deriving such equation assume the same types of orbitals for the density 
expansion (20),  

)()()( * rrr ϕϕρ N=  (24)
that, without diminishing the general validity of the results, since preserving the N-electronic character 
of the system,  highly simplifies the analytical discourse.   

Actually, with the trial density (24) replaced throughout the energy expression in (21) has to 
undergo the minimization procedure (17) with the practical equivalent integral variant: 

( ) 0][][ *
* =

−
∫ rdNE δϕ

δϕ
ρμρδ  . (25)

Note that, in fact, we chose the variation in the conjugated uni-orbital )(* rϕ in (25) providing from 
(24) the useful differential link: 

)()()( * rrr δϕϕδρ N= .                     (26)
Now, unfolding the equation (25) with the help of relations (21) and (24), together with 

fundamental density functional prescription (4), one firstly gets [24]: 

0)()()()()(][][)()(
2)(

**2*
* =

⎭
⎬
⎫

⎩
⎨
⎧ −+++∇− ∫∫∫ rrrrrrrrrr

r
dNdVNEJdN

xc ϕϕμϕϕρρϕϕ
δϕ
δ

(27)

By performing the required partial functional derivations respecting the uni-orbital )(* rϕ  and by 
taking account of the equivalence (26) in derivatives relating ][ρJ  and ][ρxcE terms, equation (27) 

takes the further form: 

0)()()()(][)()(
2

2 =−+++∇− rrrrrr ϕμϕ
δρ
δ

ϕ
δρ
ρδϕϕ NNV

E
NJNN xc . (28)

After immediate suppressing of the N factor in all the terms and by considering the exchange-
correlation potential with the formal definition [4, 9]: 

)()(
][

)(
r

r
V

xc
xc r

E
V ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

δρ
ρδ

, (29)

equation (28) simplifies as [25, 26]: 

)()()()()(
2
1

2
2

22 rrrr
rr

rr μϕϕ
ρ

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−
++∇− ∫ xcVdV . (30)

Moreover, once introducing the so called effective potential: 

)()()()( 2
2

2 rr
rr

rrr xceff VdVV +
−

+= ∫
ρ  (31)

the resulted equation recovers the traditional Schrödinger shape: 
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)()(
2
1 2 rr μϕϕ =⎥⎦

⎤
⎢⎣
⎡ +∇− effV  . (32)

The result (32) is fundamental and equally subtle. Firstly, it was proved that the joined Hohenberg-
Kohn theorems are compatible with consecrated quantum mechanical postulates, however, still 
offering a generalized view of the quantum nature of electronic structures, albeit the electronic density 
was assumed as the foreground reality. In these conditions, the meaning of functions )(rϕ is now 
unambiguously producing the analytical passage from configuration (3N-D) to real (3D) space for the 
whole system under consideration. Nevertheless, the debate may still remain because once equation 
(32) is solved the basic functions )(rϕ  generating the electronic density (24) and not necessarily the 
eigen-functions of the original system due to the practical approximations of the exchange and 
correlation terms appearing in the effective potential (31). This is why the functions )(rϕ are used to 
be called as Kohn-Sham (KS) orbitals; they provide the orbital set solutions of the associate KS 
equations [3]:   

NiV iiieff ,1,)()(
2
1 2 ==⎥⎦

⎤
⎢⎣
⎡ +∇− rr ϕμϕ  (33)

once one reconsiders electronic density (24) back with general case (20). 
Yet, equations (33), apart of delivering the KS wavefunctions )(riϕ , associate with another famous 

physico-chemical figure, the orbital chemical potential μi , which in any moment can be seen as the 
negative of the orbital electronegativities on the base of the relation (19). 

Going now to a summative characterization of the above optimization procedure worth observing 
that the N-electronic in an arbitrary external V-potential problem is conceptual-computationally solved 
by means of the following self-consistent algorithm:  
i. It starts with a trial electronic density (20) satisfying the N-contingency conditions (14) and (15); 
ii. With trial density the effective potential (31) containing exchange and correlation is calculated; 
iii. With computed effV  the equations (33) are solved for Nii ,1),( =rϕ ; 
iv. With the set of functions  { } Nii ,1)( =rϕ  the new density (20) is recalculated; 

v. The procedure is repeated until the difference between two consecutive densities approaches zero; 
vi. Once the last condition is achieved one retains the last set { } Niiii ,1),( =−= χμϕ r ; 

vii. The electronegativity orbital observed contributions are summed up from (33) with the expression: 

rrrrrr dVTdVn effs

N

i
ieffii

N

i
i ∫∑ ∫∑ +=⎥⎦

⎤
⎢⎣
⎡ +∇−=− )(][)()(

2
1)( 2* ρρϕϕχ ;   (34)

viii. Replacing in (34) the uniform kinetic energy, ][ρsT  from the general relation (21) the density 

functional of the total energy for the N-electronic system will take the final figure [9, 24]: 

{ }∫∫∫∑ −+−−= rrrrr
r

rr dVEddE xcxc

N

i
i )()(][)()(

2
1][ 21

12

21 ρρ
ρρ

χρ .    (35)

showing that the optimized many-electronic ground state energy is directly related with global or 
summed over observed or averaged or expected orbital electronegativities. One can observe from (35) 
that even in the most optimistic case when the last two terms are hopefully canceling each other there 
still remains a (classical) correction to be added on global electronegativity in total energy. Or, in other 
terms, electronegativity alone is not enough to better describe the total energy of a many-electronic 
system, while its correction can be modeled in a global (almost classical) way. Such considerations 



Int. J. Mol. Sci. 2008, 9  1058
 

 

stressed upon the accepted semiclassical behavior of the chemical systems, at the edge between the full 
quantum and classical treatments.  

However, analytical expressing the total energy requires the use of suitable approximations, 
whereas for chemical interpretation of bonding the electronic localization information extracted from 
energy is compulsory. This subject is in next focused followed by a review of the popular energetic 
density functionals and approximations. 

3. Electronic Localization Problem 

3.1. From global functional to localization function. Localization in solids  

The application of Hohenberg-Kohn theorems consecrate the crucial contributions of the so called 
“spherical” or homogeneous kinetic and of the exchange-correlation energy terms in a multi-electronic 
system’s ground state. However, the spherical electronic case corresponds to the non perturbed 
electronic system for which the Thomas-Fermi (TF) model was already advanced throughout totally 
ignoring exchange- correlation terms from the total energy shape: 

][][][][ ρρρρ ATFTF CJTE ++=  . (36)
Such a referential picture is most useful in establishing the uniform electronic distribution by 

indicating the occupation of the all-possible electronic levels in a semiclassical quantum frame 
(without explicit exchange-correlation involvement). Actually, the Fermi sphere in a momentum space 
finely defines the total homogeneous kinetic energy as: 

0

2

2
)(

m
pF

s =rτ  , (37)

while the quantum nature of the kinetic energy (37) is covered by involving the quantum (Heisenberg) 
uncertainty   

3hzyxppp zyx ≅ΔΔΔΔΔΔ  (38)
in uniform density computation. This suggests that the density of states in the Fermi volume of the 
impulse pF has to be normalized to the inverse of the cube power of Planck constant h, while the 
density of electrons is reached by multiplying  the density of states with the electron multiplicity 
2(1/2)+1=2 for every occupied state. The obtained density-Fermi impulse relationship: 

3/1
3/1

3

3

)(
8
3)(

3
42)( rrrrr ρ

π
πρ hpd

h
pd F

F ⎟
⎠
⎞

⎜
⎝
⎛=⇒=  (39)

allows the Thomas-Fermi kinetic energy unfolding as the density functional [9, 27-31]: 

∫∫ == rrrrr dCdT TFsTF
3/5)()()(

5
3][ ρτρρ .].[871.2

8
3

10
3,

3/2

0

2

ua
m
hCTF ≅⎟

⎠
⎞

⎜
⎝
⎛=
π

 (40)

with the help of which the total Thomas-Fermi energy functional takes the form: 

∫∫∫∫ ++= rrrrr
r

rrrr dVdddCE TFTF )()()()(
2
1)(][ 21

12

213/5 ρ
ρρ

ρρ  (41)

that can be seen as the first approximation for the density functional total energy (21).  
From physical point of view worth noted that the kinetic TF energy exactly corresponds to the total 

energy of the free electrons in a crystal, V(r)=0 in (41), equivalently with the fact that the electrons are 
not “feeling” the nuclei, i.e. electrostatic attractions are excluded, being as close each other to avoid 
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reciprocal repelling. Such picture suggests that free electrons are completely non-localized leaving 
with the condition of complete cancellation of the electronic inter-repulsion; this feature may be putted 
formally as [32]: 

0,
21

2

21

2
=

−
→

−
λλ

rrrr
ee    . (42)

However, the model in which the (valence) electrons are completely free and are neither “feeling” 
the attraction nor the repulsion is certain not properly describing the nature of the chemical bond. In 
fact, this limitation was also the main objection brought to Thomas-Fermi model and to the atomic or 
molecular approximation of the homogeneous electronic gas or jellium model in solids. Nevertheless, 
the lesson is well served because Thomas-Fermi description may be regarded as the “inferior” extreme 
in quantum known structures while further exchange-correlation effects may be added in a perturbative 
manner.  

The idea of introducing exchange and correlation effects as a perturbation of the homogeneous 
electronic system could be considered from the interpolation of the energetic terms for 0≤λ≤1 in (41). 
Parameter λ is defined as a parameter of the electronic coupling, with a slightly (adiabatically) scaling 
of the perturbation from the homogeneous electronic systems, λ=0, until the maximal inter-electronic 

interaction, λ=1 (in accordance with Pauli principle). Therefore, the overall interpolation ∫ •
1

0

][ λd  will 

be spread over the terms which contain the intermediate degree of exchange and correlation 
interactions; since it accounts for the electronic inter-repulsion while indexing the electronic 
presence/absence in a given spatial region the degree of electronic localization is in this way furnishes.  

The coupling parameter λ will serve as a switcher between the referential Thomas-Fermi uniform 
case and the full interaction through the density limit:    

)()(lim 211
rrrr ∩==

→
ρρλλ

. (43)

Actually, the density (43) has a major role in defining exchange-correlation functionals. To see that 
let’s firstly consider the conditional electronic density g(r1, r2; λ) indicating that the electronic density 
in r1 is conditioned by the presence (localization) of another electron  (any from the total  N in the 
system) in r2. Mathematically, this is expressed by using the conditional probabilities: 
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ρ
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λ
∩=

=g  (44)

fulfilling the Pauli principle by means of the integration rule: 
0)();,()( 2212212 =∩= ∫∫ rrrrrrr ddg ρλρ  (45)

saying that the spatial average of the electronic reciprocal constraint vanishes. This behavior opens the 
possibility in introducing the conditional probability of electronic holes, 

1);,();,( 2121 −= λλ rrrr gh ,  (46)
providing the associate integration rule [33]: 

1);,()( 2212 −=∫ rrrr dh λρ                               (47)
consecrating a sort of negative normalization of the exchange and correlation density of holes: 

);,()();,( 21221 λρλρ rrrrr hxc = . (48)
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Now, once this exchange-correlation hole density is mediated over the coupling factor λ the 
averaged exchange-correlation density of holes is generated: 

λλρρ dxcxc ∫=
1

0
2121 );,(),( rrrr                                      (49)

allowing the formal writing of exchange-correlation density functional from (29) as a generalized 
version of the inter-electronic  interaction term (23): 
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with the help of the introduced radius of the λ-mediated exchange-correlation density of holes:  
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The radius )(rxcR  could be considered as a functional of density (43) with the leading term being 

defined in the short limit of the distance, i.e. being of the inter-particle average radius order,  

3/1
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known as the Wigner radius for indexing the volume of a sphere containing (localizing) a single 
electron (from the total of N) belonging to the density family (43), although, also other quantities 
accounting for electron localization such as the domain averaged Fermi hole of Ponec [34a] or the 
electron sharing index (also known as delocalization index) [34b] have been recently proposed (see 
also the forthcoming discussion). 

In these conditions, the inverse radius (51) could be expressed around the inverse of the Wigner 
radius in a gradient density expansion [32]:    
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i
iixc FFF,ρR rrrrrrrr ρρρρρρ  (53)

while, by considering it back in exchange-correlation energy (50) produces, after the integration by 
parts, the generalized gradient density functional: 
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⎡ +∇+∇+= ∫∫∫ rrrrrrrrr dGdGdGExc ρρρρρρ   (54)

The restriction to the first term of the series (54) corresponds to the cases where the spatial distance 
of variation in electronic density highly exceeds the corresponding Wigner radius (52) this way 
producing the famous local density approximation (LDA) [34c]: 

∫= rrr deE xc
LDA
xc )()]([][ ρρρ      (55)

with exc being the exchange and correlation density per particle, that can be further approximated (see 
bellow) as [35-40]: 

 In fact, the LDA stands as the immediate step after TF approximation; it can be extended also for 
systems with un-pair spins by the so called local spin density approximation (LSDA) [41-50]: 

][][][ ↓↑↓↑ +=+= ρρρρρ xcxcxc EEE , (57)
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while further inclusion of the gradient terms in (54) establishes the  general gradient approximation 
(GGA).  

Worth noting that when undertaken GGA, beside the gradient terms arising in exchange-correlation 
energy, the gradient correction of the kinetic energy functional has to be as well considered providing 
terms of which the standard one takes the von Weizsäcker form [51, 52]: 
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r
r

r
ρ
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=W     .                                        (58)

While more analytical discussions about various approximations and density functionals are bellow 
presented in a separate chapter, here we would like only to present the practical difference between the 
local and gradient density approximations for a solid state case.  

For instance, Figure 1 presents the band structure and the density of states (DOS) for the mR3  
oxide of the Cobalt transitional metal (CoO) calculated with either LSDA and GGA approximations 
[53].  

Regarding the energy bands there can be noted that, around the Fermi level EF, LSDA approach is 
less relevant in indicating the energetically gap respecting the GGA computation. The difference is 
even more drastic in DOS representations for employed approximations in d orbital separation 
(t2g=a1g+eg’) due to the central ion of cobalt trigonal symmetry coordination. In fact, with LSDA a 
strong mixing of the orbitals a1g and eg’ is recorded while in the case of GGA-DOS the bands with the 
symmetry a1g are up and down shifted for the respective down and up spin projections resulting a clear 
separation from states with eg’ symmetry. 

Nonetheless, at the level of bands structure of the solids and crystals an inevitable localization 
paradox emerges namely, to use the real 3D electronic densities in furnish a localization description in 
the reciprocal (energy) space.  

Figure 1. Left: the anti-ferromagnetic structure CoO; right: the band structure and the 
density of state (DOS) in LSDA and GGA approximations, respectively [53]. The upper 
and down arrows are associated with the spin orbital projections. 

 

 
 
 

Recently, it was found a way to avoid the electronic localization paradox through introducing 
specific electronic localization functions (ELF) in real space. Nevertheless, an ELF should relay on 
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combination of the gradient and homogeneous energetic density functionals, in accordance with Pauli 
principle, shaping for instance as [54]: 
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by emphasizing the excess of the kinetic energy difference τs(r)- τW(r)  „normalized” to the referential 
kinetic TF homogeneous behavior. 

Figure 2. The localization domains for Li (left) and Sc (right) crystals based on the 
electronic localization function ELF (59) [55].  

 

          
 

Worth remarking that the localization function (59) acts like a sort of density, with values between 
0 and 1 corresponding with maximum delocalization and localization, respectively. This heuristically 
proposal has the merit to give an analytical reflection of the qualitative valence shell electron pair 
repulsion (VSEPR) geometric model [56], with the immediate consequence in topological 
characterization of the chemical bond [57].  In solid state case, the reliability of above ELF in 
describing the chemical bond in real space is illustrated in Figure 2 for the Li and Sc crystals. Atomic 
and molecular levels are in next section illustrated with which occasion further ELF characterization 
and developments are presented.  

3.2. Localization in atoms and molecules 

The definitions that are currently used in the classification of chemical bonds are often imprecise, as 
they are derived from approximate theories. Based on the topological analysis local, quantum-
mechanical functions related to the Pauli Exclusion Principle may be formulated as “localization 
attractors” of bonding, non-bonding, and core types. Bonding attractors lie between nuclei core 
attractors and characterize shared electron interactions. The spatial arrangement of bond attractors 
allows for an absolute classification of ionic versus covalent bond to be derived from electronic 
density combined functions [58]. 

Most modern classifications of the chemical bond are based on Lewis’ theory and rely on 
molecular-orbital and valence-bond theories with schemes involving linear combination of atomic 
orbitals (LCAO). However, electron density alone does not easily reveal the consequences of the Pauli 
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Exclusion Principle on bonding nature. While VSEPR theory indicates that the Pauli principle is 
important for understanding chemical structures, it has been reformulated in terms of maxima of 
electronic density’s Laplacian ( )rρ2∇−  [56]. Next, the exchange-correlation density functional 
concept was employed to achieve the coordinate-space dynamical correlation in an inhomogeneous 
electron gas. This way the exchange-correlation energy (50) further re-expresses like [32, 54] 

by accounting for the four α -spin types of interactions through the “hole” functions [40, 59] 

                   ( ) ( )
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′ Ph                      (61)

where P2(r1,r2) stands for the two-body or pair probability density or correlation probability of the 
arbitrary electrons „1 and 2”, defined in terms of the N-body wave function Ψ  as follows [9]: 
                    ( ) ( ) NNN ddNNP rrrrrrrrrrrr ………" 3321321212 ),,,,(),,,,(1, ∫ ∫ ∫ ΨΨ−= ∗     .   (62)

Within the density functional theory the electrons of a pair of electrons or a bond can be considered 
as belonging to an inhomogeneous continuum gas. In analytical terms this was translated as the ELF 
(59) index as combining the homogeneous and inhomogeneous behaviors of a many-electronic-nuclei 
system.  

Nevertheless, recently, the Markovian analytical shape of an ELF was shown to have the general 
qualitative form [60]: 

             ( )
( ) ⎟⎟⎠

⎞
⎜⎜
⎝

⎛
= −

r
r

h
gfELF 1                            (63)

with the limiting constrains  
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assuring the fulfillment of the Heisenberg and Pauli principles. To clarify this [60], we make recourse 
to the Heisenberg principle, comprised in ELF. When density gradient dominates, ρρ >>∇  then g>>h 
in (63), and f(∞) should accounted for the infinite error in assigning of momentum, therefore indicating 
a precisely spatial localization of electrons; thus f(∞) = ∞ and ELF→0. In such, the meaning of ELF is 
associated with the error in spatial localization of electrons, being zero when the electrons are 
precisely located. On the contrary, when ρρ ∇>>  then h>>g in (63), and the resulting f(0) indicates 
the minimum error in defining of momentum and should provide the maximum uncertain of spatial 
distribution; in such  f(0)=1 and ELF→1, where 1 stands here for 100% of coordinate localization 
error. 

In this context, when the inverse of difference in local kinetic terms is involved, the ELF is 
interpreted as the error in localization of electrons within traps rather than where they have peaks of 
spatial density, as is frequently misinterpreted in literature [61], albeit recent extensions of ELF have 
used the correlated (Hartree-Fock) wavefunctions, through the conditional pair probability, however 
not using the “kinetic energy approach” [62-64].   

Among various classes of Markovian ELFs the most representative and efficient one was proposed 
as having the form [60]:  
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with the components: 
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being responsible for the gradient (g) and the homogenous (h) density distributions, respectively. In 
this frame, the ELF information prescribe that as it has values closer to zero as the better electronic 
localization is providing, according with the limits (64).  

Going to a particular application of this scheme the atomic level is firstly presented for the special 
case of Li atom. The main stages consist in: 

• Choosing the basis of the atomic functions [65]: 
( )rrrf Li 698.2exp863248.8)(1 −= ,                                        
( )rrrf Li 797.0exp369721.0)( 2/5

2 −=  (67)
such that to fulfill the natural (radial)  normalization conditions  
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n                                   (68)

• Generating the orthonormal orbital eigen-waves, here according with the Gram-Schmidt 
algorithm among shells and sub-shells: 
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ensuring the additionally constraints:  
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• Generating the working overall electronic density  
                   [ ] [ ]22

2
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sLi ϕϕρ +=                      (71)

that satisfies the spatial (radial) global N-integral condition (4): 
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The electronic density (71) is then used for computation of the Markovian ELF (65), while their 
comparison is in Figure 3 illustrated.   

From the Figure 3, there appears that the smooth delocalization of electrons of Li represented by 
density structure is removed by the electronic localization function by clearly indicating where are the 
regions where the electronic realm is with less uncertainty detected. This way the ELF indicates 
merely where the electronic transitions behave like a step-function. In this respect, ELF can be 
regarded as the complement of electronic density being a better indicator of the regions where the 
bonding may arise. For instance, in the case of Li atomic structure, the fact that the ELF does not 
displays localization over the second shell (due to its values approaching unity in this range) indicates 
a natural tendency for releasing the outermost electron to the (virtual) neighborhood atoms with 
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uncompleted last shell(s) while preserving its delocalization feature across the bond. As such the 
lithium hydride (LiH) bond is expected to be formed with a certain degree of ionicity in resonance 
with its covalence: -HLiLiH +↔ .  

Figure 3. Comparison of the radial density given by (71) with the electron localization 
function (65) with components (66) for the simplified self-consistent approximation (67)-
(70) for Li atomic structure [66].      

 

 
 

The reliability of ELF to quantify the local tendency of atoms to form bonds and aggregates can be 
further exemplified to diatomic molecules, while the particular cases of HF, HCl, HBr and HI 
structures are considered in Figure 4. In the bonding region, i.e. in the space between the hydrogen and 
halogen atomic centers in H-X molecules there are represented both the electron densities, computed 
upon above recipe [65], and the associate Markovian ELFs for the concerned atoms-in-molecules 
(AIM).  

Figure 4 clearly shows that while the crossing of hydrogen and halogen radial densities does not 
provide the right bonding region in HCl, HBr, and HI cases, the corresponding ELFs cross-lines of 
AIM finely indicate the frontier of atomic basins in hydracids thus confirming the ELF reliability in 
identifying chemical bonds and bonding.  

One can equally say that in the crossing vicinity of AIM-ELFs the electrons are at the same time 
completely localized (for bonding with ELFX – ELFH →0) and completely delocalized for atomic 
systems (with ELFX,H →1), according to above the ELF definition and present signification. 

In other words it can be alleged that ELF application on chemical bond helps in identifying the 
molecular region in which the electrons undergo the transition from the complete delocalization in 
atoms to complete localization in molecular bonding behavior.  
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Figure 4. Comparative analysis of the charge density contours, electronic localization 
functions (ELFs), and radial densities for the H (dashed lines), F, Cl, Br, and I (full lines) 
atoms in molecular combinations HF, HCl, HBr, and HI, respectively [24]. 

 
 

Actually, it also proves that localization issue of ionic and covalent classification of bonds may be 
solved by a “continuous” quantum reality. Such a feature gives, nevertheless, an in-depth 
understanding of the quantum nature of the chemical bond by associating the mysterious pairing of 
electrons issue to an analytical function able to distinguish the narrow regions of molecular space 
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where the Heisenberg and Pauli principles are jointly satisfied through the ELF’s extreme values. Even 
more such sharp differentiation between 0 and 1 in atomic and molecular ELF values offers the future 
possibility in quantifying the chemical bond and bonding in the frame of quantum information theory 
[67].    

4. Popular Energetic Density Functionals 

Since the terms of total energy are involved in bonding and reactivity states of many-electronic 
systems, i.e. the kinetic energetic terms in ELF topological analysis or the exchange and correlation 
density functionals in chemical reactivity in relation with either localization and chemical potential or 
electronegativity, worth presenting various schemes of quantification and approximation of these 
functionals for better understanding their role in chemical structure and dynamics.   

4.1. Density functionals of kinetic energy  

When the electronic density is seen as the diagonal element ),()( 111 rrr ρρ =  the kinetic energy 
may be generally expressed from the Hartree-Fock model, through employing the single 
determinant )',( 11 rrρ , as the quantity [68]: 
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it may eventually be further written by means of the thermodynamical (or statistical) density functional 
[69]: 
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that supports various specializations depending on the statistical factor particularization β. 
For instance, in LDA approximation, the temperature at a point is assumed as a function of the 

density in that point, ))(()( rr ρββ = ; this may be easily reached out by employing the scaling 
transformation to be [70] 

)()( 3 rr λρλρλ = ⇒ ][][ 2 ρλρλ TT =  , .ct=λ ,  (75)
providing that  
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2
3)( 3/2 rr −= ρβ C  ,                                      (76)

a result that helps in recovering the traditional (Thomas-Fermi) energetic kinetic density functional 
form 

∫= rr dCT )(][ 3/5ρρ ,                                        (77)
while the indeterminacy remained is smeared out in different approximation frames in which also the 
exchange energy is evaluated. Note that the kinetic energy is generally foreseen as having an intimate 
relation with the exchange energy since both are expressed in Hartree-Fock model as determinantal 
values of )',( 11 rrρ , see below.  

Actually, the different LDA particular cases are derived by equating the total number of particle N 
with various realization of the integral 

∫∫= ')',(
2
1

11
2

11 rrrr ddN ρ                                         (78)



Int. J. Mol. Sci. 2008, 9  1068
 

 

by rewritting it within the inter-particle coordinates frame:  
'),'(5.0 1111 rrsrrr −=+=   (79)

as: 
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followed by spherical averaged expression: 

∫∫ Γ= dssdsN 22 ),()(2 rrrρπ                                         (81)
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The option in choosing the ),( srΓ  series (82) so that to converge in the sense of charge particle 
integral (81) fixes the possible cases to be considered [68]: 

1. the Gaussian resummation uses: 
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2. the trigonometric (uniform gas) approximation looks like: 
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In each of (83) and (84) cases the LDA-β function (76) is firstly replaced; then, the particle integral 
(81) is solved to give the constant C and then the respective kinetic energy density functional of (77) 
type is delivered; the results are [68]: 

1. in Gaussian resummation: 

∫= rr dT LDA
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2
3 3/5

3/5 ρπ  ,                                       (85)

2. whereas in trigonometric approximation  
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one recovers the Thomas-Fermi formula type that closely resembles the original TF (40) formulation. 
In next one will consider the non-local functionals; this can be achieved through the gradient 

expansion in the case of slowly varying densities – that is assuming the expansion [52]: 
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The first two terms of the series respectively covers: the Thomas Fermi typical functional for the 

homogeneous gas 
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and the Weizsäcker related first gradient correction: 
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They both correctly behave in asymptotic limits: 
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However, an interesting resummation of the kinetic density functional gradient expansion series 
(87) may be formulated in terms of the Padé-approximant model [71]: 
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and where the x-variable is given by 
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while the parameters a2, a3, b2, and b3 are determined by fitting them to reproduce Hartree-Fock 
kinetic energies of He, Ne, Ar, and Kr atoms, respectively [72]. Note that Padé function (92) may be 
regarded as a sort of generalized ELF susceptible to be further used in bonding characterizations. 

4.2. Density functionals of exchange energy  

Starting from the Hartree-Fock framework of exchange energy definition in terms of density matrix 
[73], 
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within the same consideration as before, we get that the spherical averaged exchange density 
functional 

∫∫ Γ= sdsdsK rrr ),()(2ρπ                                         (95)
takes the particular forms [68]: 

1. in Gaussian resummation: 
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2. and in trigonometric approximation (recovering the Dirac formula): 
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Alternatively, by paralleling the kinetic density functional previous developments the gradient 
expansion for the exchange energy may be regarded as the density dependent series [74]: 
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while the first term reproduces the Dirac LDA term [75, 76]: 
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and the second term contains the density gradient correction, with the Becke proposed approximation 
[77]: 
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where the parameters b and d are determined by fitting the k0+k2 exchange energy to reproduce 
Hartree-Fock counterpart energy of He, Ne, Ar, and Kr atoms, and where for the a exponent either 1.0 
or 4/5 value furnishes excellent results. However, worth noting that when analyzing the asymptotic 
exchange energy behavior, we get in small gradient limit [77]: 
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whereas the adequate large-gradient limit is obtained by considering an arbitrary damping function as 
multiplying the short-range behavior of the exchange-hole density, with the result: 

5/25/4)( ρρρ ρ ∇⎯⎯ →⎯ >>∇ ck                                         (102)

where the constant c depends of the damping function choice.  
Next, the Padé-resummation model of the exchange energy prescribes the compact form [74]: 
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with the same Padé-function (92) as previously involved when dealing with the kinetic functional 
resummation. Note that when x=0, one directly obtains the Ghosh-Parr functional [78]: 
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Moreover, the asymptotic behavior of Padé exchange functional (103) leaves with the convergent 
limits: 
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Once again, note that when particularizing small or large gradients and fixing asymptotic long or 
short range behavior, we are recovering the various cases of bonding modeled by the electronic 
localization recipe as provided by ELF’s limits (64).  
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Another interesting approach of exchange energy in the gradient expansion framework was given 
by Bartolotti through the two-component density functional [79]: 

rrrr dNDdNCK ∫∫
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2
23/4 )()()(][
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ρ
ρρ ,  (106)

where the N-dependency is assumed to behave like: 
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2)(
N
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while the introduced parameters C1, C2, and D2 were fond with the exact values [80-82]: 
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Worth observing that the exchange Bartolotti functional (106) has some important 
phenomenological features: it scales like potential energy, fulfills the non-locality behavior through the 
powers of the electron and powers of the gradient of the density, while the atomic cusp condition is 
preserved [83]. 

However, density functional exchange-energy approximation with correct asymptotic (long range) 
behavior, i.e. satisfying the limits for the density 

( )ra
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explim                                         (109)

and for the Coulomb potential of the exchange charge, or Fermi hole density  at the reference point r 

r
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in the total exchange energy  
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was given by Becke via employing the so called semiempirical (SE) modified gradient-corrected 
functional [77]: 
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to the working single-parameter dependent one [84]: 
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where the value .].[0042.0 ua=β  was found as the best fit among the noble gases (He to Rn atoms) 
exchange energies; the constant σa  is related to the ionization potential of the system. 

Still, having different exchange approximation energetic functionals as possible worth explaining 
from where such ambiguity eventually comes. To clarify this, it helps in rewriting the starting 
exchange energy (94) under the formally exact form [85]: 

∑∫=
σ
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Where the typical components are identified as: 
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while the gradient containing correction g(x) is to be determined. 
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Firstly, one can notice that a sufficiency condition for the two exchange integrals (111) and (114) to 
be equal is that their integrands, or the exchange potentials, to be equal; this provides the leading 
gradient correction: 
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with r(x) following from x(r) by (not unique) inversion. 
Unfortunately, the above “integrity” condition for exchange integrals to be equal is not also 

necessary, since any additional gradient correction  
)()()( 0 xgxgxg Δ+=                                         (117)

fulfills the same constraint if it is chosen so that  
0))(()(3/4 =Δ∫ rrr dxgρ                                         (118)

or, with the general form: 
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being f(x) an arbitrary function. 
Nonetheless, if, for instance, the function f(x) is specialized so that 
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the gradient correcting function (117) becomes: 
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recovering the Slater’s famous Xα method for exchange energy evaluations [86, 87]: 

∫−= rr dAK XX )(][ 3/4ραρ  .                                       (122)
Nevertheless, the different values of the multiplication factor αX in (122) can explain the various 

forms of exchange energy coefficients and forms above. Moreover, following this conceptual line the 
above Becke’88 functional (113) can be further rearranged in a so called Xα-Becke88 form [88]: 
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where the parameters αXB and βXB are to be determined, as usually, throughout atomic fitting; it may 
lead with a new workable valuable density functional in exchange family.   

4.3. Density functionals of correlation energy  

The first and immediate definition of energy correlation may be given by the difference between the 
exact and Hartree-Fock (HF) total energy of a poly-electronic system [89]: 

][][][ ρρρ HFc EEE −=                                         (124)
Instead, in density functional theory the correlation energy can be seen as the gain of the kinetic and 

electron repulsion energy between the full interacting ( 1=λ ) and non-interacting ( 0=λ ) states of the 
electronic systems [90]: 
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In this context, taking the variation of the correlation energy (125) respecting the coupling 
parameter λ [91, 92], 
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by employing it through the functional differentiation with respecting the electronic density, 
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one obtains the equation to be solved  for correlation potential δρρδ λλ /][cc EV = ; then the correlation 

energy is yielded by back integration: 

∫= rrr dVE cc )(])[,(][ ρρρ λλ                                         (128)
from where the full correlation energy is reached out by finally setting 1=λ .  

When restricting to atomic systems, i.e. assuming spherical symmetry, and neglecting the last term 
of the correlation potential equation above, believed to be small [90], the equation to be solved simply 
becomes: 
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that can really be solved out with the solution: 
pp

pc rAV 1+= λλ                                         (130)
with the integration constants Ap and p. 

However, since the equation (129) is a homogeneous differential one, the linear combination of 
solutions gives a solution as well. This way, the general form of correlation potential looks like: 

pp

p
pc rAV 1+∑= λλ  .                                       (131)

This procedure can be then iterated by taking further derivative of (127) with respect to the density, 
solving the obtained equation until the second order correction over above first order solution (131), 
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By mathematical induction, when going to higher orders the K-truncated solution is iteratively 
founded as: 
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producing the λ-related correlation functional: 
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and the associate full correlation energy functional (λ=1) expression: 
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As an observation, the correlation energy (135) supports also the immediate not spherically 
(molecular) generalization [90]: 
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Nevertheless, for atomic systems, the simplest specialization of the relation (135) involves the 
simplest density moments N=ρ  and ρr  that gives: 

ρρ rANAE ccc 10][ +=  .                                        (137)
Unfortunately, universal atomic values for the correlation constants Ac0 and Ac1 in (137) are not 

possible; they have to be related with the atomic number Z that on its turn can be seen as functional of 
density as well. Therefore, with the settings 

ZCA cc ln00 =  , ZCA cc 11 =   (138)
the fitting of (137) with the HF related correlation energy (124) reveals the atomic-working correlation 
energy with the form [90]: 

ρrZZNEc 000401.0ln16569.0 +−=                                         (139)
The last formula is circumvented to the high-density total correlation density approaches rooting at 

their turn on the Thomas-Fermi atomic theory. Very interesting, the relation (139) may be seen as an 
atomic reflection of the (solid state) high density regime ( 1<sr ) given by Perdew et al. [75, 80, 93-

96]: 
( )ssss

PZ
c rrrrdE ln0020.0ln0311.00116.0048.0)(][ ++−−= ∫∞ rrρρ                      (140)

in terms of the dimensionless ratio 
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between the Wigner-Seitz radius ( ) 3/1
0 4/3 πρ=r , see relation (52), and the first Bohr radius 

22
0 / mea == . 

Instead, within the low density regime ( 1≥sr ) the first approximation for correlation energy goes 

back to the Wigner jellium model of electronic fluid in solids thus providing the LDA form [97, 98]: 
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is the correlation energy per particle of the homogeneous electron gas with density ρ, see relations (55) 
and (56).  

However, extended parameterization of the local correlation energy may be unfolded since 
considering the fit with an LSDA ( ↑ρ  and ↓ρ ) analytical expression by Vosko, Wilk and Nusair 

(VWN) [99], 
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while further density functional gradient corrected Perdew (GCP) expansion will look like: 
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where the Perdew recommendation for the gradient integrant  has the form [100]: 
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being the electron gas expression for the coefficient of the gradient expansion. The normalization in 
(146) is to the spin degeneracy: 
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while the exponent containing functional 
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is written as the ratio of the asymptotic long-range density behavior to the current one, and is 
controlled by the cut-off f exponential parameter taking various values depending of the fitting 
procedures it subscribes (0.17 for closed shells atoms and 0.11 for Ne particular system [101, 102]). 

More specifically, we list bellow some nonlocal correlation density functionals in the low density 
(gradient corrections over LDA) regime: 

 the Rasolt and Geldar paramagnetic case ( 2/ρρρ == ↓↑ ) is covered by correlation energy 

[101, 103]: 
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with c1=1.667·10–3, c1=2.568·10–3, c3=2.3266·10–2, c4=7.389·10–6, c5=8.723, c6=0.472, c7=7.389·10–2 
(in atomic units). 

 The gradient corrected correlation functional reads as [102, 104]: 
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 The Lee, Yang, and Parr (LYP) functional within Colle-Salvetti approximation unfolds like 
[105]: 
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and the constants: ac=0.04918, bc=0.132, cc=0.2533, dc=0.349. 
 The open-shell (OS) case provides the functional [98]: 
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with the spin-dependency regulated by the factor ( ) ( )↓↑↓↑ +−= ρρρρζ / , approaching zero for 

closed-shell case, while the specific coefficients are determined through a scaled-minimization 
procedure yielding the values: as=-0.74860, bs=-0.06001, cs=3.60073, ds=0.900000. 

 Finally, Perdew and Zunger (PZ) recommend the working functional [106]: 
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with the numerical values for the fitting parameters founded as: αp=-0.1423, β1p=1.0529, β2p=0.3334. 

4.4. Density functionals of exchange-correlation energy  

Another approach in questing exchange and correlation density functionals consists in finding them 
both at once in what was defined as exchange-correlation density functional (29). In this regard, 
following the Lee and Parr approach [107], the simplest starting point is to rewrite the inter-electronic 
interaction potential 
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and the classical (Coulombic) repulsion  
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appeared in the formal exchange energy )( JVee −  in (21), by performing the previously introduced 

coordinate transformation (79), followed by integration of the averaged pair and coupled densities 
(denoted with over-bars) over the angular components of  s:  
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∫∫ −+= )2/()2/(2 srsrr ρρπ sdsdJ  . (159)
Now, the second order density matrix in (158) can be expressed as  
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to be satisfied for a well behaved function of a Taylor series expansion type  
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when )(rα stands for a suitable function of r as well, see bellow. 
On the other side, the average )2/()2/( srsr −+ ρρ  in (159) and (160) supports a Taylor expansion 

[108]: 
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with 
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being the Parr modified kinetic energy of Weizsäcker type [9]. 
Inserting relations (158)-(165) in )( JVee − difference it is eventually converted from the “genuine” 

exchange meaning into practical exchange-correlation energy characterized by the density functional 
form: 

),()2/()2/(2 1 sFsdsdExc rsrsrr∫∫ −+= ρρπ  

[ ]
⎭
⎬
⎫

⎩
⎨
⎧
+

⎭
⎬
⎫

⎩
⎨
⎧

+−−
+

−= ∑∫∫
∞

=0

22
2

])()[()(1...
)(3
)(2

1])(exp[
)(1

)(2
k

k
k

w sassssdsd rrr
r
r

r
r

rr αα
ρ
τ

α
α

ρπ  (166)

Making use of the two possible multiplication of the series in (166), i.e. either by retaining the )(rα  
containing function only or by including also the density gradient terms in the first curled brackets, 
thus retaining also the term containing )(rwτ  function, the so called I-xc or II-xc type functionals are 
respectively obtained.  

Now, laying aside other variants and choosing the simple (however meaningfully) density 
dependency  

)()( 3/1 rr κρα = , constant=κ  (167)
the provided exchange-correlation functionals are generally shaped as [107]: 

∫ +
−=

)(1
)(

)(1
3/1

3/4
2 r

r
rr

κρ
ρ

κ
xcI

xc
A

dE  , 

∫ ⎥
⎦

⎤
⎢
⎣

⎡
+

+
−= )(

)(
)(

3
2)(

)(1
)(1

3/53/1

3/4

2 r
r

r
r

r
rr xc

w
xc

II
xc CBdE

ρ
τ

κρ
ρ

κ
 . (168)

These functionals are formally exact for any κ  albeit the resumed functions Axc(r), Bxc(r), and 
Cxc(r) are determined for each particular specialization. 

Going now to the specific models, let’s explore the type I of exchange-correlation functionals (168). 
Firstly, they can further undergo simplification since the reasonable (atomic) assumption according 
which 

rr ∀<< ,1)(3/1κρ . (169)
Within this frame the best provided model is of Xα-Padé approximation type, containing N-

dependency [107]: 
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with a0
Xα=0.7475, a1

Xα =17.1903, and a2
Xα =14.1936 (atomic units). 

When the condition (169) for κ is abolished the Wigner-like model results, again, having the best 
approximant exchange-correlation model as the Padé form [107]: 
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with a0
Wig=0.76799, a1

Wig =17.5943, a2
Wig =14.8893, and κI (Wig)=4.115·10–3 (atomic units). 

Turning to the II-type of exchange-correlation functionals, the small density condition (169) 
delivers the gradient corrected Xα model, taking its best fitting form as the N-dependent Padé 
approximant [107]: 
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with b0
Xα=0.7615, b1

Xα =1.6034, b2
Xα =2.1437, and c2

Xα =6.151·10–2 (atomic units), while when laying 
outside the (169) condition the gradient corrected Wigner-like best model is proved to be without 
involving the N-dependency [107]: 
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with b0
Wig =0.80569, c0

Wig =3.0124·10–3, and κII(Wig)=4.0743·10–3 (atomic units). 
Still, a Padé approximant for the gradient-corrected Wigner-type exchange-correlation functional 

exists and it was firstly formulated by Rasolt and Geldar [103] with the working form [109]:  
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 with Bxc
RG given with the Padé form: 
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having the fitted coefficients c1
RG=2.568, c2

RG=9.0599, c3
RG=2.877·10–3, c4

RG=8.723, c5
RG=0.472, and 

c3
RG=7.389·10–2 (atomic units). Some studies also consider the nonlocal correction in (174) 

premultiplied by the 10/7 factor which was found as appropriate procedure for atomic systems.  
Finally, worth noting the Tozer and Handy general form for exchange-correlation functionals 

viewed as a sum of products of powers of density and gradients [110]: 
( )∫ ↑↓↓↑↓↑= rdFE xc

TH
xc ζζζρρ ,,,,  (176)

with 
∑∑ ==
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abcdabcd
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dcba
abcdxc fYXSRF )(rωω  (177)

where 
aaaR ↓↑ += ρρ , 

bb mS 2=  … see equation (148) for m definition, 
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and  

↑↑ ∇= ρζ , ↓↓ ∇= ρζ , ↓↑↑↓ ∇⋅∇= ρρζ , ↓↑ += ρρρ  . (179)
The coefficients ωabcd of (177) are determined through minimization procedure involving the 

associated exchange-correlation potentials )(/)()( )()( rrr ↓↑↓↑ = δρδ abcd
abcd

xc fV  in above (176) functional. 

The results would depend upon the training set of atoms and molecules but presents the advantage of 
incorporating the potential information in a non-vanishing asymptotical manner, with a semi-empirical 
value. Moreover, its exact asymptotic exchange-correlation potential equals chemical hardness [9, 12, 
14, 20] for open-shell being less than that for closed shell systems, thus having the merit of including 
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chemical hardness as an intrinsic aspect of energetic approach, a somewhat absent aspect from 
conventional functionals so far.  

However, since electronegativity and chemical hardness closely relate with chemical bonding, their 
relation with the total energy and component functionals is in next at both conceptual and applied 
levels explored.        

5. Testing (χ, η) Quadratic Dependency Among Several Energetic Density Functionals 

5.1. Proof of the E=E(χ,η) quadratic dependency 

Employing the Kohn-Sham equation (33) for the (reactivity) equalized chemical potential (minus 
electronegativity) eigenvalues, among atomic or molecular one-electronic orbitals 

μμμ === ...ji , (180)
in quantum mechanically sense, we immediately get: 
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For proper characterization of the chemical systems the quantum (Ehrenfest) version of the 
fundamental Newtonian law [111], linking the observed force with the minus of the potential 
gradient VF −∇= , is here written for chemical reactions modeled throughout the charge transfer along 
the reaction path as: 

( )μμ dN
dF −=  . (182)

Now, combining the last two equations projected on the reaction path we successively obtain: 

⎟
⎠
⎞

⎜
⎝
⎛−=

N
E

dN
dFμ  

                                                                   
VdN

dE
NN

E
⎟
⎠
⎞

⎜
⎝
⎛−=

1
2 . (183)

At this point, taking for the derivative in (183) the finite correspondence in what regarding the 
chemical potential formal (absolute) definition (181), 

N
E

dN
dE

V
==⎟

⎠
⎞

⎜
⎝
⎛ μ , (184)

the chemical potential energy equation is unfolded as: 
2NFNE μμ μ += . (185)

The remaining issue is to clarify the chemical potential related force meaning in above equation. In 
this respect, by considering the electronegativity-chemical potential relationship (19), the associate 
electronegativity energy equation becomes: 

2NFNE χχ χ +−=  (186)
while the involved electronegativity related force is seen as the reactive force of the chemical potential 
(182), 

μχ FF −=  (187)
recovering the chemical hardness index: 
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( ) ηχχ =−=
dN
dF . (188)

With these considerations, the chemical reactivity energy equation (185) is finally displayed as 
2NNE ηχ +−=  (189)

equally supporting the differential (statistical, thermodynamical) variant:  
( )2dNdNdE ηχ +−=  (190)

based on the above finite-differential (184) equivalence between the total (E, N) or exchanged (dE, dN) 
energy and charge, respectively.  

What there was actually proofed is that the quadratic chemical reactivity equations for total energy 
in both finite and differential fashions may be derived employing the Kohn-Sham (as Schrödinger 
reminiscence) equation for chemical potential eigenvalue combined with the chemical quantum 
version of the Ehrenfest theorem involving the force concept and its active-reactive peculiar property 
for the chemical potential and electronegativity, respectively. No particular assumptions were 
considered being all above arguments only on first principles grounded. Thus, the exposed 
demonstration is of general value cutting much discussion in the last decades on the viability of the 
second order truncation in the total energy expansion in terms of chemical reactivity indices, viz. 
electronegativity and chemical hardness concepts.  

However, a computational test for this behavior is in next addressed.    

5.2. Atomic and molecular analysis of the energetic quadratic bilinear (χ,η) dependency 

The general bivariate equation linking the energy (various) functionals with electronegativity and 
chemical hardness, either for atomic and molecular systems, works out with form:  

ηχ cbaE ++=  (191)
with coefficients a, b, and c being determined throughout consecrated statistical analysis methods 
[112]. The result of such correlation will lead with two kind of information:  

• the degree of correlation itself between the employed energy functional and the couple of 
electronegativity-chemical hardness structural indices; this is measured by the standard 
correlation factor [113]:  

( )
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iINPUTiINPUT
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iFITiINPUT

yy

yy
r

2

2

1  (192)

• the degree of parabolic dependency by checking whether the chemical hardness coefficient (c) 
is the square of the electronegativity coefficient (b) thus giving the opportunity of introducing 
the so-called sigma-pi reactivity index   

1)( ),(
2 −⎯⎯⎯⎯⎯⎯ →⎯= = ηχ

πσ
EEparabolic

b
cbsign  (193)

At this point worth nothing that as 1−→πσ  as better the energy fulfils the correlation shape with 
the established parabolic equation (189). The b and c signs open further discussion among the allowed 
combinations for the correlation equation (191). Firstly, let’s observe that the signs of b and c give 
information about the signs of electronegativity and chemical hardness, respectively. Then, while 
considering the finite-difference approximations to the electronegativity and chemical hardness 
definitions, in a Koopmans theorem environment [114], they take the working forms [9, 14, 115, 116]: 
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in terms of lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital 
(HOMO) energies, although similar relations (in terms of ionization potential IP and electron affinity 
EA) hold for atomic systems as well. Nevertheless, the expressions (194) and (195) help in deciding 
that only the (-, +) and (+, +) combinations for coefficients (b, c) are allowed, based on the fact that 
only maximum hardness values (i.e. positive values of c coefficient) are in accordance with the 
reactivity criteria of maximum hardness principle [117-119]; in other words, the correlation 
combination carrying negative values for chemical hardness coefficient in (191) are less physically 
probably since that would imply that EA>0 and LUMO <0, for atoms and molecules, respectively. 

Finally, the sigma-pi index (193) can be used in defining another reactivity index, namely the 
efficiency index: 

1),( ⎯⎯⎯⎯⎯⎯ →⎯=Σ =
Π

ηχ
πσ

EEparabolic  (196)
measuring the power of electronic exchange characterizing the chemical reactivity which is maximized 
by the exact parabolic dependence of the energetic functional respecting the electronegativity-chemical 
hardness jointly influence.  

With these, the Tables I-III and IV-V display the tested energetic functionals against various 
electronegativity and chemical hardness scales for selected atoms and molecules, while the Tables  VI 
and VII show their quantitative (χ & η) structural– (energy functionals) property relationships (QSPR), 
respectively. 

Table I. Atomic kinetic, exchange, and correlation, energies (in hartrees) from various 
schemes of computations. The exact values are computed with Hartree-Fock densities. 

Atoms 
Kinetic energy Exchange energy Correlation energy 

Texact
♣ T0

♣ T0+T2
♣ TPadé

♣ Kexact
♦ K0

♥ KB88♥ Ec
exact ♦ Ec

 (139) ♠ Ec
 • 

He 2.86168 2.56054 2.87850 2.87639 -1.0260 -0.884 -1.025 -0.0425 -0.0215 -0.0681 
Li 7.43273 6.70062 7.50504 7.44941 -1.7812 -1.538 -1.775 -0.0454 -0.0486 -0.0815 
Be 14.5730 13.1286 14.6466 14.4223 -2.6669 -2.312 -2.658 -0.0945 -0.0820 -0.1192 
B 24.5291 22.0720 24.5228 24.2089 -3.7438 -3.272 -3.728 -0.1247 -0.1197 -0.1625 
C 37.6886 34.0144 37.5988 37.2533 -5.0444 -4.459 -5.032 -0.1566 -0.1609 -0.2091 
N 54.4009 49.4771 54.3852 54.0643 -6.5971 -5.893 -6.589 -0.1850 -0.2050 -0.2567 
O 74.8094 67.8965 74.3573 74.1625 -8.1752 -7.342 -8.169 -0.2579 -0.2512 -0.3035 
F 99.4093 90.4598 98.6429 98.6959 -10.003 -9.052 -10.02 -0.332 -0.2996 -0.3510 

Ne 128.547 117.761 127.829 128.221 -12.108 -11.03 -12.14 -0.390 -0.3498 -0.3987 
Na 161.859 148.809 161.093 161.718 -14.017 -12.79 -14.03 -0.398 -0.3892 -0.4137 
Mg 199.614 184.017 198.749 199.578 -15.994 -14.61 -16.00 -0.443 -0.4351 -0.4491 
Al 241.877 223.443 240.868 242.008 -18.069 -16.53 -18.06 -0.480 -0.4809 -0.4863 
Si 288.854 267.315 287.659 289.139 -20.280 -18.59 -20.27 -0.521 -0.5308 -0.5308 
Cl 459.482 426.865 457.321 460.117 -27.512 -25.35 -27.49 -0.714 -0.6901 -0.6710 
Ar 526.817 490.017 524.289 527.617 -30.185 -27.86 -30.15 -0.787 -0.7459 -0.7190 

♣: from Ref. [71] and references therein; ♦: from Ref. [107] and references therein; ♥: from Ref. [84]; 
♠: from eq. (139) and Ref. [90];  
•: from fitting equation Ec=-0.04682N +0.005753<ρ2/3>-0.00096<ρ1/3>, see Ref. [90] and references therein 
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Table II. Atomic exchange-correlation and total energies (in hartrees) from various 
schemes of computations. The exact values are computed with Hartree-Fock densities. 

Atoms 
Exchange-Correlation energy Total energy 

Exc
exact♣ Exc

I(Xα)♦
 Exc

II(Xα)♦
 Exc

I(Wig)♦ Exc
II(Wig)♦ Etot

exact♥ Etot
xc(RG)♥ Etot

xc(LDA)♥ Etot
BLYP♠ Etot

PW91♠

He -1.0685 -1.0604 -1.0566 -1.0633 -1.0654 -2.9042 -3.0317 -2.8601 -2.9071 -2.9000 
Li -1.8266 -1.8048 -1.8134 -1.8093 -1.8108 -7.4781 -7.6473 -7.3704 -7.4827 -7.4742 
Be -2.7614 -2.7260 -2.7522 -2.7325 -2.7342 -14.6675 -14.8911 -14.4966 -14.6615 -14.6479 
B -3.8685 -3.8126 -3.8415 -3.8215 -3.8177 -24.6538 -24.9158 -24.4097 -24.6458 -24.6299 
C -5.2010 -5.1127 -5.1338 -5.1248 -5.1121 -37.8163 -38.1305 -37.5095 -37.8430 -37.8265 
N -6.7821 -6.6400 -6.6440 -6.6558 -6.6321 -54.4812 -54.8681 -54.1287 -54.5932 -54.5787 
O -8.4331 -8.3599 -8.3405 -8.3796 -8.3450 -75.0271 -75.4597 -74.5979 -75.0786 -75.0543 
F -10.325 -10.327 -10.277 -10.350 -10.305 -99.741 -100.235 -99.247 -99.7581 -99.7316 

Ne -12.498 -12.551 -12.466 -12.579 -12.524 -128.937 -129.522 -128.403 -128.9730 -128.9466 
Na -14.415 -14.462 -14.382 -14.488 -14.445 -162.257 -162.862 -161.624 -162.293 -162.265 
Mg -16.437 -16.482 -16.424 -16.504 -16.484 -200.058 -200.705 -199.340 -200.093 -200.060 
Al -18.549 -18.566 -18.542 -18.583 -18.593 -242.357 -243.028 -241.533 -242.380 -242.350 
Si -20.801 -20.774 -20.791 -20.784 -20.830 -289.356 -290.063 -288.435 -289.388 -289.363 
Cl -28.226 -28.115 -28.272 -28.092 -28.281 -460.196 -461.005 -458.963 -460.165 -460.147 
Ar -30.972 -30.827 -31.037 -30.789 -31.035 -527.605 -528.452 -526.267 -527.551 -527.539 

♣: from Ref. [107]; ♦: from Eqs. (170)-(173) and Ref. [107]; ♥: from Ref. [109]; ♠: from Ref. [120] 

Table III. Values (in hartrees) of the structural indices electronegativity (χ), chemical 
hardness (η), in finite-difference [121, 122], density functional [123], and semiclassical 
[124] modes of computations for atoms of Tables I and II. 

Level   
 

Atoms  

Finite-Difference Functional Semiclassical 

χFD ηFD χDFT ηDFT χSC ηSC 

He 0.45094 0.45866 1.21132 1.66189 0.57038 0.2172 
Li 0.11099 0.16134 0.15105 0.08784 0.00412 0.00334 
Be 0.12606 0.21794 0.44248 0.44579 0.00893 0.0047 
B 0.15656 0.14921 1.15362 1.34105 0.01526 0.00588 
C 0.22933 0.18339 2.76332 2.9695 0.02279 0.00684 
N 0.25616 0.27894 5.79566 4.91363 0.03139 0.0076 
O 0.27894 0.22566 10.6505 5.91694 0.04072 0.00816 
F 0.38221 0.25983 16.9129 4.37707 0.05061 0.00849 

Ne 0.39361 0.40132 23.7119 -0.08747 0.06079 0.00864 
Na 0.10290 0.10621 0.23153 0.18743 0.00011 0.00005 
Mg 0.09555 0.18339 0.49871 0.53142 0.00018 0.00007 
Al 0.11834 0.10327 1.04631 1.19882 0.00026 0.00008 
Si 0.17200 0.12606 2.10805 2.30724 0.00036 0.00009 
Cl 0.30577 0.17120 11.5766 7.7692 0.00074 0.00012 
Ar 0.28299 0.29806 17.8831 9.08857 0.00088 0.00013 
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Table IV. Molecular kinetic, exchange, correlation, exchange-correlation, and total 
energies (in hartrees) from various schemes of computations. The exact values are 
computed with HF densities. 

Molecules 
Kinetic Exchange Correlation Exch.-corr. Total energy 

T0
♣ T0+T2

♣ Kexact♣
 KPBE♣ Ec

VWN♦ Ec
GCP♦ Exc

exact♣ Exc
PBE♣

 Etot
BLYP♥ Etot

TH♥

H2 1.140 1.125 -0.657 -0.648 -95·10-3 -47·10-3 -0.698 -0.691 -1.169 -1.178 
LiH 7.978 8.003 -2.125 -2.105 -219·10-3 -93·10-3 -2.212 -2.188 -8.068 -8.070 
CH4 40.050 40.141 -6.576 -6.536 -593·10-3 -328·10-3 -6.883 -6.836 -40.502 -40.515 
H2O 76.150 75.477 -8.910 -8.917 -664·10-3 -365·10-3 -9.292 -9.241 -76.448 -76.433 
HF 100.137 99.242 -10.378 -10.385 -704·10-3 -380·10-3 -10.779 -10.720 -100.48 -100.455 
N2 109.115 108.242 -13.094 -13.128 -945·10-3 -506·10-3 -13.665 -13.580 -109.559 -109.54 
O2 149.843 148.369 -16.290 -16.358 -1110·10-3 -599·10-3 -16.958 -16.887 -150.384 -150.337 
F2 198.892 196.729 -19.872 -19.951 -1302·10-3 -697·10-3 -20.661 -20.564 -199.599 -199.533 

♣: from Ref. [97]; ♦: from Ref. [101]; ♥: from Ref. [110] 

 

Table V. Values (in hartrees) of the structural indices electronegativity (χ), chemical 
hardness (η), compute by means of the group method [14, 125] within the finite-difference 
[121, 122], density functional [123], and semiclassical [124] modes of computations for 
molecules of Table IV. 

Level 
Molecule
s 

Finite-
Difference 

Functional Semiclassical 

χFD ηFD χDFT ηDFT χSC ηSC 

H2 0.26387 0.2370 0.26384 0.23704 0.26387 0.23705 
LiH 0.15626 0.192 0.19212 0.12818 0.00811 0.006596 
CH4 0.25616 0.2239 0.32216 0.29051 0.08468 0.03064 
H2O 0.26871 0.2331 0.39097 0.34859 0.09335 0.0229 
HF 0.3077 0.2479 0.51964 0.44974 0.08493 0.01639 
N2 0.25616 0.2789 5.79566 4.91363 0.03139 0.00761 
O2 0.27894 0.2257 10.6505 5.91694 0.04072 0.00816 
F2 0.36898 0.2598 16.9129 4.37707 0.05061 0.00849 

 
At a glance, Tables VI and VII reveals that the parabolic energetic dependency (189) on the 

electronegativity and chemical hardness indices is not exactly recovered since all sign combinations in 
the coefficients c & b as well as poor correlation itself with the (χ, η) indices is revealed, i.e. widely 
deviating from the optimum (-,+) and maximum correlation coefficient of (192). 

However, for atomic analysis, Table VI gives us that the finite-difference scale of electronegativity 
and chemical hardness provides invariable right (-, +) sign combination in coefficients (b, c), excepting 
kinetic energy functionals cases, however revealing both scarce reactive efficiency (196) and bilinear 
correlation (192) in almost all treated cases. Notably, the higher reactivity efficiency on studied atomic 
system was furnished by the correlation energy merely than the total one, yet with a low correlation 
factor.  
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Table VI. Coefficients in bilinear correlation of the energies of Tables I and II against the 
electronegativity and chemical hardness of Table III within experimental finite difference 
(FD), density functional theory (DFT), and semiclassical (SC) modes of computations, 
respectively. The deviation from the parabolic expansion E=a+bχ+cη in terms of the index 
σπ=sign(b) c/b2 as well as the correlation factor of the QSPR model (r) are both calculated. 
The color code indicates: the (+, +) for magenta background and (-,+) for green 
background sign combinations of (b, c) in (191), respectively, while the grey background is 
used in highlighting the representative (σπ, r) couple for each energy type of employed 
functionals.     

Method of QSPR results Method of QSPR results 
Energ

y 
(χ,η) a b c σπ r Energy (χ,η) a b c σπ r 

 
Texact 

FD 194.59 741.55 -951.38 -0.0017 0.33  
Exc

exact 
FD -15.30 -44.80 60.89 -0.0303 0.37 

DFT 51.73 2.09 31.51 7.2 0.62 DFT -6.56 -0.19 -1.53 40.84 0.58 
SC 186.38 -2315.7 5147.4 -0.001 0.35 SC -13.76 73.07 -128.0 -0.024 0.38 

 
T0 

FD 179.67 687.26 -881.14 -0.0019 0.33  
Exc

I(Xα) 
FD -15.28 -44.56 60.69 -0.0306 0.37 

DFT 46.99 1.91 29.41 8.07 0.62 DFT -6.56 -0.2 -1.51 39.11 0.57 
SC 172.42 -2185.3 4874.1 -0.001 0.35 SC -13.72 72.04 -125.5 -0.024 0.38 

 
T0+T2 

FD 193.83 736.94 -946.29 -0.0017 0.33  
Exc

II(Xα) 
FD -15.28 -44.81 60.92 -0.0303 0.37 

DFT 51.59 2.07 31.36 7.33 0.62 DFT -6.52 -0.19 -1.53 40.81 0.57 
SC 185.59 -2312.1 5142 -0.001 0.35 SC -13.75 74.72 -132.4 -0.024 0.38 

 
TPadé 

FD 194.61 741.17 -951.43 -0.0017 0.33  
Exc

I(Wig) 
FD -15.29 -44.53 60.67 -0.0306 0.37 

DFT 51.54 2.08 31.58 7.3 0.62 DFT -6.58 -0.2 -1.50 38.78 0.57 
SC 186.42 -2334.4 5197.4 -0.001 0.35 SC -13.72 71.4 -123.8 -0.024 0.38 

 
Kexact 

FD -14.91 -43.62 59.38 -0.0312 0.37  
Exc

II(Wig) 
FD -15.30 -44.80 60.95 -0.0304 0.37 

DFT -6.37 -0.19 -1.49 43.17 0.57 DFT -6.54 -0.2 -1.52 39.98 0.57 
SC -13.4 72.74 -128.78 -0.0243 0.38 SC -13.76 74.1 -130.7 -0.024 0.38 

 
K0 

FD -13.59 -40.29 54.69 -0.0337 0.37  
Etot

exact 
FD -194.98 -742.7 952.91 -0.0017 0.33 

DFT -5.72 -0.17 -1.39 46.96 0.58 DFT -51.91 -2.10 -31.54 7.15 0.62 
SC -12.24 68.77 -123.42 -0.026 0.38 SC -186.73 2316 -5148 -0.001 0.35 

 
KB88 

FD -14.89 -43.61 59.33 -0.0312 0.37  
Etot

xc(RG) 
FD -195.55 -743.9 954.5 -0.0017 0.33 

DFT -6.37 -0.19 -1.49 42.35 0.57 DFT -52.27 -2.11 -31.56 7.1 0.62 
SC -13.39 71.88 -126.54 -0.0245 0.38 SC -187.24 2315. -5143. -0.001 0.35 

 
Ec

exact 
FD -0.39 -1.20 1.52 -1.055 0.38  

Etot
xc(LDA) 

FD -194.26 -740.7 950.13 -0.0017 0.33 
DFT -0.19 -0.0075 -0.03 595.98 0.59 DFT -51.59 -2.09 -31.47 7.18 0.62 
SC -0.362 0.232 0.997 18.528 0.38 SC -186.1 2313. -5142. -0.001 0.35 

 
Ec

(139)♠ 
FD -0.40 -1.13 1.55 -1.207 0.39  

Etot
BLYP 

FD -194.99 -742.7 952.86 -0.0017 0.33 
DFT -0.19 -0.0056 -0.03 1081.3 0.57 DFT -51.94 -2.1 -31.53 7.15 0.62 
SC -0.356 0.851 -0.563 -0.778 0.41 SC -186.74 2315. -5145 -0.001 0.35 

 
Ec

• 
FD -0.41 -1.10 1.44 -1.1808 0.40  

Etot
PW91 

FD -194.97 -742.7 952.81 -0.0017 0.33 
DFT -0.22 -0.0063 -0.03 735.5 0.59 DFT -51.92 -2.1 -31.54 7.15 0.62 
SC -0.374 -0.224 2.113 -42.24 0.42 SC -186.7 2315. -5145. -0.001 0.35 

♠, •: from associate energetic atomic values of Table I 
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Table VII. Coefficients in bilinear correlation of the energies of Table IV against the 
respective electronegativity and chemical hardness of the Table V. The computational 
meaning of the output values and the color code are the same as those of Table VI caption.  

Method of QSPR results Method of QSPR results 
Energ

y 
χ & 
η 

a b c σπ r Energ
y 

χ & 
η

a b c σπ r 

 
T0 

FD -192.71 821.61 238.59 0.00035 0.77  
T0+T2 

FD -190.58 811.48 237.96 0.0004 0.77 
DFT 40.446 8.125 4.501 0.068 0.89 DFT 40.199 8.012 4.497 0.07 0.89 
SC 82.14 542.16 -977.9 -0.0033 0.56 SC 81.4 537.74 -969.47 -0.003 0.56 

 
Kexact 

FD 18.18 -70.1 -38.02 0.0077 0.74  
KPBE 

FD 18.324 -70.48 -38.25 0.0077 0.74 
DFT -5.234 -0.646 -0.805 1.93 0.89 DFT -5.219 -0.65 -0.811 1.92 0.89 
SC -9.78 -48.27 94.96 -0.04 0.61 SC -9.81 -48.15 95. -0.04 0.61 

 
Ec

VWN 
FD 1.039 -4.06 -2.74 0.167 0.71  

Ec
GCP 

FD 0.59 -2.27 -1.496 0.289 0.72 
DFT -0.423 -0.035 -0.06 47.83 0.87 DFT -0.225 -0.019 -0.033 94.08 0.86 
SC -0.71 -3.13 6.22 -0.63 0.64 SC -0.36 -2.1 3.7 -0.88 0.64 

 
Exc

exact
 

FD 18.95 -72.63 -40.1 0.0076 0.74  
Exc

PBE 
FD 18.85 -72.45 -39.62 0.0075 0.74 

DFT -5.457 -0.668 -0.846 1.897 0.89 DFT -5.421 -0.666 -0.84 1.898 0.89 
SC -10.19 -50.16 98.71 -0.039 0.61 SC -10.13 -49.97 98.28 -0.04 0.61 

 
Etot

BLYP 
FD 193.12 -824.17 -238.96 0.00035 0.77  

Etot
TH 

FD 193.06 -823.8 -239.04 0.0004 0.77 
DFT -40.67 -8.149 -4.514 0.068 0.89 DFT -40.67 -8.145 -4.514 0.068 0.89 
SC -82.48 -544.35 981.7 -0.003 0.56 SC -82.46 -544.3 981.5 -0.003 0.56 

 
The situation is somehow changed for molecular systems, see Table VII, where, albeit not better 

records are noted in the sense of the maximum reactive efficiency (196), again excepting the 
correlation functional case rather than the total energy, a higher correlation factor in semiclassical 
treatment of the electronegativity and chemical hardness scales is obtained; such behavior was recently 
validated for hard and soft acids and bases reactions as well [24]. At the same time, the kinetic energy 
functionals do not fit at all with standard (-,+) correlation scheme for signs of (c, b) coefficients in 
(191). 

Finally, in Figure 5 the atomic and molecular parabolic reactivity efficiencies (196) of various 
energetic functionals are plotted as charts with the widths emphasizing the bilinear electronegativity & 
chemical hardness correlation values of (192) factor as abstracted from Tables VI and VII. The 
comparative behavior reveals many interesting features to be taking into account for further conceptual 
and computational studies on quantum chemistry:  

 the correlation energy appears to provide acceptable parabolic shapes in both atomic and 
molecular cases, with better bilinear regression for molecular analysis, while strongly 
depending on the electronegativity and chemical hardness atomic models and scales; 

 the kinetic energy, while displaying poor parabolic shape at atomic level behaves with 
negative chemical hardness in molecular systems, probably due the positive contribution in 
bonding that compete with stabilization (localization) of the electrons within internuclear 
basin; 

 exchange and exchange-correlation functionals reveal similar reactive (parabolic) efficiency as 
well as close bivariate regression correlation factors for both atomic and molecular cases, 
leaving with the impression that the exchange contribution is dominant in exchange-
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correlation functionals since cancelling somehow the behavior of the correlation part of the 
functional. 

 overall, the total energy, although with correlation factors in the range of its components’ 
regressions does not fit with parabolic reactive theoretical prescription (189), at least for 
present employed set of atoms and molecules.    

Figure 5. Charts of energetic functionals showing their reactive efficiency (196) as the 
height of bars for the parabolic expansion and of their statistical correlation (192) as the 
width of bars, in terms of electronegativity and chemical hardness, resuming atomic 
analysis of Tables I-III - in (a), and molecular one from Tables IV and V - in (b), by 
employing representative values of Tables VI and VII (highlighted on grey background), 
respectively.    

 
 

However, all revealed parabolic features have appeared on the statistical correlation basis and not 
upon an individual atomic or molecular analysis. At this point we can refer to studies [126] that clearly 
illustrate the individual parabolic behavior of the total energy against the total number of electrons. On 
the other side, the systematic focus on atomic and molecular large class of systems should provide 
more or less the same phenomenological results.  

The present dichotomy, while confronting the conceptual and computational behavior of the 
energetic functionals respecting the parabolic bilinear expansion in terms of electronegativity and 
chemical hardness, gives the indication that the derivation of the energetic functionals (and of the total 
energy in special) starting from electronegativity and chemical hardness functionals [14, 123], may 
eventually conclude with better energy correlation both as parabolic shape and statistical regression 
with fundamental (χ, η) couple of reactivity indices. Otherwise, we will be forced to admit that the 
density functionals do not properly model the reactivity through a parabolic fit in total or exchanged 
electrons of the involved systems at least in a statistical sense.     
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6. Conclusions 

Why another quantum theory of the matter? Why the Density Functional Theory? Its pioneers and 
promoters, Walter Kohn, Axel Becke and Robert G. Parr – just to name a few, affirm that modeling 
electronic density features in 3D real space produces much benefits in both conceptually understanding 
of bonding as well in electronic localization with a bonding impact for the concerned N-many-
electronic systems [127-129].     

The present paper aimed to unitarily presents the quantum fundaments of DFT as well to prospect 
directions in electronic bonding and reactivity characterization by using the density functionals and 
localization functions. Such theoretical tools allow the rationalization of the electronic structures while 
offering an analytical understanding and prediction of the experimental data along of the modeled 
reality.  

In DFT, the density and their combinations in the density functionals of the total energy plays a 
primordial role. It fulfills the N-contingency, assures the total energy minimization, influences the 
different levels of approximation, i.e. local density or gradient density frameworks, controls the 
bonding through electronic localization functions, and decides upon reactivity through the electronic 
exchange relating the electronegativity and chemical hardness indices. Studying the electronic density 
properties of electronic systems guaranties the universal treatment of whatever systems, no matter how 
rich in electrons is, from atoms, to molecules, to solids and aggregates. 

Going to link the inner structural information with the manifested chemical reactivity the various 
energetic density functionals of atoms and molecules were presented, emphasizing on different levels 
of approximation and of quantum containing information. Nevertheless, their values were assumed 
merely as properties of particular systems when combined with associate reactive peculiarities 
quantified by electronegativity and chemical hardness. A theoretical link, based on first quantum 
mechanical principles, was also provided at a level of chemical potential-chemical force couple for the 
electronegativity and chemical hardness actions, respectively.     

Actually, the parabolic shape of the energetic dependence on electronegativity and chemical 
hardness ( ηχ cbaE ++= ) is theoretically proofed with the help of potential-force physical picture of 
interaction and dynamics, while the computational cases were treated throughout the introduced 
sigma-pi index 2/)( bcbsign=πσ  or parabolic reactive efficiency πσ=ΣΠ .  

The numerical results of such correlation on selected, however limited, set of atomic and molecular 
systems, were intrigued since there was found out that only the correlation functionals provide 
appropriate parabolic and statistical behavior among considered atoms and molecules, while all other 
total energy components and the total energy itself posse both surprisingly low parabolic and 
correlation factors with the electronegativity and chemical hardness structural parameters. 
Nevertheless, at atomic level the finite-difference approximation for electronegativity and chemical 
hardness scales was found as most suitable in providing a correct (-, +) sign combination in parabolic 
(b, c) coefficients, whereas molecular systems comes out within such agreement when semiclassical 
scale was adopted. However, the conceptual-computational parabolic reactive dichotomy of energy 
functionals against the reactivity indices may be eventually in future avoided by generating energy 
functionals directly from electronegativity and chemical hardness functionals [130]. Such paradox is to 
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be abolished when comprehensive quantum chemical knowledge of structure and reactivity will be 
unfolded - step by step, from close to closer. 
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