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Abstract

All studies using human serotype 5 Adenovirus (Ad) vectors must address two major obstacles: safety and the presence of
pre-existing neutralizing antibodies. Helper-Dependent (HD) Ads have been proposed as alternative vectors for gene
therapy and vaccine development because they have an improved safety profile. To evaluate the potential of HD-Ad
vaccines, we compared replication-competent (RC), first-generation (FG) and HD vectors for their ability to induce immune
responses in mice. We show that RC-Ad5 and HD-Ad5 vectors generate stronger immune responses than FG-Ad5 vectors.
HD-Ad5 vectors gave lower side effects than RC or FG-Ad, producing lower levels of tissue damage and anti-Ad T cell
responses. Also, HD vectors have the benefit of being packaged by all subgroup C serotype helper viruses. We found that
HD serotypes 1, 2, 5, and 6 induce anti-HIV responses equivalently. By using these HD serotypes in heterologous succession
we showed that HD vectors can be used to significantly boost anti-HIV immune responses in mice and in FG-Ad5-immune
macaques. Since HD vectors have been show to have an increased safety profile, do not possess any Ad genes, can be
packaged by multiple serotype helper viruses, and elicit strong anti-HIV immune responses, they warrant further
investigation as alternatives to FG vectors as gene-based vaccines.
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Introduction

A multitude of viral and non-viral vectors are being developed

as vaccines for HIV-1. Adenoviral (Ad) vectors are arguably one of

the most potent gene delivery and vaccine vectors available

[1,2,3,4,5,6]. The vast majority of gene therapy and vaccine

studies have been performed using human serotype 5 Ad (Ad5).

While Ad vectors are robust gene delivery vehicles, they are also

very immunogenic [7].

Innate and adaptive immune responses induced by first-

generation adenovirus (FG-Ad) present several obstacles. First,

innate immune responses induced by intravenous injection of FG-

Ad results in the release of massive amounts inflammatory

cytokines, such as IL-6 and TNF-a, within 3 to 24 hours [8,9].

The events produced by intravenous administration of large doses

can also lead to lethal events [10,11]. Second, most work with Ad

vectors utilizes FG-Ad vectors that are replication-defective due to

a deletion of the E1 gene (Fig. 1B). While they are replication-

defective, these vectors still carry most of the other Ad genes.

These Ad genes can be expressed in transduced cells and be

presented by MHC I and MHC II molecules to immune effector

cells. Because of this, cytotoxic T lymphocytes (CTLs) can

recognize Ad proteins in transduced cells and eliminate these

cells within two to three weeks after vector administration [12,13].

Finally, neutralizing antibodies are also a significant obstacle for

the use of Ad5 viral vectored vaccines. As much as 27.3 to 50% of

humans have pre-existing neutralizing antibodies against Ad5

[14]. In addition, antibodies are generated with each administra-

tion of Ad vector. These neutralizing antibodies can bind,

inactivate and attenuate subsequent gene delivery by these viral

vectors (10).

FG-Ads were created as a safer vector platform with increased

transgene capacity than replication-competent Ad (RC-Ad)

vectors. Helper-dependent Ad (HD-Ad) vectors were produced

to further increase the safety and cloning capacity of Ad vectors. In

HD-Ad vectors, all viral genes are deleted eliminating expression

of potentially toxic and immunogenic viral proteins in transduced

cells (Fig. 1C). For this reason, HD-Ads generate markedly

reduced immune responses against themselves and their transgene

proteins [15,16,17,18]. This reduced immunogenicity allows for

transgene expression in mice and in baboons in some cases over

years [10,19,20,21,22]. This also allows HD-Ad vectors to produce

significantly lower liver damage after i.v. injection than FG-Ad

vectors [23]. For these reasons, HD-Ad vectors are well recognized

in gene therapy applications to have improved safety. More

recently HD-Ad has been explored as a platform to generate
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immune responses against transgene products like b-galactosidase

[24]. In this case, HD-Ad vectors generated stronger T cell and

antibody responses than FG-Ad in mice suggesting they may have

utility as vaccine vectors.

The HD-Ad system is also particularly well suited to serotype

switching, since adenoviruses in the same subgroup can generally

cross-package each other’s genomes. For example, an HD-Ad vector

bearing a packaging signal and ITRs from subgroup C Ad5 can be

cross-packaged by subgroup C Ad2 [21,25]. This allows one to

evade neutralizing antibodies by ‘‘serotype switching’’ the vector

with different capsid antigens. For example, mice immunized with

Ad2 serotype vectors generate potent neutralizing antibodies against

Ad2 that drastically reduce transgene expression if Ad2 is used again

[25]. However, if an Ad2 vector is used for first injection and an Ad5

vector is used for a second injection, there is little reduction in

transduction because the Ad2-specific antibodies do not overtly

neutralize the different Ad5 serotype [25]. Similarly, in baboons,

serotype switching between Ad2 and Ad5 vectors allowed repeat

administration in the face of neutralizing antibodies generated by the

first vector [21,26]. This approach has been applied more recently

for FG-Ad HIV vaccines and has demonstrated the ability to

markedly enhance vaccine responses [27,28,29].

Given their lower immunogenicity, increased safety, and recent

problems related to vector-specific immune responses against Ad

vaccines, this manuscript explores the utility of HD-Ad vectors as

vaccines against HIV-1. In this work, we first compared the in vivo

expression and vector-specific and transgene-specific immune

responses generated by replication-competent Ad (RC-Ad), FG-

Ad, and HD-Ad, all expressing the same transgene. We then

compared the ability of HD-Ad and FG-Ad to drive immune

responses against the HIV-1 envelope antigen. We also tested the

utility of serotype-switching one Ad5 HD-Ad vector with subgroup

C Ad1, Ad2, and Ad6 in mice and in rhesus macaques. This study

is the first example of direct comparison of in vivo gene delivery by

imaging and vector and transgene-specific immune responses

driven by RC-Ad, FG-Ad, and HD-Ad vaccines. This is also the

first study to investigate HD-Ad vectors and multiple serotype-

switching for use as a HIV-1 vaccine in mouse and non-human

primate models.

Materials and Methods

Adenoviruses
First generation replication defective (E1/E3 deleted) Ad5

vectors expressing the green-fluorescent protein-luciferase fusion

protein GFPLuc and expressing HIV-1 Env gp140 from the

subtype B strain JRFL were produced by the Ad-Easy system in

293A cells. Replication-competent Ad5 expressing GFPLuc was

generated by insertion of the CMV-GFPLuc cassette between E1A

and B as described in [30]. HD-Ad viruses expressing GFPLuc

and Env were produced as previously described [31]. Briefly, the

CMV-transgene-SV40 poly A cassettes from the FG-Ad vectors

were PCR amplified, cloned, sequenced, and ligated into the Asc I

site in the HD-Ad vector pD28-E4 (Fig. 1) [32]. Each HD-Ad

plasmid backbone was cut with Pme I and 10 mg of the liberated

viral genome was transfected into a 60-mm dish of 116 cells

expressing Cre recombinase [31]. One day after transfection, the

transfected 116 cells were infected with the E1-deleted serotype 5

(Ad5) helper virus AdNG163 [10]. The packaging signal of

AdNG163 is ‘‘floxed’’ or flanked by loxP sites for deletion during

virus production in Cre-expressing cells. 48 hours later, crude

lysates from this transfection/infection were amplified by serial

coinfections of the crude lysate from the previous passage and

AdNG163. Large-scale HD-Ad were produced by infection of

3 liters of 116 cells as previously described [31] and routinely

produces HD-Ad preps with E1-E3-deleted helper virus contam-

ination below 0.02% [31]. FG and HD-Ad virions were purified

by CsCl banding and concentrations were determined by OD260

and real-time PCR. HD-Ad1, 2, and 6 vectors were also generated

by infection with HD-Ad1, 2, or 6 floxed helper viruses

Ad1LC8cCEVS-1, Ad2LC8cCARP [25], and Ad6LC8cCEVS-

1, respectively. Ad1LC8cCEVS-1 and Ad6LC8cCEVS-1 were

kindly provided by Carole Evelegh and Frank L. Graham

(McMaster University).

Animals
All animal experiments were carried out according to the

provisions of the Animal Welfare Act, PHS Animal Welfare

Policy, and the principles of the NIH Guide for the Care and Use

of Laboratory Animals, and the policies and procedures of Mayo

Clinic and University of Texas MD Anderson Cancer Center.

Mice were purchased from Harlan Sprague Dawley Laboratories

(Harlan, Indianapolis, IN) and maintained at Mayo Clinic. Eight

adult male rhesus macaques (Macaca mulatta) of Indian origin

between the ages of 8–17 years were obtained from and

maintained in the specific pathogen-free breeding colony at the

Michael Keeling Center for comparative medicine and research of

The University of Texas MD Anderson Cancer Center, Bastrop

TX. The animals were anesthetized during procedures to

minimize discomfort.

Mouse Immunizations
Mice were immunized intramuscularly (i.m.) and intravenously

(i.v.). Mice immunized i.m. mice received 161010 vp/mouse in

Figure 1. Schematic representation of adenovirus genome
organization for replication-competent (A), First-Generation
(B), and Helper-Dependent (C) viruses.
doi:10.1371/journal.pone.0005059.g001
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50 ml. For immunization, 25 ml were injected into both quadri-

ceps. Mice immunized i.v. received 161010 vp/mouse in 100 ml

by tail vein injection. For serotype switching experiments, mice

were boosted at 4, 9 and 15 wks after immunization. Groups of

mice were immunized with homologous or heterologous HD-Env.

Splenocytes and sera were harvested 4 wks post-immunization or

at the final time-point for serotype switching and time-dependent

studies.

Luciferase Imaging of Mice
Molecular light imaging of luciferase in vivo was accomplished

using a Lumazone imaging system (Roper Scientific). At 1 and 7

days post- injection, mice were anesthetized with Isoflurane,

injected i.p. with d-luciferin at a concentration of 20 mg/ml in

PBS in a volume of 200 ml and the mice were immediately placed

into the Lumazone Imager and images were captured. All images

were taken with a 10 minute exposure and 262 binning using no

filters and no photo-multiplication. Data analysis was performed

on each image using background subtracted mean intensities

detected by the Lumazone Imaging Software at each time point

and graphed using Prism Graphing Software.

Enzyme Linked Immunosorbent Assay (ELISA)
To measure humoral immune responses to transgenes ELISAs

were performed on mouse sera as previously described [33].

Briefly, Immulon 4 HBX plates (Thermo, Milford, MA) were

coated with 100 ml of HIV-1 envelope (Env) protein, SF162 gp120

(NIH AIDS Reagent and Repository) or FireFly luciferase (Roche,

Switzerland) at 1 mg/ml in PBS for 2 hours at room temperature

(RT). The plates were blocked for 1 h with BSA at 2 mg/ml for

1 hour. Sera were diluted 1:50 in PBS with BSA (1 mg/ml) and

added to the plate for 1 h at RT. The plates were washed with 5

times PBS and 100 ml of Goat anti-mouse HRP conjugated

antibody (Pierce, Rockford, IL) diluted 1:2000 in PBS with BSA

(1 mg/ml) was added to the plate for 1 h at RT. The plates were

washed 5 times with PBS and 100 ml of 1 Step Ultra TMB-ELISA

substrate (Pierce, Rockford, IL) was added for 1 h at RT. The

reaction was stopped with 50 ml of 2 M sulfuric acid and analyzed

at 450 nm using a Beckman Coulter DTX 880 Multimode

Detector.

Enzyme-Linked Immunospot (ELISpot) assay
To measure cellular responses to GFP and Env, splenocytes

were incubated in the presence of peptides at a concentration of

5 mg/ml. GFP CTL responses were determined using the peptide

HYLSTQSAL. The JRFL envelope CTL responses were

determined using the HIV-1, subtype B, strain MN peptide

RKRIHIGPGRAFYTT [34]. Anti-Ad5 cellular responses were

determined using naı̈ve splenocytes that were infected with wild-

type Ad5 as antigen presenting cells (APC). Briefly, splenocytes

were harvested from naı̈ve BALB/c mice. The splenocytes were

infected with wild-type Ad5 virus at 10,000 vp/cell for 1 hr at

37uC. The splenocytes were washed twice with incomplete

DMEM and resuspended in complete DMEM containing 10%

FBS and incubated overnight at 37uC. The infected splenocytes

were then used as APCs in the ELISPOT assay. The spleens from

individual mice were minced and then forced through a 40 mm

Nylon cell strainer (BD Labware, Franklin Lakes, NJ). Single-cell

suspensions of splenocytes were plated in 96-well polyvinylidene

difluoride-backed plates (MultiScreen-IP, Millipore, Billerica, MA)

coated with 50 ml of anti-mouse IFN-c mAb AN18 (5 mg/ml;

Mabtech, Stockholm, Sweden) overnight at 4uC. The plates were

blocked with Hepes buffered complete RPMI medium at 37uC for

2 hr. Equal volumes (50 ml) of each peptide pool and splenocytes

(107 cells/ml) were added to the wells in duplicate. Plates were

incubated overnight (14 to 16 hr) at 37uC with 5% CO2. After the

plates were washed 6 times with PBS, 50 ml of 1:1000-diluted

biotinylated anti-mouse IFN-c mAb (Mabtech, Stockholm,

Sweden) was added to each well. Plates were incubated at RT

for 2 hr and then washed 3 times with PBS. Fifty microliters of

streptavidin-alkaline phosphatase conjugate (1:1000 dilution;

Mabtech, Stockholm, Sweden) were added to each well. After

incubation at RT for 1 hr, the plates were washed 5 times with

PBST. Finally, 100 ml of BCIP/NBT (Plus) alkaline phosphatase

substrate (Moss, Pasadena, MD) were added to each well. The

plates were incubated at RT for 10 min. After washing with water,

plates were air-dried. Spots were counted using an automated

ELISpot plate reader (Immunospot counting system, CTL

Analyzers, Cleveland, OH) and expressed as spot-forming cells

(SFC) per 106 splenocytes.

Tetramer Staining
Tetramers displaying the MHCI CTL epitope IGPGRAFYTT

were obtained from the NIAID MHC Tetramer Core Facility.

Mouse whole blood was collected in microtainer tubes containing

K2EDTA (Becton Dickinson, Franklin Lakes, NJ). The RBCs were

lysed using ACK Lysis buffer and washed twice with DPBS.

Following lysis, 0.2 mg PE-labeled Dd/P18 tetramer and FITC-

labeled anti-mouse CD8a mAb (Ly-2, BD Pharmingen, Franklin

Lakes, NJ) were used to stain P18-specific CD8+ T cells. The cells

were washed in PBS containing 1% FBS and fixed in 0.5 ml PBS

containing 1.5% paraformaldehyde. Samples were analyzed by

two-color flow cytometry on a FACSCalibur (BD Biosciences,

Mountain View, CA). Gated CD8+ T lymphocytes were examined

for staining with the Dd/P18 tetramer.

Macaque Immunizations
Eight macaques from a previous study were used in these

experiments. All eight animals received two immunizations of 1011

vp of Ad-EnvPeptide intranasally approximately 9 months prior to

immunization with HD-Ad in this study. Ad-EnvPeptide expresses six

conserved HIV-1 envelope peptides from a FG-Ad5 vector and [33].

These animals also received six synthetic env peptides adjuvanted

with inactivated cholera toxin or with autologous dendritic cells

during their prior immunizations. These synthetic peptides and Ad-

EnvPeptide do not generate antibody-responses against HIV-1

envelope. In this study, these previously FG-Ad5-immunized

macaques were immunized at days 0, 24, and 67 with 1011 vp of

the indicated HD-Ads by i.m. injection. Serum samples were

collected on days 24, 67, and 100 and 1/50 dilutions were analyzed

for antibodies against envelope by ELISA as described above.

Statistical Analyses
Data was evaluated using GraphPad Prism 4 software.

Unpaired, two-tailed TTests and ANOVA with Bonferroni post

test were used to determine statistical significance. P values#0.05

were considered statistically significant.

Results

Comparison of In vivo Transduction by Replication-
competent Ad (RC-Ad), FG-Ad, and HD-Ad Vectors

In gene therapy tests, HD-Ad vectors have been shown to be

less immunogenic, have improved safety, and mediate extended

expression of transgene products relative to FG vectors

[19,20,21,26]. This extended expression is thought to be due to

the complete deletion of all Ad open reading frames

(ORFs)(Fig. 1C) to reduce T cell responses against Ad antigens

Adenoviral Vaccines
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in transduced cells. In contrast, conventional FG-Ad vectors are

deleted for only E1 and sometimes E3 gene products (Fig. 1B).

While this removes E1 and E3 antigens and reduces expression of

other Ad proteins, at least 17 ORFs are still present and some are

expressed and can targeted by CTLs [15,16,17].

In order to determine the overall ability of the vector platforms

to transduce cells in vivo we compared all three platforms, RC, FG

and HD, using the Ad 5 serotype. RC-Ad was used as a positive

control for this experiment since it is thought to produce stronger

immune responses and toxicity due to replication and production

of viral antigens than replication-defective vectors.

RC5, FG5 and HD5 vectors expressing the GFPLuc (GL)

transgene were injected i.m. and i.v. into BALB/c mice and the

overall transgene expression was determined by luciferase imaging

(Fig. 2). Luciferase expression levels after i.m. injection are shown

in figure 2A. At day 1 after i.m. injection, both FG5-GL and HD5-

GL had significantly higher luciferase expression as compared to

RC5-GL (p = ,0.01 and ,0.05, respectively). Although all vectors

had reduced luciferase expression levels at day 7, HD5-GL had

significantly higher levels as compared to FG5-GL (p = ,0.05)

(Fig. 2A). Luciferase expression levels after i.v. injection are shown

in figure 2B. Overall transgene expression was greater than 10-fold

higher in i.v. injected mice as compared to i.m. injected mice. The

most significant difference was seen in the RC5-GL injected mice

where expression levels were more than 300 fold higher than i.m.

expression levels and is most likely due to replication in the liver.

Although reduced expression levels were observed for both FG5-

GL and HD5-GL vectors after i.v. injection as compared to RC5-

GL at day 1, there were no significant differences between the two

replication-defective vectors (Fig. 2B). Expression levels for all

vector platform were markedly reduced by day 7 and there were

no significant differences between all vector platforms (Fig. 2B).

Comparison of Transgene-directed T Cell Responses
In order to determine if any one vector platform was better at

inducing cellular immune responses, mice were immunized i.m.

and i.v. with all three vectors expressing GFPLuc using the Ad5

serotype. The animals were sacrificed at 4 weeks post-immuniza-

tion and their splenocytes were tested for T cell responses against

GFP by ELISPOT (Fig. 3A and B). All vector platforms induced

equivalent T cell responses against the GFPLuc transgene. There

were no statistically significant differences in anti-GFP cellular

immune responses after i.m. immunization with RC, FG or HD

vectors (Fig. 3A). Similarly, i.v. immunization produced equivalent

anti-GFP T cell responses by all vectors as evidenced by ELISPOT

(Fig. 3B). We also compared the ability of FG5-Env and HD5-Env

to induce anti-Env cellular immune responses (Fig. 3E). RC5-Env

was not available for comparison. We found that both FG5 and

HD5 platforms induced anti-Env cellular responses equally and

there were no significant differences (Fig. 3E).

Comparison of Transgene-directed Antibody Responses
Serum was drawn from the GFPLuc-immunized animals 4

weeks after immunization and was tested for antibodies against

luciferase (Fig. 3C and D). Both RC5-GL and HD5-GL induced

significantly higher levels of Anti-luciferase antibodies after i.m.

injection than FG-Ad (p = ,0.01 and ,0.001, repectively)

(Fig. 3C). Luciferase antibodies were approximately 2-fold higher

by the i.v. route for all vectors. Similarly, i.v. injection of RC5-GL

and HD5-GL also produced significantly higher levels of anti-

luciferase antibodies than FG-Ad (p = ,0.01 and ,0.001,

respectively) (Fig. 3D). Interestingly, HD-Ad produced antibody

responses that were equal to or higher than those produced by

RC-Ad by both routes. In contrast, FG-Ad antibody levels were

approximately one half of the levels produced by HD-Ad

consistent with previous studies [24]. These data indicate that

HD-Ad vectors produce antibody levels comparable to replication-

competent Ad and higher than FG-Ad. We also compared the

ability of FG5-Env and HD5-Env to induce anti-Env antibody

responses (Fig. 3F). We found that both FG5 and HD5 platforms

induced anti-Env antibody responses equally well at both 4 wks

and 9 wks post-immunization and there were no significant

differences (Fig. 3F).

Comparison of Vector Safety
In mice, one side effect of Ad administration is liver damage

after i.v. injection. To compare the toxicities of the three vectors,

each was injected i.m. or i.v. into groups of 5 mice and liver

enzyme ALT levels were measured in the blood 48 hours later

(Fig. 4A and B). When ALT levels were tested after i.m. injection,

no increases were observed with any of the vectors consistent with

their sequestration from the blood and the liver (Fig. 4A). As

expected, RC5-GL generated the highest ALT levels after i.v.

injection that were significantly higher than FG5-GL and HD5-

GL (p = ,0.001). In contrast, HD5-GL produced only back-

ground levels of ALT consistent with previous results [23].

Figure 2. Luciferase imaging. In vivo transduction and expression produced by RC-Ad, FG-Ad, and HD-Ad expressing GFPLuc after i.v. (A) and i.m.
(B) immunization. Groups of 5 mice were administered 1010 vp of the indicated vectors by the indicated routes. The animals were anesthetized,
injected with luciferin, and imaged for luciferase activity at 1 and 7 days after injection. Data is shown for sum luciferase intensity for the muscles in
i.m.-injected mice and for the liver in i.v.-injected mice. Data is the mean of luciferase activity from 5 mice for each group and error bars indicate
standard error. The data were analyzed by one-way ANOVA (* = p,0.05 and ** = p,0.01).
doi:10.1371/journal.pone.0005059.g002
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Although considered safer than RC-Ad, FG5-GL produced liver

damage that was intermediate between RC5-GL and HD5-GL

indicating that the first generation vector is safer than RC-Ad, but

less safe than HD-Ad (Fig. 4B). This is consistent with previous

data showing lower liver damage by HD-Ad than FG-Ad [23].

Comparison of Ad5-directed T Cell Responses
ELISPOTs were also performed against Ad5 using splenocytes

infected with wild-type Ad5 (Fig. 4C and D). Anti-Ad cellular

immune responses were up to five-fold higher after i.m. injection

(Fig. 4C) as compared to i.v. immunization (Fig. 4D). In this case,

both the RC5-GL and FG5-GL vectors generated significantly

higher Anti-Ad5 cellular responses (p = ,0.05) as compared to the

HD-Ad vector indicating that the absence of viral genes in the

vector blunted the level of vector-directed T cell responses. In

contrast Anti-Ad responses were lower by the i.v. route than the

i.m. route. By the i.v. route all vectors produced relatively low

responses and no significant differences with averages of 150 IFN-

c SFCs (Fig. 4D).

Figure 3. Humoral and cellular immune responses. Vector induced humoral and cellular immune responses against the transgene products
were quantitated. Anti-GFP cellular immune responses induced by i.m. (A) and i.v. (B) injection are shown as IFN-c spot forming cells (SFC) as
measured by ELISPOT of splenocytes 4 weeks after immunization. Splenocytes were pulsed with H-2Kd-restricted GFP peptide. Data is the mean from
5 mice for each group and error bars indicate standard error. Anti-luciferase antibody responses in sera from the i.m (C) and i.v. (D) immunized mice
were collected 4 weeks after injection and were assayed by ELISA. Cellular and antibody immune responses against the HIV-1 envelope transgene are
shown were quantitated after i.m. immunization with FG and HD vectors (E and F, respectively). Data is the mean ELISA OD450 from 5 mice for each
group and error bars indicate standard error. The data were analyzed by unpaired two-tailed TTEST (** = p,0.01 and *** = p,0.001).
doi:10.1371/journal.pone.0005059.g003
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Serotype-switching HD-Ad Vectors for HIV Vaccination
To test the utility of HD-Ad for serotype-switching, an HD5

vector expressing the HIV-1 JRFL envelope (Env) was

packaged by Ad1, 2, 5, or 6 helper viruses and the resulting

virions were used for i.m. immunization in mice (Fig. 5). Each

HD-Ad produced similar anti-env antibodies when sera were

assayed 4 weeks later by ELISA (Fig. 5A). When T cells in the

blood were assayed by flow cytometry with env-specific MHC I

tetramers, CD8+/tetramer+ cells were detected in all groups

with HD1-Env and HD2-Env generating two-fold higher

responses than HD5 and HD6 vectors after the first

immunization (Fig. 5B).

To test serotype-switching of one HD-Ad vector backbone,

the HD-Ad vectors were used for prime-boost immunizations.

The groups of 20 mice that were primed with the four HD-Ad

serotypes were each split into two groups of mice and they were

boosted with either homologous HD-Ad or a heterologous HD-

Ad serotype vector also expressing env. Four weeks after

boosting, blood was collected and evaluated for humoral and

cellular immune responses to HIV Env (Fig. 5A and B,

respectively). All heterologous prime-boost regimens induced

higher Anti-Env ELISA titers as compared to homologous

prime-boosted mice (Fig. 5A). All mice boosted with heterolo-

gous HD-Env had significantly higher Anti-Env antibody titers

at all post-boost time points (p = ,0.001) (see Supplementary

Table S1). Cellular responses assessed by MHC I tetramer

staining were also higher in mice immunized with heterologous

prime-boost regimens, as compared to homologous prime-

boosting (Fig. 5B). Because the PBMCs were pooled for

tetramer analysis after the second immunization, statistical

analyses were not performed at that time point. There were no

statistical differences between HD-Ad serotypes after the first

immunization. However, analysis by two-way ANOVA after the

third and fourth immunization showed statistically significant

higher tetramer responses in mice boosted with heterologous

HD-Ad with some p values,0.001 (Supplementary Table S2).

After the fourth immunization, env antibodies declined in all

groups, perhaps due to saturation of the responses or in response

to regulatory cells. Third and fourth round immunization did

not boost T cell responses in either group, however, tetramer

levels remained statistically higher in all of the heterologous

boosted mice after the third immunization and some of the

heterologous boosted mice after the fourth immunization as

compare to the homologous boosted mice (Fig. 5B). At the end

of the study, the animals were sacrificed and their T cell

responses were assayed from splenocytes by ELISPOT (Fig. 6).

Stimulation of the cells with MHC II (Fig. 6A) or MHC I-

restricted peptides (Fig. 6B) generated lower numbers of SFCs

from the mice that were immunized only with one serotype of

HD-Ad. Total SFCs were 2 to 4-fold higher in most of the

groups immunized by serotype-switching with the HD-Ad

vectors (Fig. 6C).

Figure 4. Toxicity and anti-vector cellular immune responses. Toxicity and the induction of anti-vector cellular immune responses were
measured. Liver toxicity is expressed as a measured of ALT expression 48 hours after i.m. (A) and i.v. (B) injection. Anti-adenovirus cellular responses
were measured 4 wks after i.m. (C) and i.v. (D) injections. Naı̈ve BALB/c splenocytes infected with wild-type Ad5 were used as antigen presenting cells
and were co-cultured with splenocyted from immunized mice. Anti-Ad5 cellular responses were measured by ELISPOT. Data represent groups of 5
mice and error bars indicate standard error. The data were analyzed by one-way ANOVA (* = p,0.05 and *** = p,0.001).
doi:10.1371/journal.pone.0005059.g004
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Testing HD-Ad Serotype-switching in FG-Ad5-immune
Macaques

A group of eight macaques from another study were available to

test the HD-Ad vaccines. These macaques had previously been

immunized with various formulations of six conserved HIV-1 env

peptides (see Materials and Methods). Of interest to our work,

these animals had also been immunized twice intranasally with

FG-Ad5-EnvPeptide [33]. Since they had been exposed to Ad5

intranasally, these animals had the potential to mimic a natural

Ad5 respiratory infection. In addition, these peptides generate T

cell responses against HIV-1 envelope, but do not produce

antibody responses against the protein [35,36,37,38,39]. There-

fore, they could be used to evaluate anti-env antibody responses

driven by HD-Ad vectors.

To test this, two groups of 4 macaques were immunized i.m.

with 1011 vp of HD-Ad expressing HIV-1 env JRFL gp140 (HD-

Env). On day 0, group one received HD5-Env and group two

received HD6-Env by the i.m. route. On day 24, group one again

received HD5-Env and group two received HD1-Env. On day 67,

group one received HD5-Env for a third time whereas group two

received HD12-Env. Serum samples were collected on days 24,

67, and 100 and evaluated by ELISA for anti-env antibodies

(Fig. 7). FG-Ad5-immune animals that were immunized three

times with HD5-Env generated only minimal antibody responses.

In contrast, FG-Ad5 immune animals that were immunized with

HD6-Env, HD1-Env, and HD2-Env generated detectable anti-

env antibodies at each immunization with final antibody levels

being 10-fold higher than in the HD-Ad5 group (p,0.01). These

data demonstrate the breadth of a HD-Env vector packaged by

multiple serotype helper viruses to evade pre-existing or vector

induced immune responses.

Discussion

This study was directed at determining if HD-Ad vectors would

have utility as gene-based vaccine platforms. To evaluate both

vaccine potential and vector side effects, we compared HD5-Ad to

replication-defective FG5-Ad and replication-competent RC5-Ad.

These data demonstrate that HD-Ad and RC-Ad both generate

stronger immune responses than FG-Ad. In contrast, FG-Ad and

RC-Ad both generated higher anti-Ad T cell responses and liver

damage indicating that HD-Ad has a better safety profile than

either of these vectors. These data indicate that HD-Ad vaccines

generate strong immune responses against gene-based antigens,

but have reduced side effects. This data is consistent with previous

gene expression and safety work comparing HD-Ad and FG-Ad

for gene therapy applications [10,26]. It is also consistent with

previous work comparing the ability of FG-Ad and HD-Ad

expressing b-galactosidase to generate immune responses [24]. In

this case, HD-Ad vector also generated stronger T cell and

antibody responses than FG-Ad [24].

In light of the HIV-1 human vaccine STEP trial results, HD-Ad

vectors may have the an advantage in not expressing any Ad

antigens from transduced cells. As shown in Figure 1, conventional

E1/E3-deleted FG-Ad vectors still carry 17 potential vector

antigen ORFs whereas HD-Ad has zero. While E1 and E3

deletion renders FG-Ad vectors largely (but not completely)

replication-defective, this still allows Ad proteins to be expressed in

a leaky fashion [13]. It appears that this leaky expression in

transduced cells is what stimulates new T cell responses and recall

T cell responses against the vector which destroy transduced cells.

If Ad-specific T cell responses are involved in increasing HIV-1

acquisition in the STEP trial, then it is possible that an HD-Ad

vector would reduce this side effect. This is suggested by the lower

anti-Ad T cell responses generated by HD-Ad as compared to

both FG-Ad and RC-Ad.

While HD-Ad did have lower anti-Ad T cell responses, they

were not zero. This is likely due to T cell responses due to the

delivery of Ad antigens from the incoming HD-Ad virions. One

approach to mitigate T cell and antibody responses versus Ad due

to protein delivered in the virion would be coating the virus with

polymers like polyethylene glycol (PEG). Indeed, PEGylated HD-

Ad vectors appear as robust as unmodified vectors [23,40]. This

effect of carried protein antigen can also largely be obviated by

using HD-Ad vectors from infrequently observed Ad serotypes and

performing serotype switching [21,25,27,28,29]. Towards this end,

we show that serotype switching of HD-Ad vectors is simple by

using alternate serotype helper-viruses from the same Ad

subgroup. We show that one HD-Ad genome can be packaged

by four different helpers and that each of these generates robust

HIV-directed immune responses. Serotype switching allowed for

multiple rounds of boosting that increased anti-Env immune

responses significantly as compared to homologous boosting. In

general, the anti-Env immune responses plateaued after the third

Figure 5. Anti-env humoral and cellular responses induced by
HD-Ad serotypes. Groups of 20 BALB/c mice were immunized i.m.
with 1010 vp of HD-Ad vectors expressing the HIV-1 JRFL gp140 env. A)
Sera antibodies were assayed by ELISA 4 wks after priming, prior to
boosting and 3 wks after final boosting. B) Tetramer staining was
perfomed 4 4 ks after priming, prior to boosting and 3 wks after final
boosting. The percent CD8+/tetramer+ cells was determined by flow
cytometry. Data is the mean activity from 20 mice for each group for
priming and 10 mice for each group boosted. Error bars indicate
standard error and the data were analyzed by two-way ANOVA
(** = p,0.01 and *** = p,0.001).
doi:10.1371/journal.pone.0005059.g005
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immunization. This may be due to a down regulation of anti-Env

responses by regulatory cells or by saturation of the transgene

product by circulating anti-Env antibodies. While these serotypes

were convenient to test proof of principle as they were existing

vectors, Ad1, 2, and 5 serotypes are not optimal, since pre-existing

immunity in humans range from 27 to 50% for these viruses. In

contrast, pre-existing immunity to Ad6 may be as low as 3% [14],

which may make HD-Ad6 of interest in a DNA prime- HD-Ad6

boost or in combination with HD-Ads produced from less

prevalent serotypes.

In summary, HD-Ad vectors produce immune responses equal

to or better than FG and RC Ad vaccines that carry viral ORFs.

HD-Ad vaccines produce lower side effects and vector-directed T

cell responses likely due to the absence of these viral genes in the

vector. HD-Ad serotype-switching proved effective at generating

stronger immune responses against HIV-1 envelope in both mice

and FG-Ad5-immune macaques. Based on this, HD-Ad vectors

from low seroprevalence adenoviruses may have utility as vaccines

for HIV and other pathogens.

Supporting Information

Table S1

Found at: doi:10.1371/journal.pone.0005059.s001 (0.06 MB

PDF)

Table S2

Found at: doi:10.1371/journal.pone.0005059.s002 (0.08 MB

PDF)

Figure 7. Evaluation of serotype switch in pre-immune
macaques. Pre-immune macaques were immunized with 1011 vp of
homologous or heterologous HD-Ad expressing HIV-1 gp140 Env. The
macaques were boosted with 1011 vp of homologous or heterologous
HD-Ad at days 24 and 67. Sera was collected on days 24, 67 and 100 and
used to measure Anti-Env ELISA antibodies. Data is the mean of 4
macaques per group and error bars indicate standard error. Data was
analyzed by one way ANOVA (* = p,0.05 and ** = p,0.01).
doi:10.1371/journal.pone.0005059.g007

Figure 6. Effects of HD serotype switching on boosting anti-
HIV T-helper and CTL responses. Mice were immunized i.m. with
HD-Ad expressing HIV-1 gp140 Env. The mice were boosted with
homologous or heterologous HD-Ad 3 times before ELISPOT assays
were performed. Splenocytes from immunized mice were isolated and

stimulated with T-helper (Th) epitope peptides (A) or a CTL epitope
peptide (B). The total anti-Env cellular immune responses are also
shown (C). Data is the mean activity from 10 mice for each group. Error
bars indicate standard error and the data were analyzed by unpaired
two-tailed TTEST.
doi:10.1371/journal.pone.0005059.g006
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