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Abstract
5-Bromo-N-[4-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-butyl)]-2,3-dimethoxy-
benzamide (1) is one of the most potent and selective σ2 receptor ligands reported to date. Previous
structure-activity relationship studies of such tetrahydroisoquinolinyl benzamides have focused on
the linker that connects the ring systems and the effects of benzamide ring substituents. The present
study explores the effects of fusing methylene-, ethylene- and propylenedioxy rings onto the
tetrahydroisoquinoline in place of the two methoxy groups. These modifications decreased σ2 affinity
by 8- to 12-fold, with no major differences noted with ring size. By contrast, the methylenedioxy
analog showed a 10-fold greater σ1 affinity than 1, and progressively lower σ1 affinities were then
noted with increasing ring size. We also opened the tetrahydroisoquinoline ring of 1 to study the
effects of greater conformational fluidity on σ receptor binding. The σ2 affinity of the open-ring
compound decreased by 1700-fold, while σ1 affinity was not changed. Thus, a constrained
tetrahydroisoquinoline ring system is key to the exceptional σ2 receptor binding affinity and
selectivity of this active series.
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Functional sigma (σ) receptors are located throughout the brain and periphery, and can be
differentiated into σ1 and σ2 subtypes.1–4 These subtypes play distinct functional roles, and
have different pharmacological characteristics. Both σ1 and σ2 subtypes are involved in central
nervous system disorders such as schizophrenia, depression and dementia.1,2 Certain σ
receptor antagonists can ameliorate the effects of cocaine and other psychostimulant drugs of
abuse, and have potential as medications.1–3 Moreover, σ receptors are over-expressed by
many cancers.4 Some σ receptor ligands induce apoptosis in cancer cells,5–7 and one is in a
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clinical trial for prostate cancer treatment.8 Thus, there is much interest in subtype selective
σ receptor ligands as molecular probes and as therapeutic agents.

A variety of structural classes are avid binders to both σ receptor subtypes which has hampered
the development of selective binding models.9,10 Although a number of studies have
investigated the effects of structure on relative σ1 / σ2 receptor binding affinity and selectivity,
few truly selective compounds are known. Recently, Mach and colleagues11 identified a series
of tetrahydroisoquinolinyl benzamides that rank among the most selective σ2 receptor ligands
known to date. For example, 1 displays high apparent affinity, Ki = 8.2 nM, for σ2 sites in
vitro accompanied by 1573-fold selectivity over σ1 sites.

Published structural modifications have concentrated on the length of the alkyl spacer
connecting the two different ring systems, and the effects of various benzamide substituents.
11–13 To extend the structure-activity relationships for this active series, we report on the
effects of fusing methylene-, ethylene- and propylenedioxy rings onto the
tetrahydroisoquinoline. This stems from work on 1,4-disubstituted piperazines, where we
found that σ receptor subtype affinity and selectivity can be modulated by similar
manipulations of dimethoxybenzene moieties.14 In addition, we noticed that C-N bond rotation
in 1 is limited by the tetrahydroisoquinoline ring. Thus, we wished to open this ring to gain
insight into the contributions of conformational fluidity to σ receptor binding.

Compound 1 was obtained for reference using the reported methods.11 The novel congeners
were prepared as shown in Schemes 1–3. For methylenedioxy analog 2, the corresponding
tetrahydroisoquinoline was synthesized from piperonal using an established route that
culminates with the Pictet-Spengler reaction.15–17 Alkylation with 4-bromobutanenitrile,
followed by reduction and amidation with 5-bromo-2,3-dimethoxybenzoyl chloride, afforded
2 which was characterized as the oxalate salt (Scheme 1).

Ethylenedioxy (3) and propylenedioxy (4) analogs were synthesized in parallel fashion from
their corresponding tetrahydroisoquinolines (Scheme 2). In turn, these three-ring heterocycles
were obtained from N-Boc protected tetrahydroisoquinoline diol by base-promoted
cycloalkylation with the appropriate dibromoalkane catalyzed by tetrabutylammonium
bromide (Scheme 2).

As shown in Scheme 3, open-ring compound 5 was prepared by alkylation of the commercially
available 2-(3,4-dimethoxyphenyl)ethanamine, followed by N-Boc protection, reduction,
amidation and deprotection.

As expected, compound 1 displayed very high affinity and selectivity for σ2 sites in vitro (Table
1). The degree of σ2 selectivity, based upon Ki ratios, was somewhat less than previously
found11 as a consequence of a higher apparent affinity for σ1 sites. The σ1 receptor assay in
guinea pig brain membranes is susceptible to slight changes in conditions. So, we also tested
1 using the previously reported regimen (pH 8.0 vs. pH 7.4 buffer, 3.0 nM vs. 1.0 nM [3H](+)-
pentazocine, 25 vs. 37 °C, 120 vs. 150 min, and 10 μM (+)-pentazocine vs. 1.0 μM haloperidol
to define nonspecific binding). The σ1 receptor IC50 value of 1273 ± 22 nM found for 1 under
the present conditions increased substantially, about 50%, to 1895 ± 110 nM. Comparing this
lower affinity σ1 receptor IC50 with the σ2 receptor IC50 of 3.0 ± 0.11 for 1 under the present
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conditions would double the selectivity assigned. Also, the σ2 receptor binding was assessed
using rat liver membranes in the previous work, while guinea pig brain membranes were
employed in the present study. In such ways, experimental factors can impact the σ1 / σ2 subtype
selectivity determinations from various laboratories.

Replacement of the two methoxy groups by a methylene-, ethylene- or propylenedioxy ring
decreased σ2 affinity by 8- to 12-fold, with no major effects attributable to the specific sizes
of the rings (Table 1). By contrast, methylenedioxy analog 2 showed a 10-fold greater σ1
affinity than the parent scaffold 1. Further effects of ring size were well defined, with
progressively 4-fold lower σ1 affinities noted for the ethylenedioxy (2) and propylenedioxy
(3) analogs. Thus, σ1 binding exhibits the most sensitivity to these perturbations. Together, the
data indicate that σ1 / σ2 receptor binding affinity and selectivity can be modulated by subtle
changes in molecular volumes, ring conformations, and the precise orientations of the oxygen
atoms in this region.

Remarkably, the σ2 affinity of open-ring compound 5 decreased by 1700-fold, while the σ1
affinity was not changed (Table 1). It is difficult to provide a molecular explanation for such
an interesting result. Nevertheless, this observation may aid in developing σ receptor binding
models for tetrahydroisoquinolinyl benzamides. Clearly, the greater conformational freedom
of 5 with respect to 1 is detrimental to σ2 receptor binding but has no influence on binding
interactions with σ1 receptors. The effect is pronounced, and leads to a low affinity compound
having 5-fold selectivity for binding to σ1 receptors. Thus, the constrained
tetrahydroisoquinoline ring is critically important to high σ2 receptor binding affinity and
selectivity.

In conclusion, we determined that modifications of the two methoxy groups of the
tetrahydroisoquinolinyl benzamides can be used to modulate the relative affinities and
selectivities of ligand binding to σ1 and σ2 receptor subtypes. We also demonstrated that a
constrained tetrahydroisoquinoline ring system is key to the exceptional σ2 receptor binding
affinity and selectivity observed for this active series.
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Scheme 1.
(a) CH3NO2, MeOH, NaOH; (b) LiAlH4; (c) paraformaldehyde; (d) 4-bromobutanenitrile,
K2CO3, NaI, DMF; (e) LiAlH4; (f) 5-bromo-2,3-dimethoxybenzoyl chloride.
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Scheme 2.
(a) 48% HBr, 120 °C, 2 h; (b) (Boc)2O, MeOH, Et3N; (c) Br-(CH2)n-Br: n = 2, 3, TBAB; (d)
4N HCl; (e) 4-bromobutanenitrile, K2CO3, NaI, DMF; (f) LiAlH4; (g) 5-bromo-2,3-
dimethoxybenzoyl chloride.
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Scheme 3.
(a) 4-bromobutanenitrile; (b) (Boc)2O, MeOH, Et3N; (c) LiAlH4; (d) 5-bromo-2,3-
dimethoxybenzoyl chloride; (e) 10% TFA, CH2Cl2.
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Table 1
Binding properties of compounds 1 – 5 at σ1 and σ2 receptors.

Compound Ki (nM) ratio σ1/σ2

σ1 σ2

1 881 ± 15 2.7 ± 0.1 326

2 82.2 ± 5.6 20.7 ± 2.0 4

3 338 ± 8.4 21.7 ± 1.2 16

4 1430 ± 36 32.6 ± 1.5 44

5 880 ± 60 4616 ± 247 0.2

Values are means ± SEM (n = 3 – 5) from competition assays against [3H](+)-pentazocine (σ1) and [3H]DTG / (+)-pentazocine (σ2) in membranes from
male guinea pig brains.
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