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Abstract
The role of Gβγ subunits in cellular signaling has become well established in the past 20 years. Not
only do they regulate effectors once thought to be the sole targets of Gα subunits, but it has become
clear that they also have a unique set of binding partners and regulate signaling pathways that are
not always localized to the plasma membrane. However, this may be only the beginning of the story.
Gβγ subunits interact with G protein–coupled receptors, Gα subunits, and several different effector
molecules during assembly and trafficking of receptor-based signaling complexes and not simply in
response to ligand stimulation at sites of receptor cellular activity. Gβγ assembly itself seems to be
tightly regulated via the action of molecular chaperones and in turn may serve a similar role in the
assembly of specific signaling complexes. We propose that specific Gβγ subunits have a broader role
in controlling the architecture, assembly, and activity of cellular signaling pathways.
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INTRODUCTION
In recent years, the roles of heterotrimeric G proteins in cellular signaling have dramatically
grown. Gβγ subunits, once thought only to be negative regulators of Gα-dependent signaling
have come into their own as mediators of receptor signaling In this article, we discuss the
diverse and rapidly expanding roles that Gβγ subunits play in cellular signaling. First, we
describe the current view of G protein signaling and the role of Gβγ in modulating classical G
protein–coupled effector pathways. We also present information regarding the specificity of
different Gβγ pairs with respect to receptor and effector interactions. Next, we discuss more
recent studies focusing on novel Gβγ signaling partners and new roles at distinct subcellular
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locations, as well as the assembly of Gβγ subunits and the roles that molecular chaperones may
play in orchestrating assembly of specific Gβγ combinations. Finally, we outline a broader role
for Gβγ subunits as organizers of subsequent assembly and trafficking of G protein–coupled
receptor (GPCR)-based complexes. We hope to convince the reader that targeting individual
Gβγ subunits and/or the chaperones involved in their assembly might be a new approach to
modulating cellular signaling in a number of diseases.

G PROTEIN–COUPLED RECEPTORS AND G PROTEIN SIGNALING
As the largest family of cell surface receptors, GPCRs recognize and respond to a large array
of cellular modulators, including hormones, neurotransmitters, lipids, nucleotides, peptides,
ions, and photons (1,2). Information is transmitted by ligands released in intracrine, autocrine,
paracrine, and endocrine signaling loops. In addition to being activated by agonists that bind
to receptors, GPCR signaling systems also demonstrate spontaneous, ligand-independent
activation and certain genetic mutations that can result in constitutive signaling, leading to
diseases such as familiar precocious male puberty (3), retinitis pigmentosa (4), and thyroid
adenomas (5). GPCRs regulate many critical physiological functions in eukaryotic cells and
are major targets for numerous therapeutic drugs (6).

The most common transducers for GPCR signaling are heterotrimeric G proteins that switch
between guanosine diphosphate (GDP)-bound and guanosine triphosphate (GTP)-bound
states. There are 15 Gα, 5 Gβ, and 11 Gγ subunits, as well as a number of splice variants, in
humans (7). Heterotrimeric G proteins can be broadly grouped into four families based on
sequence homology and functional similarities of their α subunits: Gs, Gi, Gq/G11, and G12
(8,9). In the inactive state, the GDP-bound Gα subunit is associated with the obligate Gβγ
dimer, which slows the rate of spontaneous GDP release by Gα acting as a guanine-nucleotide
dissociation inhibitor (GDI) (10,11). Agonist-bound or constitutively active receptors act as
guanine-nucleotide exchange factors (GEFs), promoting the release of bound GDP by Gα. The
nucleotide-free Gα then binds GTP, which is present in molar excess over GDP in cells. When
purified, G proteins can be activated by nonhydrolyzable GTP analogs in the presence of
detergent and Gα can be dissociated from Gβγ by hyperphysiological concentrations of
magnesium. These observations led to the classic model that depicts subunit dissociation
accompanying G protein activation in vivo. However, accumulating evidence reviewed in
(12), suggests that GTP-mediated activation triggers a conformational change without
necessarily causing subunit dissociation. Some studies have indicated that conformational
changes within the heterotrimeric G protein (13–16) rather than subunit dissociation per se are
sufficient to reveal distinct effector interacting surfaces (reviewed in 12). This model is also
supported by chemical (17) and molecular (18) cross-linking studies that showed physically
tethered heterotrimers are still functional. Two recent studies appear to support the original
hypothesis (19,20), although matters are made more complicated by evidence that both
scenarios are operative (21,22). It is conceivable that the outcome of G protein activation
depends on the particular receptor, G protein heterotrimer, effectors, and regulatory molecules
contained in an individual signaling complex. These latter components might include arrestins,
protein kinases, and phosphatases that could regulate the duration and intensity of signal
transduction, and change the type of signal or the subcellular localization where different
signals might be delivered. In this review, we discuss the roles associated with Gβγ subunits
in cellular signaling per se, but we also address the broader role they may serve in organizing
the assembly and trafficking of GPCR signaling complexes.

Gβγ DIMERS AND CLASSICAL GPCR SIGNALING PATHWAYS
Gα and Gβγ subunits relay signals to a wide range of downstream effectors, including adenylyl
cyclase isoforms, phospholipases, ion channels, protein tyrosine kinases, and MAP kinases,
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among others (23–27). Originally, the Gβγ dimer was thought to be necessary mainly for the
inactivation of Gα subunits, allowing them to reassociate with the receptor for subsequent
rounds of signaling. Thus, Gβγ was viewed as a negative regulator of Gα signaling that
increased the signal-to-noise ratio by preventing spontaneous Gα activation in absence of
receptor stimulation (reviewed in 28). The first evidence for a direct role of Gβγ dimers in
signaling came in 1987 when purified Gβγ subunits from bovine brain were shown to activate
a cardiac potassium channel normally activated by muscarinic cholinergic receptor following
acetylcholine release (23). We now know that Gβγ subunits can modulate many effectors
(Figure 1) via direct interaction that are also regulated by Gα subunits, including the
aforementioned Kir3 potassium channels, phospholipase Cβ (29,30), adenylyl cyclase
isoforms (31), and voltage-gated calcium channels (32). These Gβγ functions have been the
subject of several recent reviews that provide greater detail (8,33,34).

SPECIFICITY OF Gβγ-MEDIATED SIGNALING
The Gβ1–4 subunits share 78–88% identity over their approximately 340 amino acid sequences
(35). Gβ5 is structurally distinct from the other Gβ subunits (see below), sharing only 51–53%
sequence identity with the other Gβ subunits and containing an additional 13 amino acid
residues. The crystal structure of Gβγ has been elucidated (36,37). Gβ contains seven distinct
β-sheet domains arranged like the blades of a propeller. The N-terminus of the Gβ subunit
contains a 25-residue α-helix and a loop (residues 26–45) that connects this helix with the
propeller blades. Each propeller blade is a four-stranded antiparallel β sheet. There are also
seven WD motifs in Gβ. Gβ and Gγ subunits share nearly 100% amino acid identity among
different mammalian species. The Gγ subunits are more structurally diverse than the Gβ
subunits. They share between 27 and 76% sequence homology. If divided into subfamilies, the
sequence homology among family members is much higher. For example, Gγ1, Gγ11, and
Gγ13 share 62–73% homology (35). Gγ subunits undergo several post-translational
modifications, including isoprenylation of an invariant cysteine residue in a conserved CAAX
motif at the carboxyl end of the protein, which are important for membrane localization of
Gβγ. In most Gγ subunits, the X in the CAAX sequence is a leucine, which allows the addition
of a geranylgeranyl group by a thioester linkage, although in some (Gγ1, Gγ8, Gγ11 and
Gγ13) X is a serine, which permits the addition of a farnesyl group (38–40).

Early studies regarding signaling specificity mainly targeted Gα because it possesses the switch
that activates and deactivates signal transduction through guanine nucleotide exchange and
hydrolysis, respectively. It has been shown that particular combinations of heterotrimeric G
proteins are responsible for coupling receptors to particular effectors (41–51). Evidence has
accumulated for an increasing role for Gβγ subunits in a heterotrimeric G protein in direct
interactions with receptors and effectors (8). The particular constituents of the G protein
heterotrimer affect both specificity and efficiency of signal transduction. Hundreds of receptors
are known that interact with G proteins to mediate their function. If all Gβ subunits could
interact and randomly form dimers with all Gγ subunits, there would be 60 possible
combinations. Most Gβ and Gγ subunits can form dimeric pairs in vitro but some exceptions
have been reported. The highly conserved sequences, preserved functions, and specific tissue
expression patterns indicate unique or specialized roles in signal transduction pathways. For
example, Gγ1 expression is restricted to retinal rod cells, and the Gβγ1 dimer is highly preferred
by rhodopsin compared with other receptors (52). Gβ1 can interact with all Gγ subunits, and
Gβ2 can combine functionally with Gγ2 but not Gγ1 (53,54). The region of Gγ that defines
specificity for the interaction with Gβ1 or Gβ2 subunits has been localized to a 14–amino acid
segment (55). Specific Gβγ interactions can be restricted by differential expression in particular
cell types, with the extreme examples of the visual system and vasculature (56) as lower and
upper limits for diversity. It is likely that unique heterotrimer combinations may be functionally
distinct, as well. It is possible that there may also be coordinate regulation of Gβ or Gγ subunit
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biosynthesis, spatiotemporal aspects to localization, or formation of particular pairs although
this has never been tested directly. What are the functional consequences of this diversity?

The combinatorial association of the different G protein subunits could contribute to the
selectivity that is needed to generate the broad range of signals transmitted by G proteins.
However, it has been difficult to demonstrate that subunit diversity plays an important role in
determining the specificity of signaling. Biochemical approaches have revealed modest
differences among the various subunit combinations (8) although genetic approaches have been
more successful. As discussed above, an antisense approach was originally used to demonstrate
that various GPCRs (somatostatin and muscarinic cholinergic receptors) use different G protein
combinations to modulate a calcium channel in pituitary cells (48). Also, a ribozyme approach
demonstrated that β–adrenergic and prostaglandin receptors require G proteins of various
subunit compositions to stimulate adenylyl cyclase activity (41,42). The first conclusive report
that a receptor recognizes a specific set of G protein subunits in an organism came from a gene-
targeting approach that showed that the D1 dopamine receptor requires a G protein containing
Gγ7 to stimulate adenylyl cyclase activity in the striatum (44). For most receptors, the G protein
subunit combination required to generate specific signaling events in vivo is still unknown.
These and other studies are summarized in Table 1.

Gβγ subunits essentially function as a single entity. Specific point mutations in the Gβ1 subunit
(S67K, T128F, S98T) alter Gβγ regulation of the Kir3 channel without blocking other Gβγ-
mediated functions, such as activation of the PLCβ2 (57). However, it is clear that both Gβ
and Gγ are important in effector regulation. The first evidence of a functional role for the Gγ
subunit in activation of an effector came in 2003 when it was shown that the C-terminal
extremity of the Gγ2 was needed for the activation of Kir3 channels (58). Gβγ subunits also
interact directly with a number of GPCRs, including M2 and M3 muscarinic cholinergic
receptors (59,60), β-adrenergic receptors (13), and rhodopsin (61,62). Gβγ subunits are
important in recruiting GRKs to activated receptors (59). Further, the ability of Gβγ to interact
with receptors is influenced by the isoform of Gγ present in the dimer, for example, Gβ1γ1
dimers can support the binding of Gαt to rhodopsin although Gβ1γ2 cannot (52,63). Following
receptor activation, Gβγ dimers can translocate from the plasma membrane to the Golgi
apparatus. The rate of this translocation is affected by the Gγ subunit type (i.e., Gγ1 translocates
more rapidly than Gγ5). Because Gγ1 is farnesylated and Gγ5 is geranylated, prenylation-
deficient mutants were used, but the results indicated that the type of prenyl group present was
not sufficient to explain the differences observed. However, the translocation properties of the
Gβ1γ1 and Gβ1γ5 complexes were dramatically altered when their C-termini were mutated
(64).

Gβ5, THE BLACK SHEEP OF THE FAMILY
The gene for Gβ5 was cloned in 1994 from a mouse brain library and appears to be enriched
in the brain compared with other tissues (65,66). It is able to associate functionally with
numerous Gγ subunits (35,67). Gβ5 is associated with plasma membrane but is also present in
the soluble fraction (30–50%) in brain extracts in contrast to other Gβ subunits, which are
mainly associated with the membrane (68). This indicates that Gβ5 might interact with a number
of novel binding partners. A Gγ-like (GGL) domain was shown to foster the interaction of
multiple proteins with Gβ5. Indeed, it was shown that RGS11, which possesses a GGL domain,
could interact with Gβ5 (69). It was subsequently shown that other RGS proteins of the R7
family could interact with Gβ5 via GGL domains (70). This GGL motif interacts with Gβ5 in
a similar fashion as do conventional Gγ subunits (36,70), although other Gβ subunits are unable
to interact with RGS6, RGS7, or RGS11. GGL-containing RGS proteins associate with Gβ5
in a similar fashion as do conventional Gγ subunits, but are functionally distinct from
conventional Gβγ dimers, although some controversy remains regarding different potential
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partners for Gβ5 in signaling. However, Gβ5-R7 dimers increase the steady state GTPase
activity of numerous Gα subunits in the context of receptor-coupled heterotrimers reconstituted
in proteoliposomes (71). The RGS9-Gβ5L dimer (Gβ5L is a splice variant expressed in the rod
outer segments of the retina.) was shown to interact with an anchoring protein, RGS9 anchoring
protein (R9AP). In the absence of R9AP, the stability of the RGS9-Gβ5L complex in
photoreceptors is severely compromised (72). RGS and its anchoring protein were recently
shown to be involved in hereditary abnormalities in photoresponse recovery (73). This is the
first report of a human pathology associated with a specific RGS defect.

NOVEL INTERACTING PARTNERS FOR Gβγ SUBUNITS
In addition to the classical signaling paradigms associated with the activation of GPCRs, there
are a number of novel pathways that are activated by and/or regulate the activity of either
receptors or their G protein partners. This number will certainly enlarge as proteomic
techniques become more widely applied to G proteins as they have been for GPCRs (see
73a,73b, and 73c for review). A number of these pathways involve recently identified
interacting proteins for Gβγ dimers (Figure 1,Table 2). These include various PI-3 kinase
isoforms (74); PDZ proteins (75); guanine exchange factors (GEFs) for small G proteins such
as P-Rex1 (76,77), FLJ00018 (78), and p114-RhoGEF (79); as well as protein kinase D (80–
82). Receptor for activated C kinase 1 (RACK1) recently was shown to act as a negative
regulator of certain aspects of Gβγ signaling, as its binding site on Gβγ overlaps with those of
phospholipase Cβ isoforms 2 and 3, adenylyl cyclase II, and PI-3 kinase, but not other effector
pathways, such as Gβγ-mediated activation of the extracellular-signal regulated kinase/
mitogen-activated protein kinase (ERK MAPK) pathway or Gβγ-mediated chemotaxis (83,
84). RACK1 thus appears to act as a switch that tends to bias Gβγ signaling toward certain
effectors. Gβγ also inhibits the opening of voltage-gated calcium channels through its
association with syntaxin and other proteins in the soluble NSF attachment protein (SNAP)
receptor (SNARE) complex (85). Gβγ and synaptotagmin compete for binding to SNAP-25,
syntaxin1A, and the SNARE complex. Gβγ binding therefore serves to impede SNARE-
dependent exocytosis, however, this Gβγ-dependent inhibition of neurotransmitter release can
be overcome by increases in concentration.

RECEPTOR-INDEPENDENT SIGNALING BY Gβγ
The classical view holds that GPCR signaling is mediated solely via activation of G proteins
and their downstream effectors. However, numerous recent reports have revealed that GPCRs
can interact with a wide variety of intracellular molecules in addition to G proteins. G protein-
independent activation of Janus kinase/Signal Transducers and Activators of Transcription
(JAK/STAT) signaling was demonstrated for the 5-HT2A receptor (86), the angiotensin II
AT1 receptor (87), and the Dictyostelium cAR1 cAMP receptor (88). The platelet activating
factor receptor (PAFR) interacts with and activates a member of the Janus kinase family (Tyk2)
in a G protein–independent fashion (89). These signaling events may also involve trafficking
of receptors to endosomes and the recruitment of β-arrestin-dependent complexes (reviewed
in detail in 90). Still, given what we discuss below, G proteins may serve roles in organizing
and trafficking complexes associated with GPCRs; thus, we prefer to use the term functionally
G protein–independent for this class of signaling events. It has become clear that the G proteins
may be able to interact with effector molecules in a receptor-independent fashion (see 91 for
review).

Ten members of a group of proteins known as nonreceptor activators of G protein signaling
(AGS) have been identified to date (92,93). These are now known to work through a variety
of mechanisms. Group I AGS proteins are guanine nucleotide exchange factors that promote
receptor-independent G protein activation by facilitating GDP dissociation from, and thus GTP
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binding to, Gα subunits. Group II AGS proteins (also called GPR or GoLoco proteins), in
contrast, inhibit GDP dissociation, but may promote Gβγ signaling by altering the association
between Gα and Gβγ. Group III AGS proteins differ from the others in that they do not appear
to bind appreciably to Gα subunits but rather they produce their effects by binding directly to
Gβγ. This interaction could promote dissociation of the heterotrimer subunits, or simply
compete for interaction with Gα. AGS2, also known as TcTex-1, a light chain component of
the dynein motor in the cytoplasm, may also be a direct Gβγ effector important for the
modulation of neurite outgrowth and other processes required dynamic modulation of the
cytoskeleton (94). A recent study indicated that AGS9, a Group III AGS protein, modulated
signaling events via interactions with an intact G protein heterotrimer and may in fact form a
signaling complex with the G protein heterotrimer and one of the classic Gβγ effectors,
phospholipase Cβ (PLCβ (95)). However, the exact function of the Group III AGS proteins
remains unclear.

Gβ1 can be phosphorylated on histidine 266 by histidine kinase (96) and this high energy
phosphate can be transferred to Gα-GDP, yielding Gα-GTP, by nucleoside diphosphate kinase
B (NDPK B) (see 97 for review). This may represent a mechanism for heterotrimeric G protein
activation, which does not require a GPCR per se. In rat cardiomyocytes, Gβ1H266L, a mutant
that cannot be phosphorylated by histidine kinase showed reduced cAMP stimulation and
reduced levels of cardiac contractility. The mutation also resulted in decreased phosphorylation
of phospholamban on serine 16 following receptor stimulation by an agonist (98).

CROSS-TALK BETWEEN Gβγ AND OTHER SIGNALING PATHWAYS
Androgens can promote transcription by androgen receptors, but they also induce rapid
responses that may be receptor-independent such as the rapid phosphorylation of the Elk-1
transcription factor or c-Raf-1. These rapid actions in response to androgen involve the
activation of PLCβ2 by a Gβ4γ dimer derived from a PTX-sensitive heterotrimer (99). A similar
cross-talk phenomenon was noted for estrogen stimulation, as well. This action is mediated by
a membrane-localized protein related to the estrogen receptor β and is insensitive to the
estradiol antagonist ICI 182,780 (100). A recent study demonstrated that these interactions
between the estrogen receptor and Gβγ are likely to be direct (101).

Gβγ SUBUNITS AND EFFECTORS LOCALIZED AT SITES DISTINCT FROM
THE PLASMA MEMBRANE

It has become clear that GPCRs can signal from numerous intracellular locations (Figure 2).
Further, the notion that all GPCRs are initially trafficked to the plasma membrane has been
challenged by data for the . GABA-B1 receptor subunits, which remain in the endoplasmic
reticulum (ER) in the absence of GABA-B2 subunits (102–105). However, the distribution of
GABA-B1 in the central nervous system is much broader than that of GABA-B2, which
suggests that this receptor may have an independent function intracellularly (106–108). It was
demonstrated that a recently deorphanized GPCR, GPR30, targeted exclusively to the ER, is
a functional receptor for estrogen (109). Other recent studies demonstrated that receptor-G
protein-effector complexes first become associated in the ER, and that their interactions are
sensitive to agonist in these compartments, which suggests that these complexes are indeed
functional (110–112). On a parallel track, a number of studies demonstrated that heterotrimeric
G proteins are localized to ER and Golgi compartments where they can be involved in the
regulation of anterograde protein trafficking and Golgi organization (80–82,113–115). The
receptors (if they are required) that control these latter events remain unknown, but it is clear
that one of the key effectors is protein kinase D. Further, a number of recent studies (reviewed
in 116) indicate that GPCRs and their associated signaling machinery are trafficked to the
nuclear membrane and, in some cases, the nucleus proper. How GPCRs and G proteins signal
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in these compartments is not completely understood, but Gβγ subunits are proving to be
signaling molecules in all of these subcellular locations.

Recently, a number of studies have indicated a direct nuclear impact for Gβγ dimers. Gβ1γ2
dimers can interact directly with histone deacetylase 5 (HDAC5) and possibly other HDAC
isoforms, as well (117). In the basal state, HDAC5 interacts with the muscle differentiation
factor MEF2, resulting in reduced transcriptional activity. Following stimulation of the
α2AAR, the activated Gβγ dimers interact with HDAC5, releasing MEF2 and allowing it to
stimulate transcriptional activity. Both the Gαi/o inhibitor PTX and the Gβγ scavenger βARKct
inhibit MEF2 activity (117). It remains uncertain whether cytoplasmic Gβγ dimer sequesters
HDAC, or if these events occur exclusively in the nucleus. As mentioned above, the distinctive
Gβ5 subunit interacts with a number of RGS proteins. One RGS class, the R7 subfamily, is
enriched in the brain and functions as part of a stable RGS-Gβ5 complex, which is localized
to both the cytosol and the nucleus (118). The RGS7 binding protein (R7BP) protein interacts
with the RGS7-Gβ5 pair and potentiates the capacity of this complex to modulate Kir3 channels
in response to M2 muscarinic cholinergic receptor stimulation (119). R7BP is palmitoylated,
allowing the anchoring of RGS7-Gβ5 at the plasma membrane to regulate GPCR signaling.
However, the addition of palmitate is a transient and tightly regulated process (120). In this
case, the loss of the palmitate moiety on R7BP releases the R7BP-RGS7-Gβ5 complex from
the plasma membrane and shuttles it to the nucleus. Other RGS proteins also localize to the
nucleus and include RGS6, which can regulate transcription in mammalian cells (121). The
precise role of these proteins in the nucleus remains to be determined. The authors of this latter
study proposed this as a novel mechanism for transmitting neurotransmitter signals from
receptor at the plasma membrane directly to the nucleus (see 122 for review). Interestingly,
mutant Gβ5 subunits unable to form a complex with RGS7 but still capable of interacting with
Gγ2 are not found in the nucleus of either HEK 293 cells or PC12 cells, which suggests the
importance of the RGS protein in nuclear localization of Gβ5 (123). It has been shown that
Gβγ subunits containing the other Gβ isoforms can interact with the transcriptional repressor
known as the adipocyte enhancer-binding protein (AEBP1) (124). AEBP1 specifically forms
a complex with Gβγ subunits containing Gγ5 in the nucleus of 3T3-L1 cells, but interestingly
not in NIH 3T3 cells. The Gβγ5-AEBP1 interaction attenuates AEBP1 transcriptional
repression activity.

Another newly recognized effector of the Gβγ dimer is the glucocorticoid receptor (GR). These
receptors localize in the cytoplasm and translocate to the nucleus in response to ligand binding,
thereby transcriptionally regulating several target genes. Both Gβ1 and Gβ2 subunits can
directly interact with the GR and can be translocated with it to the nucleus in the presence of
the glucocorticoid dexamethasone (125,126). The interaction of Gβ with the receptor is
dependent on the presence of the Gγ subunit and suppresses GR transcriptional activity, most
likely by associating with transcriptional complexes formed on GR-responsive promoters.
Indeed, Gβ2 mutants unable to bind Gγ are not able to suppress GR transcriptional activity.

Results from the studies mentioned above highlight the central role of Gβγ subunits in
numerous subcellular compartments, directly regulating fundamental processes such as
transcription and the trafficking of proteins through the ER and Golgi apparatus. Thus, we can
now develop our central theme: that Gβγ subunits are more than simple signaling molecules
responsive to GPCR stimulation.

ASSEMBLY OF Gβγ DIMERS
While functional Gα subunits can be synthesized in almost any expression system, Gβγ
synthesis seems more tightly regulated. This is not simply owing to differential
posttranslational modification as both Gα and Gγ subunits are modified by the addition of lipid
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moieties that facilitate G protein association with lipid bilayers. For example, Gβγ can be
synthesized in vitro in rabbit reticulocyte lysates. However, either cotranslationally or by
subsequent attempts at assembly in vitro, formation of functional Gβγ dimer is inefficient; only
30 to 50% of the synthesized Gβ and Gγ subunits can form functional Gβγ dimers. Interestingly,
Gβ subunits can be synthesized separately from Gγ subunits in rabbit reticulocytes and wheat
germ extract, but these will not interact efficiently with Gγ subunits. By contrast, Gγ subunits
can be synthesized in rabbit reticulocyte lysates, wheat germ extracts, and bacteria, and will
efficiently associate with Gβ subunits (127,128). This specificity suggests that cellular
cofactors such as chaperones are necessary for the proper folding of Gβ and subsequent
assembly into a Gβγ dimer (128). Recent studies have indicated that there are preferential
associations for different Gβγ subunits in living cells (129). One early hint in this regard was
that the 90kDa-heat shock protein (hsp90) could interact with Gβγ (130), mainly with the non-
dimerized form of Gβ rather than with the native Gβγ dimer (67). More recently, specific
mechanisms used for the assembly of the Gβγ dimer have been revisited.

Members of the phosducin family were originally proposed to act as inhibitors of G protein
signaling via sequestration of the Gβγ subunits from Gα and effector molecules (131,132,
reviewed in 133). Members of the phosducin family (phosducin-like proteins, or PhLP 1–3)
have been shown to serve as co-chaperones with the cytosolic chaperonin complex (CCT) to
assist in folding a variety of nascent proteins (134–136). CCT is an essential chaperone required
for protein folding in the cytosol of eukaryotic cells (137). Nascent polypeptides associate with
the ring structure formed by a stack of two groups of eight CCT subunits, and interactions with
residues in the ring diminish the activation energy required to form the three-dimensional
structure of the native protein (138). Among the known substrates of CCT are Gα and multiple
proteins with β-propeller WD40 structures similar to Gβ (139–141). PhLP1 is not a substrate
of CCT because it interacts with CCT in its native form. This suggests a regulatory role for
PhLP1 in CCT-dependent folding processes (135). In fact, PhLP acts as a co-chaperone by
binding above the CCT cavity and occluding the cavity to stabilize folding processes until the
native protein formation occurs. PhLP1 may act as a co-chaperone for the folding of the Gβ
subunit until Gβγ reaches its native stable state. This idea is consistent with observations that
when PhLP1 is deleted in Dictyostelium, Gβ does not co-localize with Gγ at the plasma
membrane but is expressed in the cytosol, as if the Gγ interaction was inhibited (142). To
facilitate Gβγ dimer formation, PhLP1 must be phosphorylated on serine residues by casein
kinase 2 (CK2). A mutant of PhLP1 that cannot be phosphorylated (S18-20A) inhibits both
Gβ release from CCT and subsequent Gβγ assembly (143,144). The mechanism for Gβ release
from CCT may involve steric repulsion, thereby triggering release of a PhLP1-Gβ complex
intermediate. Here, Gβγ subunits are not yet in their native form because the intermediate
complex of PhLP1-Gβ does not contain Gγ subunits (145,146). Interestingly, Gγ was not found
to interact with CCT either directly or in a complex with Gβ. A separate chaperone has recently
been identified for Gγ subunits. Dopamine receptor interacting protein 78 (DRiP78) is an ER
membrane–bound HSP40 co-chaperone that regulates receptor transport to the plasma
membrane via an FXXXFXXXL motif found in various GPCRs such as β2-adrenergic (β2AR),
dopamine D1, M2 muscarinic cholinergic, and angiotensin II AT1 receptors (147–149). Gγ
subunits and DRiP78 initially colocalize in the ER, presumably facing the cytosolic
compartment where they can interact with Gβ. DRiP78 competes with Gβ for the interaction
with Gγ and this may facilitate its release from the chaperone, as well. shRNA knockdown of
endogenous DRiP78 reduced formation of Gβγ and resulted in a more rapid decline in Gγ2
levels when de novo synthesis was blocked. This suggests that DRiP78 maintains the stability
of nascent Gγ in the absence of its heterotrimeric partners. Further, DRiP78 can also interact
directly with PhLP1 (149), suggesting that PhLP-Gβ complex might interact with DRiP78-
Gγ complex, thus participating in the assembly of the native Gβγ dimer. DRiP78 can also,
therefore, be considered as a co-chaperone for Gβγ assembly, protecting Gγ from degradation
until both subunits can be assembled into their native form. Subsequently, association of Gα
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with Gβγ would release PhLP and potentially DRiP78 for additional rounds of Gβγ dimmer
assembly.

As discussed above, Gβ subunits, with the exception of Gβ5, are quite homologous. This
suggests that the same set of chaperones might function for them all. However, it remains to
be seen whether there are specific chaperones for the more divergent Gγ subunits, and whether
different chaperones facilitate the assembly of specific Gβγ pairs, specific heterotrimers, or
specific receptor-based complexes. There are numerous other DnaJ family members, including
DRiP78, that may serve these roles. Although it is clear that DRiP78 does not interact directly
with any of the Gβ subunits, its effects are more pronounced when Gβ1 is involved. This may
suggest that the DRiP78-PhLP complex is also important in selective formation of different
Gβγ pairs. Moreover, expression of the Gα subunit may alter this pattern even though we
demonstrated that DRiP78 did not interact with Gα subunits (149). Proteins that may be
considered chaperones for Gα subunits include the J domain–containing cysteine string protein
(CSP) (150), Gα-interacting vesicle-associated protein (GIV, also known as girdin), Daple,
and FLJ000354 (151). These proteins may be involved in assembling G protein heterotrimers
and may also represent potential interacting proteins for PhLP-1 and/or DRiP78. The fact that
certain chaperones such as CSP and DRiP78 can also interact with effector molecules [e.g.,
voltage-gated calcium channels (152–154)] or GPCRs [e.g., dopamine D1, M2 muscarinic
cholinergic and angiotensin II AT1 receptors (147,148,155), and the β2AR (149)] hints that
these chaperones may also be involved in the formation or trafficking of larger, or perhaps
specific complexes of receptor, G protein heterotrimer and effector.

RECEPTOR-BASED SIGNALING COMPLEXES
Phototransduction in mammalian rod outer segments is extremely sensitive, i.e., photoreceptor
cells are capable of detecting single photons. This level of sensitivity requires signal
amplification, part of which occurs at the second step of the transduction process i.e., when
activated receptors (rhodopsin) interact with the G protein (transducin). Every active rhodopsin
molecule can potentially interact with hundreds of transducin molecules via random collisions
(156). Although this collision coupling almost certainly contributes to the sensitivity of
phototransduction, it is by no means certain that a similar mechanism operates in other G
protein signal transduction pathways, even in the case of other sensory systems that are highly
sensitive to external stimuli (157).

Although transient interactions between rhodopsin and transducin, and then between
transducin and cGMP phosphodiesterase are required for signal amplification in the
mammalian visual system, other organizational paradigms operate in other cell types that
express multiple receptor, heterotrimeric G proteins, and effector molecules (reviewed in
158). The possibility that receptors (R) and G proteins (G) might be associated prior to receptor
activation has been incorporated into models of G protein signaling for some time (159,160),
but experimental evidence that precoupled R-G complexes exist in living cells has been
obtained only recently (13,14,16).

The notion that GPCRs stably interact with their G protein and effector partners has been
proposed as a mechanism to assure rapid and specific signaling (reviewed in 158). Thus, one
might consider the receptor itself as a scaffolding protein for the formation of specific signaling
complexes. A large number of studies have demonstrated co-purification or co-
immunoprecipitation of receptors with G proteins (reviewed in 158). It has been shown, for
example, that the β2AR remains associated with the Gs heterotrimer regardless of its state of
activation [i.e., the interaction is stable under basal, activated, and desensitized conditions of
the receptor (160)]. More recent studies using imaging techniques such as bioluminescence
resonance energy transfer (BRET) (13,161) and fluorescence resonance energy transfer
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(FRET) (162) have validated these findings and highlighted the constitutive nature of the
interactions between receptors and G proteins. These techniques have been the subject of a
number of recent reviews (163–167) and are not discussed further here.

OTHER G PROTEIN SIGNALING COMPONENTS THAT PARTICIPATE IN
STABLE COMPLEXES

A number of effectors are stably associated with receptor-G protein complexes, including
adenylyl cyclase isoforms, L-type calcium channels, calcium-activated potassium channels, and
inwardly-rectifying potassium channels (30,168–174). Perhaps more surprisingly, some of
these effectors directly associate with receptor molecules. For example, it was demonstrated
using BRET that the β2AR was associated with both Kir3 ion channels and adenylyl cyclase
(112,173), and that D4 dopamine receptors associate with Kir3 ion channels (173). Protein-
protein interaction assay were used to show that opioid-like receptor 1 physically associates
with voltage-gated N-type calcium channels (175,176). The existence of stable interactions,
independent of receptor activation between G proteins and their effector molecules, including
Kir3 ion channels and adenylyl cyclase, have also been shown (110,177). Several recent studies
elegantly demonstrate that G proteins remain associated with Kir3 channels throughout the
signaling event (178–180). Other key regulatory molecules such as RGS proteins interact
constitutively with receptors, G proteins, and effector molecules (181–183). There are also
numerous scaffolding proteins that interact with GPCRs to create an even greater diversity of
signaling arrays and signaling outcomes (reviewed in 184,185).

Gβγ SUBUNITS AS AN ORGANIZING DETERMINANT FOR SIGNALING
COMPLEX ASSEMBLY

Because receptors, G proteins, effectors and various scaffolding or chaperone proteins have
been observed as parts of multimeric complexes at the plasma membrane, new questions have
arisen about the formation of these complexes, the trafficking of the different partners, and the
assembly sites of these complexes. If signaling partners interact before receptor activation, the
question of where these proteins first interact and what facilitates their assembly into specific
complexes becomes critical. Recent studies have painted a complicated picture regarding
trafficking of individual components of GPCR signaling complexes. It is known that receptor
oligomers are assembled in the ER (reviewed in 186). One study has shown that fully processed
Gβγ subunits form heterotrimers with Gα on the cytosolic face of the Golgi apparatus (187).
However, another study demonstrates Golgi-independent trafficking of Gβγ (188). In any case,
assembly of the heterotrimer precedes acylation of the Gα subunit, which is necessary for
delivery of the heterotrimer to the plasma membrane (187,189, reviewed in 190). Trafficking
of Kir3 channels is extremely complicated, and the ultimate destination depends on which
channel subunits are present (191).

Constitutive trafficking of some GPCR-regulated effectors, such as adenylyl cyclase isoforms
and various ion channels, demonstrates that components of these signaling pathways can transit
to the membrane independently of the receptor or G protein. However, there is now substantial
evidence that, like GPCR dimers, these complexes are formed during or shortly after
biosynthesis. A number of studies have also demonstrated that receptors can directly interact
with Gβγ, as well as Gα, subunits (59,60,192). Recent studies have shown that many of these
proteins interact initially in the ER, including monomeric receptor equivalents in receptor
oligomers (193), receptor and Gβγ subunits (194), and effectors such as Kir3 channels and
adenylyl cyclase with nascent Gβγ (110,112). The interactions between adenylyl cyclase or
β2AR and Gβγ, and between receptor monomers in the β2AR homodimer were insensitive to
dominant-negative Rab 1 or Sar 1 constructs (112,194), which regulate receptor trafficking
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(177, reviewed in 195). However, these latter studies highlight the fact that the Gα subunit is
assembled with nascent receptor-Gβγ-effector complexes either at ER exit sites or in the Golgi,
as these interactions were blocked by dominant negative Sar 1 and Rab 1 (112,194). If these
complexes are preformed during protein biosynthesis and maturation, they would need to be
trafficked inside the cell as a complex and not necessarily as individual proteins (Figure 3).
The individual preformed complexes may be distinct for receptor monomers, homodimers, and
heterodimers, leading to a unique signaling output for each receptor complex (Figure 2). What
is the role for Gβγ in organizing the assembly and or trafficking of these complexes?

On the basis of the data described above, it is clear that both GPCRs and their effector molecules
interact with G protein subunits before targeting to the plasma membrane. We propose that
Gβγ subunits may play an organizing role for assembly of GPCR-based signaling complexes
as they interact with all of the relevant components–: receptors, Gα, subunits and effectors
before each of them is trafficked to the cell membrane (or other subcellular destination).
Specific Gβγ combinations may in fact act as chaperones in this regard. Many studies have
demonstrated that GPCR dimers are formed constitutively, often before they reach the cell
surface (see 186 for review).

Given that most cells express multiple receptor subtypes that could, in principle, assemble into
heterodimers, what mechanisms does the cell use to assemble specific receptor complexes at
any one time? There are a number of indications that these sorting and assembly decisions must
occur in the ER, but the molecular basis for these decisions has so far proven elusive. One
simple and relatively unsatisfying answer is that the timing of receptor synthesis or coordinate
regulation of particular subtypes may have something to do with this. A thorough examination
of upstream and downstream regulatory sequences of GPCR genes may be informative in this
regard. Another potential mechanism may rely on precocious interactions (i.e., interactions
that occur during biosynthesis) with G protein subunits, which may be involved in controlling
receptor assembly in the ER (177,194). One tantalizing observation that indicates a precocious
role for Gβγ in assembling receptor dimers is that when Gβγ function in membranes is inhibited
by using a membrane-localized version of the carboxy terminus of G protein-coupled receptor
kinase 2 (GRK2, βARK-CT) construct, formation of Kir3.1-Gβγ complexes in the ER is
blocked (e.g., M. Robitaille and T.E. Hébert, unpublished results) and, more surprisingly, we
also reduce the formation of β2AR homodimers (Figure 4). These preliminary observations
need to be validated using other approaches such as siRNAs that target specific Gβγ
combinations. Interestingly, a recent study using siRNA to knock down various Gα and Gβγ
subunits in HeLa cells showed not only alterations in cellular signaling events, but also
coordinate loss of expression (or in some cases upregulation) of other signaling partners
(194a). For example, knockdown of Gβ1 lead to a coordinate knockdown of Gαs and Gαi3
while knockdown of Gβ4 lead to a coordinate knockdown of Gαq and Gαo. Conversely,
knockdown of Gβ2 lead to an upregulation of Gβ4. Coordinate changes in signaling partner
expression were also detected in other studies where individual Gγ subunits were knocked
down or knocked out (see Table 1). The roles that individual Gβγ subunits play in the expression
and assembly of signaling complexes, and where in the cell these events are controlled, remain
to be determined.

It is also clear that a number of effectors [e.g., homo- and heterotetrameric Kir3 channels and
putatively dimeric AC isoforms (see, for example, 111)] possess multiple sites of interaction
for heterotrimeric G proteins. In the context of a large signaling complex with many potential
sites for interactions with G proteins, it becomes critical to determine the interactions that are
precocious (i.e., relevant to assembly and trafficking) as compared to those important for
signaling per se. Further, it will be critical to determine the relative specificity for precocious
versus signaling interactions and to characterize the relevant interaction sites at the structural
level.
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The trafficking itinerary of GPCRs following prolonged or repetitive agonist stimulation is
well characterized (see 196,197 for review). There is also some evidence that trafficking
itineraries for receptor and Gα may diverge upon long-term agonist stimulation (198, reviewed
in 199). These findings need to be reassessed using imaging approaches in living cells to
determine where signaling complexes dissociate. What happens to the G protein and effector
signaling partners when receptors are targeted for degradation? Do some portions of signaling
complexes containing G proteins and effectors remain intact and reassociate with recycled
receptors? These remain open questions as little is known about the internalization of effector
molecules. Do Gβγ subunits play an analogous role in the reassembly of signaling complexes
when receptors are recycled? These pathways may be more difficult to dissect than the
relatively straightforward de novo synthesis pathway. More attention will need to be paid to
the assembly and trafficking of GPCR-based signaling complexes in both a tissue-specific
context and with respect to subcellular localizations within a single cell. Modulation of subtype-
specific Gβγ-dependent events with regard to assembly or subsequent signaling using siRNA
(200,201) will perhaps identify targets for small- molecule peptidomimetics (202,203). Use of
proteomic and imaging-based techniques, followed by mutagenic and structural analyses of
interaction domains, should allow identification of the sites of interaction among Gβγ, specific
chaperones, and different members of the various signaling complexes. It should also, in
principle, be possible to create peptidic or peptidomimetic compounds based on these
interaction domains that will allow individual signaling pathways linked to a particular receptor
or class of receptors to be targeted. For specific targeting, a partner or chaperone that is unique
to a particular complex or class of complexes would need to be identified. Of course, the
converse may be useful as well in certain cases where a signaling pathway or multiple pathways
that share components might be targeted. Here, we may wish to target common interaction
partners. However, it may be difficult to design peptidomimetics that target a specific
interaction if the interaction surface is large or contains many different shifting contact points.
This might be expected for a stable receptor-based complex that occupies multiple
conformations even during its basic activation/deactivation cycle. Further complexity is added
when we consider recruited proteins, receptor desensitization, and internalization. Targeting
specific molecular chaperones may be a way around some of these difficulties. Evidently, much
work remains before this approach becomes viable as a therapeutic strategy.

SUMMARY POINTS

1. Gβγ subunits play broad roles in cellular signaling with respect to effector
modulation as well as during “precocious” interactions in internal subcellular
compartments prior to receptor activation.

2. Molecular chaperones play key roles in the assembly of Gβγ dimers. These
chaperones may also be important for assembly of larger GPCR-based complexes
directed by Gβγ.

3. Gβγ subunits initially interact with receptors and certain effector molecules in the
ER, and with Gα subunits at ER exit sites.

4. Interference with Gβγ function in internal compartments blocks these precocious
interactions and may in.uence the formation of receptor dimers.

FUTURE ISSUES

What determines whether particular Gα and Gβγ subunits dissociate when regulating
cellular signalling?
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What are the roles of multiple Gβγ binding sites on effector molecules (such as Kir3
channels) and GPCR homo- and heterodimers?

Is there a specificity for particular combinations of Gβγ that can be attributed to classes of
GPCRs or effectors?

What other specific molecular chaperones can be identified for the assembly of different
Gβγ pairs, G protein heterotrimers, and larger complexes involving receptors and effectors?
How and where in the cell do they act? Can these chaperones be developed as potential drug
targets?

What are the precise roles of individual Gβγ subunits in fostering the assembly of GPCR
signaling complexes? Can these be targeted to interfere with assembly of specific signaling
complexes?

What is the role (if any) of Gβγ in the assembly of GPCR dimers?
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Figure 1.
Established and more recently identified effectors that are regulated by Gβγ subunits. Gβγ
subunits regulate a number of effectors at the cell surface, including adenylyl cyclase isoforms,
Kir3 and voltage-gated calcium channels, and phospholipase Cβ isoforms, among others. More
recently, a number of novel interacting proteins have been identified that transduce Gβγ-
dependent signals in other subcellular compartments such as the Golgi apparatus [protein
kinase D (PKD)], cytosol [histone deacetylase 5 (HDAC5)], and nucleus [RGS7 binding
protein (R7BP), adipocyte enhancer-binding protein (AEPB1)], glucocorticoid receptor (GR),
and possibly HDAC5). Whether all of these intracellular events require GPCRs or Gα subunits
remains to be determined. The examples presented here are representative and do not include
all of the either classical or novel effectors. For simplicity, GPCRs are shown as monomers
even though they can be dimeric and may even be multimeric. See the text for more details.
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Figure 2.
GPCRs signal from distinct subcellular compartments. GPCRs have also demonstrated to
signal from a number of different intracellular locations. In addition to ligand-induced signals
activated at the cell surface, GPCRs have been identified with functional effects in internalizing
endosomes, in the nucleus (perhaps as cleaved fragments), on the nuclear membrane, and in
the ER (reviewed in 116). These receptors can be associated with unique sets of signaling
partners at each of these sites as denoted by the different possible complexes. This is made
even more complicated when the combinatorial power of receptor heterodimerization is taken
into account. The red arrows denote potential trafficking itineraries, which could lead to the
presence of particular receptors and their associated signaling machinery at distinct
intracellular locations. See the text for more details.
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Figure 3.
GPCRs initially interact with their signaling partners before they leave the biosynthetic
machinery. Receptor dimers or oligomers, receptor-Gβγ complexes and effector-Gβγ
complexes can form in the ER even when antegrade protein trafficking from ER to Golgi is
blocked with dominant negative versions of GTPases such as Sar 1 and Rab 1. The Gα subunit
becomes associated with the nascent Gβγ-based complexes last, probably at ER exit sites, the
ER/Golgi intermediate complex (ERGIC), or perhaps the cis-Golgi. Gβγ subunits play a central
role in early interactions in the assembly of GPCR signaling complexes.
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Figure 4.
A role for Gβγ subunits in the assembly of GPCR dimers? An experiment using
bioluminescence resonance energy transfer (BRET) to demonstrate that increasing amounts of
the membrane-localized Gβγ scavenger, CD8-βARK-CT, but not soluble βARK-CT or CD8,
can inhibit β2AR homodimer formation in a concentration-dependent manner. HEK 293 cells
were transfected with recombinant plasmids to express β2AR tagged with Renilla luciferase
(β2AR-RLuc), and β2AR tagged with green fluorescent protein (β2AR-GFP10). BRET was
measured as described (194). Data are expressed as mean ± SEM of at least 3 different
experiments and normalized by comparing with β2AR-Rluc and β2AR-GFP expressed alone.
Total cDNA levels were equalized for transfection using pcDNA3. * indicates p < 0.05
compared with controls (Rluc- and GFP-tagged donor and acceptor alone) using a one-tailed
Student’s t-test. The final bar represents a negative control in which CD4-Rluc is used as the
BRET donor.
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Table 1
G protein signalling specificity demonstrated by selective knockdown or knockout

Target Method Effects Ref.

αo1 Antisense oligonucleotides Coupling between muscarinic receptors and voltage-dependent Ca2+ channels (46)

αo2 Antisense oligonucleotides Coupling between somatostatin receptors and voltage-dependent Ca2+ channels (46)

β1 Antisense oligonucleotides Coupling between muscarinic M4 receptor and voltage-dependent Ca2+ channels (47)

β2 Antisense oligonucleotides Reduced inhibition of Ca2+ channel current by galanin receptors (49)

shRNA Decreased chemotactic response to C5a (203a)

β3 Antisense oligonucleotides Reduced inhibition of Ca2+ channel current by galanin receptors (49)

γ2 Antisense oligonucleotides Reduced inhibition of Ca2+ channel current by galanin receptors (49)

γ3 Gene knockout Reduced Gβ2 and Gαi3 expression (203b)

Antisense oligonucleotides Coupling between somatostatin receptors and voltage-dependent gated calcium
channels

(48)

γ4 Antisense oligonucleotides Coupling between muscarinic receptor and voltage-dependent gated calcium
Channels

(48)

Antisense oligonucleotides Reduced inhibition of Ca2+ channel current by galanin receptors (49)

γ7 Gene knockout Decreased Gαolf expression and activity of adenylyl cyclase in striatum (44)

Ribozyme Decreased Gβ expression (41)

Decreased AC activity stimulated by isoproterenol but not by prostaglandin E1 (41)

Decreased SKF81297 stimulated AC in cells expressing D1- but not D5
dopamine receptors

(43)

Knockdown and knockdown approaches that address signaling specificity and/or coordinate regulation of signaling partners.
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Table 2
Gβγ interactors old and new

Subcellular location (site of action) References

Classical Effectors Adenylyl cyclase isoforms Plasma membrane (25)

Kir3 potassium channels Plasma membrane (23)

N-type calcium channels Plasma membrane (32)

Phospholipase Cβ Plasma membrane (29)

MAPK (27)

Novel effectors PKD Golgi (80)

RGS-R7 Family Nucleus (118), (119)

AEBP1 Nucleus (124)

RACK1 Plasma membrane (83)

Glucocorticoid Receptor Cytosol/nucleus (125), (126)

HDAC5 Cytosol/nucleus (117)

SNARE Plasma membrane (85)

AGS Plasma membrane (92), (95)

Tctex-1 Plasma membrane (94)

NDPK-B Plasma membrane (96), (97)

Gβ chaperones PhLP1 Cytosol (155)

Gγ chaperones DRiP78 ER (149)

Gβγ effectors old and new. Here we summarize classic and more recently identified Gβγ effectors as well as novel chaperones identified for Gβ or Gγ.
We also note the variety of intracellular sites where these interactions occur.

Abbreviations are as described in Figure 1 and in the text: mitogen-activated protein kinase (MAPK), protein kinase D (PKD), RGS7 binding protein
(R7BP), histone deacetylase 5 (HDAC5), adipocyte enhancer-binding protein (AEPB1), receptor for activated C kinase (RACK1), glucocorticoid receptor
(GR), SNAP receptor (SNARE), activators for G protein signaling (AGS), nucleoside diphosphate kinase B (NDPK-B), phosducin-like protein 1 (PhLP1
and dopamine receptor-interacting protein 78 (DRiP78). As in Figure 1, the examples presented here are representative and do not include all of the either
classical or novel effectors. See the text for more details.
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