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Abstract
Perception and response to nutritional iron by bacteria is essential for viability, and for the ability to
adapt to the environment. The iron response regulator (Irr) is part of a novel regulatory scheme
employed by Rhizobium and other Alpha-Proteobacteria to control iron-dependent gene expression.
Bradyrhizobium japonicum senses iron through the status of heme biosynthesis to regulate gene
expression, thus it responds to an iron-dependent process rather than to iron directly. Irr mediates
this response by interacting directly with ferrochelatase, the enzyme that catalyzes the final step in
heme biosynthesis. Irr is expressed under iron limitation to both positively and negatively modulate
gene expression, but degrades in response to direct binding to heme in iron-sufficient cells. Studies
with Rhizobium reveal that the regulation of iron homeostasis in bacteria is more diverse than has
been generally assumed.

INTRODUCTION
Iron bioavailability can be limiting because it is predominantly in the insoluble ferric form in
aerobic environments. However, excessive intracellular iron can generate reactive oxygen
species that damage cellular components (Braun and Killmann, 1999; Touati, 2000). Thus,
iron homeostasis is strictly regulated so that iron acquisition, storage and consumption are
geared to iron availability, and that intracellular levels of free iron do not reach toxic levels
(reviewed in (Andrews et al., 2003)). In bacteria, the regulation of iron homeostasis has focused
to a large extent on the Fur protein. The mechanism of Fur function has been particularly well
studied in the Gamma-Proteobacteria E. coli (Crosa, 1997; Escolar et al., 1999; Hantke,
2001) and Pseudomonas aeruginosa (Ochsner and Vasil, 1996; Pohl et al., 2003), and in the
gram-positive organism Bacillus subtilis (Baichoo and Helmann, 2002; Baichoo et al., 2002;
Fuangthong and Helmann, 2003). Fur has been described primarily as a transcriptional
repressor that binds DNA when bound to metal. However, direct activation of genes by Fur
has been reported in Neisseria meningitidis (Delany et al., 2004) and a role for iron in
attenuating DNA-binding activity was described for Helicobacter pylori Fur (Delany et al.,
2001). Fur is the founding member of a family of proteins that are all involved in
metalloregulation, but are specific for different regulatory metals (Bsat et al., 1998; Gaballa
and Helmann, 1998; Hamza et al., 1998; Patzer and Hantke, 1998; Chao et al., 2004; Diaz-
Mireles et al., 2004; Platero et al., 2004; Ahn et al., 2006)
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Rhizobia are soil bacteria that can form a symbiotic relationship with leguminous plants. The
bacteria infect roots of the plant host, leading to the development of root nodules. The
intracellular bacteria fix atmospheric nitrogen to ammonia, which can be assimilated by the
plant host to fulfill its nutritional nitrogen requirement. Rhizobia belong to the Alpha-
Proteobacteria, an extremely diverse taxonomic group that includes pathogens, symbionts,
photosynthetic organisms, bacteria that degrade environmental pollutants, and the abundant
marine organism Pelagobacter ubique. The bacterial ancestor of mitochondria belongs to this
group as well.

Recent studies show that iron metabolism is regulated very differently in the rhizobia compared
to other well-studied model systems. Whereas Fur is the major global regulator of iron in E.
coli, Pseudomonas aeruginosa and Bacillus subtilis, its role in Rhizobium is either diminished,
has an alternative function or is absent altogether. In Sinorhizobium meliloti and Rhizobium
leguminosarum, the Fur homolog is a manganese-responsive regulator and has been renamed
Mur (Chao et al., 2004; Diaz-Mireles et al., 2004; Platero et al., 2004; Platero et al., 2007). The
Fur protein from Bradyrhizobium japonicum is iron-responsive, but it has a diminished role in
regulating iron transport genes and other genes controlled by Fur in E. coli, and it recognizes
a novel DNA cis-acting element (Friedman and O’Brian, 2003, 2004; Yang et al., 2006c).
Many of the regulatory functions ascribed to Fur in other bacteria are carried out by RirA or
Irr in the rhizobia. RirA controls numerous iron-regulated genes, including those encoding
proteins for iron transport, siderophore biosynthesis and iron-sulfur cluster assembly in S.
meliloti and R. leguminosarum (Todd et al., 2002; Yeoman et al., 2004; Chao et al., 2005;
Viguier et al., 2005).. RirA negatively controls gene expression in the presence of iron, and a
RirA-responsive element is found in the promoters of genes under its control (Yeoman et al.,
2004). rirA gene homologs are found in the Rhizobiaceae but not the Bradyrhizobiaceae

Irr protein belongs to the Fur family of metalloregulators that includes Fur, PerR, Zur, Nur and
Mur (Bsat et al., 1998; Gaballa and Helmann, 1998; Hamza et al., 1998; Patzer and Hantke,
1998; Chao et al., 2004; Diaz-Mireles et al., 2004; Platero et al., 2004; Ahn et al., 2006).
However, Irr behaves differently than these and other regulatory proteins in fundamentally
different ways, and allows novel control of iron metabolism. Here, an overview of our current
understanding of Irr function is reviewed.

Irr is a conditionally stable protein that degrades in response to iron in a heme-dependent
manner

The irr gene was initially identified in Bradyrhizobium japonicum in a screen for loss of control
of heme biosynthesis by iron (Hamza et al., 1998), and it has been most extensively
characterized in that organism. Heme is the end product of a biosynthetic pathway, culminating
with the insertion of iron into a protoporphyrin ring to produce protoheme. Irr coordinates the
heme biosynthetic pathway with iron availability to prevent the accumulation of toxic
porphyrin precursors under iron limitation (Hamza et al., 1998). Loss of function of the irr
gene is sufficient to uncouple the pathway from iron-dependent control, as discerned by the
accumulation of protoporphyrin. This accumulation is due to derepression of hemB and
probably hemA (Hamza et al., 1998; Yang et al., 2006b). Similarly, an irr mutant of Rhizobium
leguminosarum has a fluorescent colony phenotype and is deregulated for the hemA gene
(Wexler et al., 2003; Todd et al., 2006), and a Brucella abortus irr mutant accumulates
protoporphyrin (Martinez et al., 2005).

The Irr protein accumulates in cells under iron limitation, with very low levels in iron replete
cells. Thus, Irr is distinct from other Fur family proteins because it functions in the absence of
the regulatory metal, whereas the other members require direct metal-binding for activity. The
control of iron on irr expression is primarily post-translational; Irr is a conditionally stable
protein that degrades in cells exposed to iron (Qi et al., 1999). B. japonicum Irr contains a

Small et al. Page 2

Biometals. Author manuscript; available in PMC 2009 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



heme-regulatory motif (HRM) near the N-terminus that binds heme and is necessary for rapid
degradation. Accordingly, Irr is stabilized in a heme-deficient background or by mutagenesis
of cysteine-29 within the HRM.

Heme-mediated degradation is also found in other systems
Since the discovery of heme-dependent degradation of Irr, numerous other eukaryotic proteins
have been identified that degrade in response to heme by binding to HRM motifs (Jeong et al.,
2004; Ishikawa et al., 2005; Zenke-Kawasaki et al., 2007; Hu et al., 2008; Yang et al., 2008)
(Table 1). The human iron regulatory protein 2 (IRP2) likely has a similar function as Irr in
that the heme to which it responds reflects iron levels (Jeong et al., 2004; Ishikawa et al.,
2005). Bach1 represses the transcription of genes encoding heme oxygenase, which uses heme
as a substrate, and globins, which use heme as a prosthetic group. Thus, degradation in response
to heme (Zenke-Kawasaki et al., 2007) coordinates heme availability with proteins that use it.
The circadian clock in mammals is coordinated with heme biosynthesis such that the gene
encoding the heme biosynthesis enzyme δ-aminolevulinic acid synthase is transcriptionally
controlled (Zheng et al., 2001; Kaasik and Lee, 2004). Several regulators of the circadian clock
have been identified and shown to bind heme (Dioum et al., 2002; Raghuram et al., 2007; Yin
et al., 2007; Yang et al., 2008). One of them, Per2, contains an HRM that binds heme to affect
its stability (Yang et al., 2008). Arginyl transferase catalyzes the addition of arginine to the N-
terminal end of target proteins, which results in their degradation due to the N-end rule (Hu et
al., 2008). Heme binds to arginyl transferase to inactivate it and to trigger its degradation by
the proteasome. Interestingly, the ubiquitin ligase that tags proteins for degradation by covalent
attachment of ubiquitin is also inhibited by heme (Hu et al., 2008), hence heme stabilizes
proteins susceptible to arginylation by two separate mechanisms.

Regulated degradation of B. japonicum Irr requires both redox states of heme
B. japonicum Irr fused to glutathione S transferase (GST) confers iron-dependent instability
on GST, but a GST fusion containing only the N-terminal 36 amino acids of Irr, which includes
the HRM, is stable (Yang et al., 2005). This means that the HRM is necessary but not sufficient
for rapid degradation of Irr. In vitro and in vivo studies identified an instability domain that
includes three consecutive histidines at positions 117–119, with His-117 and His-119 being
invariant residues in Irr proteins. This domain is part of a heme-binding region distinct from
the HRM. Whereas the HRM binds specifically to ferric (Fe3+) heme, the histidine-rich domain
binds ferrous (Fe2+) heme (Yang et al., 2005). An Irr mutant in which the three histidines are
replaced by alanines is stable in vivo under iron replete conditons (Yang et al., 2005). Irr decay
follows first order kinetics (Qi et al., 1999), indicating a single mechanism for degradation.
Hence the two hemes likely participate in a single degradation process rather than independent
processes that occur at different rates. These findings implicate a role for the redox activity of
heme in Irr degradation, and further evidence suggests that this activity leads to protein
oxidation (Yang et al., 2006a). B. japonicum Irr degrades in response to cellular oxidative stress
by a mechanism that involves heme and iron (Yang et al., 2006a). Furthermore, Irr degradation
is strictly O2-dependent in vivo (Yang et al., 2006a). Irr oxidation was demonstrated in vitro,
requiring heme, O2 and a reductant. An Irr truncation that does not bind ferrous heme in
vitro does not degrade in vivo. Thus, it was proposed that reactive oxygen species participate
in Irr degradation not only as part of an oxidative stress response (see below), but also in normal
degradation in response to iron. Protein oxidation can result in hydrolysis of peptide bonds
(Berlett and Stadtman, 1997) and thus, in principle, oxidation of Irr could be sufficient for
degradation. However, in vivo degradation of Irr is rapid whereas carbonylation in vitro is slow.
It is probable that oxidized Irr is recognized by cellular proteases as a damaged protein that is
subsequently degraded. A candidate protease has not been described thus far. Degradation of
both IRP2 and Bach1 require the ubiquitin ligase HOIL-1, which interacts with the heme-bound
form of the respective protein (Ishikawa et al., 2005; Zenke-Kawasaki et al., 2007). The
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ubiquitin-tagged protein is then degraded. Arginyl transferase is tagged by N-end rule ubiquitin
ligases in yeast and mouse for heme-dependent degradation (Hu et al., 2008).

Redox-dependent ligand switching, although not associated with protein degradation, occurs
with the transcriptional regulator CooA from Rhodospirillum rubrum (Roberts et al., 2004)
and the redox sensor EcDos from E. coli (Kurokawa et al., 2004). IRP2 binds ferric heme at
the HRM and ferrous heme at a conserved histidine residue (Jeong et al., 2004; Ishikawa et al.,
2005), and protein oxidation is heme-dependent (Yamanaka et al., 2003). Thus, there are
similarities between IRP2 and Irr.

Examination of the Irr homologs reveals that only homologs within the Bradyrhizobiaceae
have the Cys-Pro sequence and an HRM-like domain, whereas His-117 and His-119 of B.
japonicum Irr are completely conserved in all of the homologs. This raises the question of
whether Irr degradation as described for B. japonicum occurs in other related bacteria. A B.
japonicum Irr derivative lacking an HRM degrades, but the rate is much slower than is found
for the wild type protein (Yang et al., 2005). In addition, B. japonicum has a lower affinity
ferric heme binding site (Qi and O’Brian, 2002) that could possibly serve a similar function as
the HRM, albeit less efficiently. By analogy, Irr homologs lacking an HRM may have a
compensatory mechanism that allows turnover.

Oxidative stress promotes degradation of the Irr protein
Bacteria have multiple defense strategies against oxidative stress, including the direct
detoxification of ROS by catalase, peroxidases and superoxide dismutase. Oxidative stress
responses require the activation of regulatory proteins and the induction of genes under their
control. In many bacteria, the transcriptional regulator OxyR (Christman et al., 1989; Tao et
al., 1989) senses hydrogen peroxide (Zheng et al., 1998) and induces numerous genes whose
products are involved in peroxide defense (Tartaglia et al., 1989; Altuvia et al., 1994), redox
balance (Prieto-Alamo et al., 2000; Ritz et al., 2000) and other factors (Altuvia et al., 1997;
Zheng et al., 1999). In Bacillus subtilis, PerR is the major peroxide regulator and represses a
large PerR regulon (Herbig and Helmann, 2001). The OhrR family of antioxidant regulators
is responsible for organic hydroperoxide resistance (Mongkolsuk et al., 1998). B. japonicum
contains an OxyR homolog, but it may function differently in that organism than in other
systems (Panek and O’Brian, 2004). Evidence points to Irr as an oxidiative stress response
regulator. Irr degrades in response to H2O2 produced endogenously in a catalase-deficient
(katG) strain, or to H2O2 applied exogenously to culture media (Yang et al., 2006a). A Brucella
abortus irr mutant displays elevated catalase activity, and resistance to killing by H2O2
(Martinez et al., 2006). The Irr deficiency causes derepression of hemB in B. japonicum and
elevated heme in B. abortus. Catalases and peroxidases are heme proteins that detoxify
H2O2 and peroxides, respectively, and elevated hemB may contribute to the synthesis of those
enzymes. Other examples of elevated expression of heme biosynthesis genes are noted. The
Bacillus subtilis PerR protein mediates the induction of the hemAXCDBL operon encoding
enzymes for the early steps of heme synthesis (Chen et al., 1995; Mongkolsuk and Helmann,
2002). In E. coli and Salmonella, the hemH geneencoding the heme biosynthetic enzyme
ferrochelatase is induced in response to H2O2 in an OxyR-dependent manner (Zheng et al.,
2001; Elgrably-Weiss et al., 2002). However, it has not been established in B. japonicum or
any other bacterium that synthesis of catalase or peroxidase substantially increases the overall
heme demand in the cell, and thus the physiological relevance of elevated heme synthesis genes
is uncertain.

Irr responds to heme at the site of heme synthesis, not to free heme
A fundamental problem with heme as a signaling molecule is that it is reactive and lipophilic.
Heme can catalyze the formation of reactive oxygen species, and binds non-specifically to
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lipids, proteins and other macromolecules. Thus, a regulatory free heme pool is unlikely. The
discovery of new and novel roles for heme as a regulatory molecule in eukaryotes and
prokaryotes begs for reconciliation between these functions and the cytotoxicity of heme. This
problem has been partially resolved for the Irr protein from B. japonicum. Ferrochelatase
catalyzes the insertion of iron into protoporphyrin to form heme in the final step of the heme
biosynthetic pathway. Irr interacts directly with ferrochelatase and responds to iron via the
status of heme and protoporphyrin localized at the site of heme synthesis (Qi and O’Brian,
2002). Competition of the wild type ferrochelatase with a catalytically inactive one inhibits
iron-dependent degradation of Irr even though the cell is not heme-defective. This means that
Irr does not respond to a free heme pool, but rather to heme locally where it is synthesized.
The dissociation binding constant (Kd) of heme for Irr is about 1 nM, which is less than one
free heme molecule per cell. Irr may represent the simplest type of of heme signaling
mechanism because there is no obvious need for a factor to chaperone heme from the site of
synthesis to its target.

The interaction of Irr with ferrochelatase is affected by the immediate heme precursor
protoporphyrin. The porphyrin-bound enzyme does not bind to Irr, which is the state of
ferrochelatase when iron is limiting, and allows Irr to be active and affect the genes under its
control. Thus, Irr is affected by heme and by its substrates so that heme synthesis does not
exceed iron availability. In the presence of iron, ferrochelatase inactivates Irr, followed by Irr
degradation to derepress the pathway. Irr is present but inactive in cells that express a
catalytically inactive ferrochelatase, but active in a hemH deletion strain (Qi and O’Brian,
2002). It is possible that inactivation of Irr allows loss of function that is faster than its
degradation. Indeed, the hemB mRNA is elevated by iron more rapidly than Irr degrades
(Chauhan et al., 1997; Qi et al., 1999).

Irr is a global regulator of iron homeostasis
Although Irr was initially described in the context of heme biosynthesis, it is now clear that Irr
is a global regulator of iron homeostasis and metabolism (Rudolph et al., 2006; Todd et al.,
2006; Yang et al., 2006b). Irr was initially discovered as a positive effector of ferric iron
transport as well as a negative regulator of heme biosynthesis (Hamza et al., 1998), and similar
roles have been described for Brucella abortus Irr (Martinez et al., 2005, 2006). Microarray
analysis of a B. japonicum irr mutant shows that Irr affects the expression of many iron-
regulated genes in a positive and negative manner. In addition, several iron-regulated genes in
R. leguminosarum are derepressed in an irr strain (Todd et al., 2006). However, iron transport
is controlled by RirA in R. leguminosarum and S. meliloti, and thus the extent of the Irr regulon
may be more limited in those species. A cis-acting DNA element called an iron control element
(ICE) was found in the promoters of the divergently transcribed genes hmuR and hmuT from
B. japonicum, and shown to be necessary for activation of those genes under iron limitation
(Nienaber et al., 2001). This element was found to bind Irr in a yeast one hybrid screen (Rudolph
et al., 2006), and hmuR and hmuT promoter activity is attenuated in an irr mutant (Nienaber
et al., 2001). Furthermore, bioinformatic analyses identified ICE-like motifs upstream of many
open reading frames in B. japonicum and other α-Proteobacteria (Rodionov et al., 2006;
Rudolph et al., 2006). Evidence for control by Irr in the absence of an ICE motif was described
in Brucella abortus (Martinez et al., 2006) and Bartonella quintana (Battisti et al., 2007).

Although Irr activity has been characterized extensively in the context of its negative control
of hemB, that gene does not contain an ICE motif, and direct control by Irr remains unknown.
However, in vitro Irr binds to ICE motifs in the promoters of blr7895 and the bacterioferritin
gene bll6680, genes that are downregulated under iron limitation (Rudolph et al., 2006),
consistent with a repressor role for Irr. Moreover, blr7895 and bll6680 are derepressed in an
irr mutant, and Irr occupies the promoters of those genes in vivo (Sangwan et al., 2008). In
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addition, Irr represses transcription from the blr7895 promoter in vitro (Sangwan et al.,
2008). Thus, Irr is a transcriptional repressor. Irr activity requires the presence of divalent metal
in vitro for high affinity DNA binding, although the role of the metal is unknown (Sangwan
et al., 2008).

Iron homeostasis is controlled by the status of heme via Irr
Irr interacts directly with the heme biosynthesis enzyme ferrochelatase, resulting in degradation
under iron replete conditions, or accumulation of active protein under iron limitation (Qi and
O’Brian, 2002). Thus, the discovery that Irr is a global regulator of iron-regulated genes
indicates that iron homeostasis is controlled by the status of heme. Indeed, a heme-deficient
strain of B. japonicum cannot maintain normal iron homeostasis. Control of Irr-regulated genes
is aberrant in a heme-defective B. japonicum mutant, resulting in iron replete cells behaving
as if they are iron-limited (Yang et al., 2006b). The heme mutant has an abnormally high cellular
iron content, probably because iron transport genes are constitutively activated due to
persistence of Irr in that strain. Accordingly, under iron limitation an irr mutant behaves as if
it were iron replete even though cellular iron levels are lower than that found in the wild type
(Yang et al., 2006b).

Most bacteria studied to date sense and respond to iron directly to regulate gene expression.
That is, iron binds directly to a regulatory protein to modulate its activity. Iron binding to Fur
confers DNA-binding activity on the protein, as also occurs for the DtxR regulator from
Corynebacterium diphtheriae and the IdeR protein from Mycobacterium tuberculosis (Escolar
et al., 1999; Pohl et al., 1999, 1999). However, B. japonicum, and perhaps other Alpha-
proteobacteria, do not sense iron directly, but rather sense and respond to an iron-dependent
process, namely the biosynthesis of heme. Is there an advantage to this type of control?
Approximately one-half of the total iron in iron-limited B. japonicum cells is found in heme
(unpublished observations). Since heme biosynthesis places such a high energy demand on the
cell, this synthesis may serve as a sensitive indicator of the overall iron status. Also, many iron-
dependent processes such as electron transport, tricarboxylic acid cycle and detoxification are
associated with aerobic metabolism, which also requires heme. Therefore, it may allow a better
coordination of cellular events.

Taxonomic distribution of Irr
Irr is prevalent in the Alpha subdivision of the proteobacterial phylum. Amongst the sequenced
genomes, it is ubiquitious in the order Rhizobiales and Rhodobacteriales, and found in some
Rhodospirilles as well (reviewed in (Rodionov and Gelfand, 2006). It is also present in the
marine bacterium Pelagibacter ubique, which is in the order Rickettsiales, but is not present
in its obligate intracellular relatives Rickettsia, Wolbachia or Ehrlichia. Interestingly, an Irr
homolog is also found in Acidothiobacillus ferrooxidans, a Gamma-Proteobacterium that lives
in acidic environments and is exposed to iron predominantly in the ferrous form. Microarray
analysis shows that the vast majority of B. japonicum genes that are strongly regulated by iron
are under the control of Irr. Thus, Irr is the major iron regulator in that bacterium and probably
in other Bradyrhizobiaceae, with Fur having a much less prominent role. However, many
rhizobia contain RirA in addition to Irr (Todd et al., 2002; Yeoman et al., 2004; Chao et al.,
2005; Todd et al., 2005; Viguier et al., 2005). Numerous cellular systems controlled by Irr in
B. japonicum are regulated by RirA in S. meliloti and R. leguminosarum (Todd et al., 2002;
Chao et al., 2005; Viguier et al., 2005). Notably, heme and ferric iron transport genes are
controlled by RirA in those two species, but by Irr in B. japonicum. These systems are
negatively controlled by RirA in the presence of iron in species, whereas Irr appears to
positively control them under low iron conditions. Brucella abortus contains both Irr and RirA,
but siderophore genes in that organism are controlled by Irr (Martinez et al., 2006), therefore
it may not be possible to assume a priori the role of RirA in organisms that contain it.
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Nevertheless, Irr and RirA appear to usurp the role of Fur to varying degrees in organisms that
contain these novel regulators.
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FIGURE 1. Regulation of Irr activity and degradation at the site of heme synthesis
FC denotes ferrochelatase. The light porphyrin represents protoporphyrin and the dark
porphyrin with the inserted iron molecule is heme (protoheme). Irr responds to heme at the site
of heme synthesis rather than responding to a free heme pool. Irr inactivation precedes its
degradation.
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TABLE 1
PROTEINS DEGRADED IN RESPONSE TO HRM BINDING BY HEME

Protein Cellular Process Reference

Irr Global iron homeostasis Qi et al., 1999

IRP2 Global iron homeostasis Ishikawi et al. 2005

Bach1 Globin and heme oxygenase regulation Zenke-Kawasaki, 2007

Arginyl transferase N-end rule protein degradation Hu et al., 2008

Per2 Circadian clock Yang et al., 2008
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