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Abstract

The copper-catalyzed insertions of nitriles into the Si–C bonds of silacyclopropenes provide
azasilacyclopentadienes, which can be converted to allylic amines after reduction and
protodesilylation. The enamine functionality of azasilacyclopentadienes also participates in 1,4-
addition reactions and undergoes a hydroboration and oxidation sequence to form an allylic 1,2-
amino alcohol.

Allylic amines are useful intermediates in organic synthesis, and a number of methods have
been developed for preparing these compounds.1 Because the insertion of carbonyl compounds
into silacyclopropenes provides a method for the synthesis of allylic alcohols,2 we considered
that reactions of silacyclopropenes with C–N multiple bonds could lead to a synthesis of allylic
amines. Although the photochemical reactions of nitriles with a silacyclopropene have been
reported,3,4 the insertion products underwent further reactions in modest yields, and
applications of these reactions in synthesis were not described.3 In this Letter, we report the
copper-catalyzed insertions of nitriles into the Si–C bonds of silacyclopropenes to form
azasilacyclopentadienes. These compounds can be functionalized by reductions, 1,4-additions,
and hydroborations to form allylic amines and allylic amino alcohols.5

Copper salts proved to be efficient catalysts for the insertion of nitriles into silacyclopropenes.
When a 1:1 mixture of acetonitrile and silacyclopropene 1a in C6D6 was treated with 5 mol %
of Cu(OTf)2, silacyclopropene 1a disappeared over 24 hours, and enamine 2a was formed as
a single regioisomer (Scheme 1). Preference for the 1,2-insertion product, which was confirmed
by a 1H-1H NOESY experiment, is consistent with the regioselectivity of insertions of carbonyl
compounds into silacyclopropenes and silacyclopropanes.2,6 The imine tautomer of 2a was
not observed in the product mixure or at any time during the transformation. A subsequent
catalyst screen for the acetonitrile insertion of silacyclopropene 1a showed that Cu(OTf)2 and
(CuOTf)2·tol were more efficient catalysts than CuBr2 or CuI. When the transformation was
performed on a one mmol scale, (CuOTf)2·tol gave higher yields than Cu(OTf)2 (Table 1, entry
1).

The insertion of a nitrile into a monosubstituted silacyclopropene was general for a number of
nitriles and silacyclopropenes (Table 1). Nitriles with alkyl, aryl, and silyloxy groups (Table
1, entries 1-4) and silacyclopropenes with silyl- and silyloxy substituents (Table 1, entries 5-6)
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were tolerated by the reaction conditions.7 In all cases, the 1,2-insertion product and the Z-
enamine were observed exclusively.8 The imine tautomer of the azasilacyclopentadiene was
only observed for the insertion of isobutyronitrile into the Si–C bond of silacyclopropene 1a
(Scheme 2). The formation of the enamine tautomer in this case may be disfavored because it
would be destablized by interactions between the resulting isopropylidene group and the phenyl
substituent.

The copper-catalyzed insertion of nitriles was also successful for disubstituted
silacyclopropenes (Table 2). These transformations required mild heating but proceeded
smoothly with (CuOTf)2·tol as a catalyst. As with the analogous reactions of monosubstituted
silacyclopropenes, a number of functional groups were tolerated. Consistent with the results
described in Table 1, insertions into disubstituted silacyclopropenes favored the 1,2-
regioisomer and Z-enamine products, although the regioselectivity of these insertions was
lower than for the monosubstituted silacyclopropene reactions. Only a small degredation in
regioselectivity was observed for 1-phenylpropyne-derived silacyclopropene 4a, but a further
decrease in regioselectivity was observed for the silyloxy-substituted silacyclopropene 4c.
These results suggest that steric effects are not the only factor contributing to regioselectivity.

A two-step, one-flask synthesis of azasilacyclopentadienes was developed to avoid the
isolation of air-sensitive silacyclopropenes. With internal alkenes, a single metal salt, Cu
(OTf)2, was employed to catalyze both silylene transfer and insertion, as shown in Scheme
3.9 With terminal alkynes, Ag3PO4 was employed for silylene transfer,2 and, after filtration
of the reaction mixture through glass fiber filter paper, copper salts were added to catalyze the
insertion of the nitrile. 10

Reduction of the enamine moiety of the nitrile insertion products served as the first step of a
synthesis of allylic amines. Although metal-catalyzed hydrogenation reduced both the alkene
and enamine functional groups,10 the enamine functionality could be reduced selectivity by
NaBH4 in the presence of camphorsulfonic acid (CSA).11 After aqueous workup, hydrolysis
of the Si–N bond occurred to form the aminosilanols 6a-e (Table 3). The unpurified products
of these transformations were isolated in high yields and were of sufficient purity (>90% as
estimated by 1H NMR spectroscopy) to use in subsequent transformations. The purification of
these compounds by chromatography, however, was challenging because of their amphiphilic
nature.12 Protection of the amino group of the products was investigated to facilitate
purification of the reduction products, but the success of this approach was substrate-dependent
(Scheme 4).

Once conditions for the reduction of azasilacyclopentadienes had been determined, the
protodesilylation of allylic aminosilanols was investigated. Although protodesilylation under
acidic conditions was not successful, treatment of 6a with KO(t-Bu) and Bu4NF in a mixture
of DMSO and THF (4:1)4,5 provided the desired allylic amine 9a. This procedure was general
for the synthesis of a range of allylic amines and amides (Table 4).

The enamine functionality of the azasilacyclopentadiene provided a handle to functionalize
the nitrile insertion products. 1,4-Additions13 of azasilacyclopentadiene 2a to acrylonitrile
gave a tautomeric mixture of the addition product 10, but additions to methyl acrylate and
crotononitrile were selective for the enamine tautomer (Scheme 5). Hydroboration of
azasilacyclopentadiene 12c followed by oxidation with NaOH and H2O2 provided allylic
amino alcohol 13 as a single stereoisomer.14,15 These transformations showed that
azasilacyclopentadienes can be functionalized at the enamine position to provide highly
substituted allylic amine derivatives.

In summary, a procedure for the synthesis of azasilacyclopentadienes has been developed based
on insertions of nitriles into the Si–C bonds of silacyclopropenes. The synthetic utility of these
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reactions has been demonstrated by conversions of the products to allylic amines and allylic
amino alcohols. The azasilacyclopentadiene insertion products were also shown to undergo
1,4-addition reactions as well as a hydroboration and oxidation procedure to form an allylic
amino alcohol.
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Scheme 1.
Insertion of acetonitrile into the Si–C bond of 1a.
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Scheme 2.
Insertion of isobutyronitrile into 1a.
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Scheme 3.
Two-Step, One-Flask, Single Catalyst Synthesis of Azasilacyclopentadienes
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Scheme 4.
Enamine reduction and amine protection.
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Scheme 5.
1,4-Addition Reactions of 2a.
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Scheme 6.
Hydroboration and Oxidation of 2c.
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Table 1
Insertions of nitriles into monosubstituted silacyclopropenes.

entry R1 R2 product, % yield

1 Ph H 2a, 82

2 Ph Me 2b, 86

3 Ph Ph 2c, 84

4 Ph CH2OTBDMS 2d, 83

5a SiMe3 Ph 2e, 65

6 X Ph 2f, 82

a
Cu(OTf)2 was used as a catalyst. X = CH(Ph)(OSiEt3).
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Table 3
Reduction of azasilacyclopentadienes.

entry R1 R2 R3 product, % yielda

1 H Ph Ph 6a, 90 (59)

2 H Ph Me 6b, 95 (60)

3 Me Ph Ph 6c, 80 (32)

4 Et Et Ph 6d, 82

5 n-Bu OTIPS Ph 6e, 88

a
Isolated yields of unpurified products are reported. Yields after chromatography are shown in parentheses.
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