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Abstract
In modern environmental risk analysis, inferences are often desired on those low dose levels at which
a fixed benchmark risk is achieved. In this paper, we study the use of confidence limits on parameters
from a simple one-stage model of risk historically popular in benchmark analysis with quantal data.
Based on these confidence bounds, we present methods for deriving upper confidence limits on extra
risk and lower bounds on the benchmark dose. The methods are seen to extend automatically to the
case where simultaneous inferences are desired at multiple doses. Monte Carlo evaluations explore
characteristics of the parameter estimates and the confidence limits under this setting.
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1 Introduction: benchmark analysis under a one-stage model
A primary objective in environmental risk analysis is characterization of the severity and
likelihood of damage caused by a hazardous agent (Coherssen and Covello 1989). Towards
this end, experimental studies are often conducted on laboratory animals where exposure levels
of the agent are administered at high doses. Estimation of risk at low doses must be based on
this high-dose data, leading to an extrapolation. Of particular interest are inferences on the risk
at a specific low dose(s) or inferences on the dose(s) at which a certain risk is achieved.

Within this context, we define risk as the probability that a subject exposed to a specified dose,
di (i = 1, . . ., n), of a hazardous agent will develop a particular adverse effect. We assume that
the risk is a monotone increasing function of d, R(d). At each di, the number of subjects
exhibiting an adverse effect, Yi, is recorded. This is commonly referred to as the quantal
response setting. Many formulations are possible when modeling Yi. Using what is perhaps
the most common construction seen in practice, we assume that the Yi s are independent
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binomial variates with parameters Ni and R(di), where Ni is the number of subjects tested at
dose di and R(di) models the unknown probability that a subject will respond adversely.

To specify R(d), there are a variety of models from which to choose. A popular form from
toxicological risk assessment is a two-parameter, “single-stage” version of the well-known
Armitage-Doll multistage model for adverse response (Armitage and Doll 1954):

(1)

where we require βj ≥ 0, j = 0, 1, and, of course, d ≥ 0. In this simple, two-parameter form, the
multistage model is also often characterized as a one-stage model. An alternative form for R
(d) often considered in environmental risk assessment is the Weibull dose-response model
(U.S. EPA 2000; Parham and Portier 2005). Here, the one-stage model is also a special case
of the Abbott-adjusted Weibull form R(d) = θ0+(1-θ0)(1-exp{-β1dβ2}), where at β2 = 1 were
cover (1) with β0 = -ln(1-θ0). Noting this, we focus our attention in this paper on the one-stage
formulation of Eq. 1. Of course, however, many different models are also applied in benchmark
risk assessment, including the multiparameter Weibull and multistage forms mentioned above.
Our goal herein is to focus on the two-parameter model in (1) and illustrate how its simplicity
can lead to useful inferences within the larger benchmark framework. For guidance on risk
estimation and inference under a more-complex multistage form, we refer the reader to the
works of Al-Saidy et al. (2003) and Nitcheva et al. (2005).

In practice, the risk above background is often employed for purposes of assessing and
managing exposure risks. To quantify this, we use the extra risk function, defined as the risk
above the background or control level after correcting for non-response in the unexposed
population: RE (d) = {R(d) - R(0)}/{1 - R(0)}. Clearly, under our one-stage model RE (d) = 1
- exp{-β1d}. Often, interest exists in estimating the extra risk and from this the particular dose
level at which a certain benchmark risk (BMR) is achieved. This level is known as a Benchmark
Dose, or BMD (Crump 1984). To find the BMD, one sets the given value of BMR equal to the
extra risk, and finds the smallest positive solution (if it exists) to this relationship. For purposes
of estimation, we employ maximum likelihood estimators (MLEs) and substitute the MLEs of
any unknown parameters into the expression for BMD; we denote this ML point estimator as
BMˆD.

In passing, we should also note that a simplified formulation of our one-stage structure can be
constructed from a simple Taylor-series expansion of the extra risk function. Known as the
linearized multistage (LMS) model, the construction in effect employs a first-order Taylor
approximation to RE (d) = 1 - exp{-β1d} as d → 0, producing RE (d) ≈ β1d. The BMD is then
approximated as BMD ≈ BMR/β1, from which easy-to-construct point estimators may be
developed. Since the nonlinear structure of the multistage model is not trivial, the simplicity
afforded by this LMS approximation is a critical factor in support of its use. With the advent
of modern, high-speed, computing technologies, however, it is no longer difficult to perform
a model fit and construct pertinent inferences under the model in (1). Indeed, Nitcheva et al.
(2005) found that use of the LMS approximation could produce very unstable inferences in
selected instances, and cautioned against its use. Coupled with other concerns raised previously
over the LMS approach (Lovell and Thomas 1996), these considerations suggest that the
practical need for the LMS approximation is waning. As such, we will not study it in any
formality.

Formal inferences on the extra risk and/or the BMD are available by manipulating the large-
sample properties of the MLE. For instance, an environmental risk assessor would typically
be interested in placing upper bounds on RE (d) at one or more dose levels, or in deriving lower
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confidence bounds on the BMD at specified levels of risk, BMR. In the latter case, a lower
bound on the benchmark dose is known as a Benchmark Dose Lower Limit, or BMDL (Crump
1995). Modern practice employs BMDLs as points of departure in quantitative risk assessment
in order to arrive at acceptable levels of human or ecosystem exposure to the hazardous agent,
or to otherwise establish practical low-exposure guidelines (Gaylor and Kodell 2002). As such,
these quantities serve an important purpose within the larger realm of environmental risk
management. Our focus herein concerns statistical inferences on quantities such as RE or BMD,
in order to more precisely refine these important points of departure for the environmental risk
analyst. We focus on practical ways to construct 1 - α confidence bounds on RE (d) and, as a
consequence, to find BMDLs. Section 2 gives more formal details on estimation and inferences
for RE under the two-parameter model in (1), while Sect. 3 addresses the computation of BMDs/
BMDLs. Section 4 presents results from a short Monte Carlo simulation study on the small-
sample features of the parameter estimates and the proposed confidence bounds.

2 Risk estimation
Under our one-stage model the MLEs, b = [b0 b1]T, of the unknown parameters, β = [β0
β1]T, are found by constrained optimization. The operations can be programmed in the software
package R (R Development Core Team 2005) using its optim function, in SAS (SAS Institute
Inc. 2000) via PROC NLMIXED, or using the U.S. EPA’s Benchmark Dose Software (U.S.
EPA 2001) (also see Falk Filipsson and Victorin 2003). Convergence is usually attained in
5-15 iterations. With these, the MLE of the extra risk is simply RˆE (d) = 1 - exp{-b1d}.

When studying the extra risk function, only the detrimental extent of an adverse outcome is
typically of subject-matter concern; this translates to interest in only upper confidence limits.
Under the model in (1), we see that the extra risk is a monotone increasing function of β1 so
that bounding RE (d) simplifies to bounding β1. Suppose a valid 100(1 - α)% upper limit on
β1, say bu, satisfies P[β1 ≤ bu] ≈ 1 - α. Equivalently, since we assume d ≥ 0, P[β1d ≤ bud, ∀d
≥ 0] ≈ 1 - α. An approximate 100(1 - α)% upper bound on RE (d) is then

(2)

In fact, since the operation leading to this upper bound is valid ∀d ≥ 0, (2) represents a
simultaneous 100(1 - α)% upper confidence band on RE (d).

Here, we study five methods for obtaining the upper limit, bu, in (2). The first is a simple Wald-
type upper bound based on appeal to the large sample normality of the MLE. In particular,
Guess and Crump (1976) showed that b has an asymptotic normal distribution for our model
when βj > 0, for all j and with at least n > 2 dose levels. Thus, we can construct an asymptotic
1 - α upper confidence bound on β1 as the Wald limit

(3)

where b1 is the MLE of β1, se(b1) is its large-sample standard error, and zα is an upper-α critical
point from the standard normal distribution. For use in (2), simply substitute (3) for bu to build
Wald-type confidence bounds (and bands) on RE (d). This is essentially the approach suggested
by Krewski and Van Ryzin (1981),Crump et al. (1977), and Crump and Howe (1985) for
building confidence limits on functions such as RE (d) with the multistage model.

As part of a larger exposition on simultaneous confidence bands in multistage modeling, Al-
Saidy et al. (2003) studied use of (3) for building confidence bounds on RE (d). They found
that for large samples the method operated in a nominal fashion, but at smaller sample sizes
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(such as N = 25 or sometimes N = 50) the coverage characteristics were somewhat variable,
sometimes moving above nominal coverage levels and sometimes dropping below them. We
will follow up on Al-Saidy et al.’s study in Sect. 4, below.

Our second method for finding an upper confidence limit on β1 appeals to the asymptotic
features of the likelihood ratio (LR) test. For model (1) and under a set of regularity conditions
that can be shown to hold in most cases when this model is employed, the LR will possess
large-sample χ2 characteristics (Krewski and van Ryzin 1981) so that by inverting the LR test,
one can derive approximate confidence bounds on the model parameters (Crump and Howe
1985;Bailer and Smith 1994). For our problem, we obtain the upper bound

 over the set . Here,  such that  is
the maximum likelihood estimator of β0 for some fixed value, , of β1 and L is the binomial
likelihood function under model (1). For use in (2), simply substitute buLR for bu to build LR
confidence bounds (and bands) on RE (d).

Notice that the LR test is by nature two-sided; to obtain a one-sided upper bound, we apply an
adjustment by doubling the significance level of the test and then ignoring the lower limit.
Although admittedly ad hoc, this adjustment has been seen to exhibit reasonable operating
characteristics for the sorts of risk-analytic calculations we study here (Crump and Howe
1985; Nitcheva et al. 2005). We will investigate the coverage characteristics of buLR as part of
our Monte Carlo study in Sect. 4.

Our remaining methods for finding an upper confidence limit on β1 employ bootstrap-based
approaches, in the spirit of Crump and Howe (1985) and Bailer and Smith (1994). These authors
noted that the small-sample stability of likelihood-based confidence limits could be in question.
Bootstrap resampling provides a natural alternative for building confidence limits on pertinent
model parameters such as β1; the resampling process uses the observed data to generate pseudo-
replicates of the experiment, from which pseudo-confidence limits may be derived based on
percentiles of the bootstrap distribution (Dixon 2002).

We considered three bootstrap approaches, one fully parametric, the second fully non-
parametric, and the third a mixture of the previous two. For the parametric bootstrap, the
approach is straightforward: generate B independent pseudo-random samples from a binomial
population with parameters Ni and Rˆ(di), where Rˆ(di) is the ML-estimated risk function from
the observed data set. For each jth bootstrap data set, compute a new MLE for β1, denoted as

. This produces B bootstrap estimates . The 100(1 - α)% upper confidence
limit, buPB, is then taken as the 100(1 - α)th percentile of the B s. (We will investigate the
coverage characteristics of buPB as part of our Monte Carlo study in Sect. 4.)

For the non-parametric and semi-parametric bootstraps, we start instead with the sample

proportions, Yi / Ni. Let  for j = 1, . . ., B denote a sequence of B independent
bootstrap resamples taken with replacement from the observed data. Note that each  is a
binomial pseudo-random variable with sample size parameter Ni and success probability Yi /
Ni. The fully non-parametric bootstrap then computes the maximum likelihood estimate of
β1 from each bootstrapped resample.

Now, note that if none or all of the responses at a particular dose level are adverse, i.e., if Yi =
0 or Yi = Ni, the observed proportions are exactly zero or one, respectively. In either case, there
will be no variability in the non-parametric bootstrap resamples at this dose value. Bailer and
Smith (1994) noted a similar concern with the non-parametric approach, and suggested that
some correction was necessary to give the bootstrap results greater practical stability. Our
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solution to this problem takes on a semi-parametric flavor: we operate in general under a non-
parametric strategy, but in the special cases where Yi = 0 or Yi = Ni we replace the sample
proportion of adverse responses with the estimated risk Rˆ(di) from the model at that di. In
either case (non-parametric or semi-parametric) we generate B independent bootstrap
resamples and again obtain B bootstrap ML estimates of the unknown parameter β1. The 100
(1 - α)% upper confidence limit, buNB or buSB, respectively, is then defined as the 100(1 -α)th
percentile of these B statistics. As with the other methods we discuss above, we will study the
operating characteristics of all the bootstrap upper bounds in Sect. 4, next.

In passing, it is important to note that none of our bootstrap strategies can guarantee a non-
degenerate bootstrap sample when d = 0. For instance, under the parametric approach if the
MLE of β0 is 0, then a degenerate sample will always occur at d = 0. Likewise under the semi-
parametric approach, if the MLE of β0 is 0 and there are no adverse responses at d = 0, then a
degenerate sample will always occur at d = 0.

3 Benchmark dose estimation
As introduced above, under the model in (1) the benchmark dose is the value of d that solves
RE (d) = 1 - exp{-β1d} = BMR at a given benchmark risk, BMR∈(0,1). To help clarify at which
specific BMR this is determined, we use the notation BMD100BMR, BMˆD100BMR,
BMDL100BMR, etc. Clearly, solving 1 - exp{-β1d} = BMR for d gives

(4)

The MLE, BMˆD100BMR, is found by substituting b1 for β1 in the denominator of (4) and
appealing to the ML invariance property (Casella and Berger 2002, Sect. 7.2).

To compute a BMDL, one simply mimics the BMˆD construction and inverts the upper
confidence band on RE (d). That is, given the relationship RE (d) ≤ 1 - exp{-bud}, where bu
satisfies P[β1 ≤ bu] ≈ 1 - α, set BMR=1 - exp{-bud and solve for d. The result is

(5)

Any valid 1 - α upper limit bu may be employed in (5), including the likelihood-based bounds
buW or buLR, or the three bootstrap-based bounds from Sect. 2; see, e.g., Sand et al. (2002) for
(pointwise) illustrations with the LR-based approach.

Notice that the operation leading to this BMDL is a one-to-one inversion of the upper
simultaneous confidence band represented in (2). Hence, as in Sect. 2, (5) can be viewed as a
simultaneous 100(1 - α)% lower confidence band on the BMD which varies as a function of
BMR∈ (0,1). From this, various multiplicity-adjusted inferences may be derived (Al-Saidy et
al. 2003).

4 Small sample performance
All of the methods described in Sects. 2-3 for finding upper limits on RE (d) or BMDLs are
based on either asymptotic or bootstrap approximations. Hence in large samples we expect the
simultaneous limits to contain the true value of RE (d) or the true BMD approximately 100(1
- α)% of the time. In small samples, however, their coverage characteristics may be less certain.
To evaluate this, we undertook a Monte Carlo study of the small-sample simultaneous coverage
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associated with each of the methods over a variety of one-stage quantal response models.
Specifications for β in each model were taken from parameterizations used in previous studies
of low-dose risk estimation described by Bailer and Smith (1994), Kodell and Park (1995),
and Al-Saidy et al. (2003). The five parameterizations considered are given in Table 1.

As we have noted throughout, only β1 appears in the expression for RE and BMD and so the
inferences under our two-parameter model will depend solely on the coverage quality of the
confidence limit for β1; i.e., the coverage for the simultaneous upper bound on RE based on (2)
and for the simultaneous BMDL based on (5) will be identical to that for the pointwise limit
on β1 and, in the latter case, will be independent of BMR. As such we display our results on
empirical coverage only as a function of N. [In effect, while motivated from a risk-analytic
perspective, our simulations study the small-sample quality of these various confidence limits
for making inferences on β1 under the choice of (1) to describe the “link function” in a binomial
regression.]

We report results at α = 0.05. Four dose levels, d = 0, 0.25, 0.5, 1, with equal numbers of
subjects, Ni = N, per dose-group were used in the simulations, corresponding to a common
design in cancer risk experimentation (Portier 1994). We selected values of N that ranged
between 25 and 500. For each model configuration, 2,000 pseudo-binomial data sets were
simulated, and the empirical simultaneous coverage of each method was computed. Notice
then that the approximate standard error of the estimated coverage near α = 0.05 is

, and it never exceeds .

In order to gain a stronger understanding of the various procedures’ operating characteristics,
we also calculated the average separation the one-sided limits exhibited relative to the true
values they were intended to bound: Separation = |Bound - True Value|. This measure was also
employed by Nitcheva et al. (2005) in their Monte Carlo study of large-sample BMDLs for a
more complex multistage risk model. We use the separation measure to represent a form of
‘width’ for the one-sided bounds when bounding extra risk: large positive differences suggest
poor performance in that the bound is typically far from the true quantity of interest. Large
negative differences are similar, except of course that any negative difference also corresponds
to a coverage failure. (Viewed in terms of bounding BMD, the reverse is true.) In either case,
however, values close to zero may be useful for regulatory purposes, since they indicate that
the bound is close to the regulatory parameter being studied. Thus this separation measures
summary performance: given two or more methods with similar coverage characteristics, those
with smaller separations would be preferred for practical use. For each procedure, we also
computed these separations in our simulations. For summary purposes, we report the median
separation over each set of 2,000 simulated samples.

Results of our Monte Carlo calculations appear in Table 2. The empirical coverage rates
displayed under each sample size in the table were computed by determining the number of
times out of the 2,000 simulations that the upper confidence limit on β1 was above the true
value of β1. In most cases, the coverage probabilities across methods are close to the nominal
95% level, at least within Monte Carlo sampling error. Indeed, Al-Saidy et al. (2003) obtained
similar coverage probabilities when studying (only) the Wald approach with these five models.
The most notable difference we observe relative to their results occurs in Model 3: we find
coverage probabilities much closer to nominal than those reported by Al-Saidy et al. One
possible explanation for this anomaly is that we have refined slightly the ML fitting algorithm
that those authors used. Like Al-Saidy et al. we used the R system with its optim function for
the constrained optimization, but for our initial estimates, we shrunk the observed proportions
towards 1/2 by adding +2 to each Yi and +4 to each Ni. This mimics a shrinkage estimator
employed by Agresti and Coull (1998) for building confidence intervals on binomial
parameters, and appears to stabilize extreme observations used in initializing the constrained
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optimization. Model 3 tends to generate very small observed proportions, and the shrinkage
may have some effect in these cases. (For other models that generate data not as extreme, the
initial shrinkage does not appear to make a substantial difference.)

From Table 2, we also observe that the bootstrap approaches appear to exhibit slight instabilities
in empirical coverage at small sample sizes with Models 1 and 3. These models are problematic
in that their true β1 is close to zero, which tends to generate many instances of Yi = 0 across
multiple doses. This response pattern is difficult to fit (under any method!) and apparently
causes the bootstrap methods’ coverages to drive too far above (Model 1) or below (Model 3)
the nominal level. As we suggested above, and as Bailer and Smith (1994) also noted, bootstrap
methods appear difficult to put into practice when many cases of Yi = 0 are encountered in the
data. For the remaining models, however, the bootstrap methods produced somewhat less
conservative results.

Overall, Table 2 suggests that all our methods operate reasonably at large sample sizes,
substantiating the asymptotic arguments underlying their use. In practice, however, sample
sizes near Ni = 25 or Ni = 50 are more common, and in this case the LR method appears to
operate with the greatest level of stability, at least among the five models we considered. Its
measure of separation is much larger than that for the Wald method, however, and so with
larger sample sizes we can recommend the latter for use along with the LR approach.
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Table 1

Two-parameter one-stage models for the simulation study in Sect. 4 (Al-Saidy et al. 2003)

Model β0 β1 R(0) R(1)

1 0.05129 0.11123 0.05 0.15

2 0.05130 0.91630 0.05 0.62

3 0.01005 0.07333 0.01 0.08

4 0.10536 0.25131 0.10 0.30

5 0.35667 1.94592 0.30 0.90

Environ Ecol Stat. Author manuscript; available in PMC 2010 March 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Buckley et al. Page 11

Ta
bl

e 
2

Em
pi

ric
al

 c
ov

er
ag

e 
ra

te
s a

nd
 m

ed
ia

n 
se

pa
ra

tio
ns

 fo
r c

on
fid

en
ce

 in
te

rv
al

s o
n 
β 1

 u
nd

er
 th

e 
m

ul
tis

ta
ge

 m
od

el
 R

(d
) =

 1
 - 

ex
p{

-β
0 -

 β
1d

} 
(r

at
es

 b
as

ed
 o

n 
2,

00
0

si
m

ul
at

ed
 d

at
a 

se
ts

, n
om

in
al

 α
 =

 0
.0

5)

M
od

el
M

et
ho

da
C

ov
er

ag
e

M
ed

ia
n 

se
pa

ra
tio

n

N
 =

 2
5

N
 =

 5
0

N
 =

 1
00

N
 =

 3
00

N
 =

 5
00

N
 =

 2
5

N
 =

 5
0

N
 =

 1
00

N
 =

 3
00

N
 =

 5
00

1
W

al
d

0.
97

85
0.

93
45

0.
93

60
0.

94
15

0.
96

05
0.

07
89

0.
05

81
0.

04
25

0.
02

41
0.

01
80

LR
0.

94
60

0.
94

10
0.

94
70

0.
94

50
0.

96
15

0.
15

43
0.

10
94

0.
07

66
0.

04
35

0.
03

31

P 
B

oo
t

0.
98

75
0.

94
90

0.
94

25
0.

94
45

0.
95

95
0.

15
61

0.
10

91
0.

07
71

0.
04

33
0.

03
31

N
 B

oo
t

0.
93

25
0.

94
05

0.
94

35
0.

94
65

0.
96

10
0.

14
72

0.
10

90
0.

07
66

0.
04

34
0.

03
31

SP
 B

oo
t

0.
98

65
0.

95
40

0.
94

45
0.

94
50

0.
96

10
0.

15
18

0.
10

83
0.

07
67

0.
04

31
0.

03
30

2
W

al
d

0.
93

85
0.

93
95

0.
95

40
0.

94
90

0.
95

25
0.

21
88

0.
14

04
0.

08
98

0.
05

66
0.

04
38

LR
0.

94
60

0.
94

50
0.

96
20

0.
95

40
0.

95
40

0.
36

13
0.

24
41

0.
16

89
0.

09
90

0.
07

86

P 
B

oo
t

0.
94

85
0.

94
90

0.
96

15
0.

95
35

0.
95

60
0.

37
16

0.
24

91
0.

17
05

0.
10

02
0.

07
85

N
 B

oo
t

0.
94

30
0.

94
65

0.
96

40
0.

95
35

0.
95

50
0.

36
46

0.
25

07
0.

16
84

0.
09

95
0.

07
85

SP
 B

oo
t

0.
94

65
0.

95
05

0.
95

95
0.

95
20

0.
95

50
0.

36
95

0.
24

99
0.

17
10

0.
09

95
0.

07
85

3
W

al
d

0.
95

60
0.

93
10

0.
94

40
0.

94
25

0.
95

25
0.

06
25

0.
04

32
0.

03
00

0.
01

46
0.

01
11

LR
0.

95
90

0.
94

05
0.

95
10

0.
94

70
0.

95
80

0.
08

77
0.

06
79

0.
04

93
0.

02
64

0.
02

04

P 
B

oo
t

0.
90

20
0.

91
55

0.
94

70
0.

94
40

0.
95

15
0.

07
23

0.
05

91
0.

04
63

0.
02

58
0.

02
03

N
 B

oo
t

0.
87

20
0.

90
60

0.
94

90
0.

95
00

0.
95

85
0.

07
42

0.
05

85
0.

04
61

0.
02

58
0.

02
02

SP
 B

oo
t

0.
90

25
0.

91
15

0.
94

75
0.

94
40

0.
95

60
0.

07
23

0.
05

91
0.

04
63

0.
02

58
0.

02
00

4
W

al
d

0.
93

60
0.

94
50

0.
94

40
0.

94
35

0.
94

55
0.

13
11

0.
08

99
0.

06
47

0.
03

66
0.

02
84

LR
0.

94
90

0.
95

35
0.

94
60

0.
94

80
0.

94
90

0.
23

43
0.

16
49

0.
11

43
0.

06
52

0.
05

10

P 
B

oo
t

0.
94

90
0.

95
05

0.
94

75
0.

94
30

0.
94

65
0.

23
97

0.
16

42
0.

11
60

0.
06

50
0.

05
09

N
 B

oo
t

0.
95

05
0.

95
25

0.
94

75
0.

94
55

0.
94

90
0.

23
75

0.
16

71
0.

11
50

0.
06

51
0.

51
05

SP
 B

oo
t

0.
94

90
0.

95
05

0.
94

95
0.

94
45

0.
94

95
0.

23
97

0.
16

42
0.

11
59

0.
06

51
0.

05
09

5
W

al
d

0.
94

45
0.

94
55

0.
94

80
0.

94
15

0.
94

85
0.

44
65

0.
30

82
0.

21
14

0.
12

36
0.

09
58

LR
0.

94
95

0.
94

90
0.

95
45

0.
94

45
0.

95
00

0.
83

09
0.

57
00

0.
39

36
0.

22
29

0.
17

27

P 
B

oo
t

0.
96

25
0.

95
60

0.
96

00
0.

94
95

0.
95

40
0.

92
28

0.
60

50
0.

41
04

0.
22

94
0.

17
69

N
 B

oo
t

0.
96

15
0.

96
00

0.
96

15
0.

94
95

0.
95

35
0.

90
12

0.
60

20
0.

41
37

0.
22

87
0.

17
69

SP
 B

oo
t

0.
96

00
0.

95
75

0.
95

65
0.

94
90

0.
95

00
0.

92
47

0.
60

67
0.

41
53

0.
22

90
0.

17
61

Environ Ecol Stat. Author manuscript; available in PMC 2010 March 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Buckley et al. Page 12
a M

et
ho

ds
 fr

om
 S

ec
t. 

2:
 W

al
d:

 si
m

pl
e 

W
al

d 
w

ith
 st

d.
 e

rr
or

 v
ia

 d
el

ta
 m

et
ho

d;
 L

R
: l

ik
el

ih
oo

d 
ra

tio
; P

 b
oo

t: 
fu

lly
 p

ar
am

et
ric

 b
oo

ts
tra

p 
w

ith
 p

er
ce

nt
ile

 m
et

ho
d;

 N
 b

oo
t: 

no
n-

pa
ra

m
et

ric
 b

oo
ts

tra
p 

w
ith

 p
er

ce
nt

ile
m

et
ho

d;
 S

P 
bo

ot
: s

em
i-p

ar
am

et
ric

 b
oo

ts
tra

p 
w

ith
 p

er
ce

nt
ile

 m
et

ho
d

Environ Ecol Stat. Author manuscript; available in PMC 2010 March 1.


