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Abstract

CT Colonography (CTC) is an emerging minimally invasive technique for screening and diagnosing
colon cancers. Computer Aided Detection (CAD) techniques can increase sensitivity and reduce false
positives. Inspired by the way radiologists detect polyps via 3D virtual fly-through in CTC, we
borrowed the idea from geographic information systems to employ topographical height map in
colonic polyp measurement and false positive reduction. After a curvature based filtering and a 3D
CT feature classifier, a height map is computed for each detection using a ray-casting algorithm. We
design a concentric index to characterize the concentric pattern in polyp height map based on the
fact that polyps are protrusions from the colon wall and round in shape. The height map is optimized
through a multi-scale spiral spherical search to maximize the concentric index. We derive several
topographic features from the map and compute texture features based on wavelet decomposition.
We then send the features to a committee of support vector machines for classification. We have
trained our method on 394 patients (71 polyps) and tested it on 792 patients (226 polyps). Results
showed that we can achieve 95% sensitivity at 2.4 false positives per patient and the height map
features can reduce false positives by more than 50%. We compute the polyp height and width
measurements and correlate them with manual measurements. The Pearson correlations are 0.74
(p=0.11) and 0.75 (p=0.17) for height and width, respectively.

Index Terms
CAD; colonic polyps; topographical height map; range image

1. INTRODUCTION

Colorectal cancer is the second leading cause of cancer death in the United States, estimated
to claim 56,290 lives in 2005 alone [1]. Screening is currently the most suitable method for
early detection and eventually removal of colonic polyps. CT colonography (CTC) is a
minimally invasive technique and can be used to detect both pre-cancerous polyps and colon
cancers. The accuracy of CTC is reported by some investigators to be as good as that of
traditional optical colonoscopy (OC) [2]. One characteristic used to predict the malignancy
risk of a polyp is its size including the height and width [3] [4]. Polyp size is usually determined
by making a linear measurement during optical colonoscopy. In this paper, we propose a novel
technique to employ topographical height map in polyp detection and measurement.

Computer aided detection (CAD) of colonic polyps using CTC have been under investigation
in the past decade. Most systems used features computed from the original CT data set.
Summers et al. [5] extracted features based on surface curvature. Yao et al. [6] employed a
deformable model to segment polyps and thus obtain quantitative features. Paik et al. [7]
proposed a surface normal overlap method to detect round shape objects such as colonic polyps.
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Nappi and Yoshida [8] [9] extracted the directional gradient concentration from the volume
data. They noticed that the directional gradient for polyps concentrated while other structures
did not. Zhao et al. [10] extended the scalar curvature to lines of curvature for polyp detection.
Sundaram et al [11] further smoothed the curvature and shape estimation using a geometry
processing approach. Hong et al. [12] proposed a pipeline by integrating texture and shape
analysis on a flattened colon. Bhotika et al [13] combined simple geometric shapes such as
spherical and cylindrical structures to represent and differentiate polyps and folds. Gokturk et
al. [14] proposed a random orthogonal shape sections method which combined the information
from many random images to generate reliable signatures of shape. Dijkers et al. [15] developed
a technique based on surface patch growing to segment and measure polyp. Konukoglu et al.
[16] used level set evolution to enhance spherical polyp structure as a pre-processing step to
improve the performance.

None of the above methods made use of the knowledge of the way radiologists detect polyps.
Radiologists read CTC studies in mainly two ways. One is 2D scan-through, where radiologists
scan through 2D slices and form 3D pictures in their brain. Another is 3D fly-through, where
computer graphics techniques are employed to reconstruct the 3D surface of the colon from
the CT data and the radiologist navigates through the colon along the center line. One
investigation suggested that radiologists can achieve higher diagnostic accuracy in 3D fly-
through than in 2D scan-through [2]. This observation prompts us to explore ways to extract
features from 3D colon fly-through which can be used to distinguish polyps from normal colon
surface. Lietal [17] [18] proposed a method based on 2D endoluminal projection images. They
computed the projection images using graphical snapshot through an optimized viewpoint and
derived wavelet coefficients as texture features for classification. In this paper we propose an
approach based on topographic height map, which is potentially more robust.

Height maps are commonly used in geographic information systems (GIS), where they are also
called digital elevation models [19]. Remote sensing techniques such as radar or LIDAR are
applied to determine the distance from the sensor to an object or surface. Similar idea has also
been applied in range imaging [20], where structure lights coupled with calibrated optical
cameras are employed to reconstruct the depth features of a surface. The distance or depth is
then converted to elevation data. The elevation data can be used to recognize structures in a
terrain [21]. For instance, mountains usually have higher elevation than their surrounding
regions. Figure 1a is the aerial view of Mt. St. Helens from NASA’s WorldWind
(http://worldwind.arc.nasa.gov/screenshots-sl.html). The viewer can easily recognize the
mountain just from the height contrast of mountain and plain by navigating the landscape. The
same strategy can be employed in polyp detection. Colonic polyps are abnormal growths
protruding outward from the colon wall, and are characteristically round in shape. In contrast,
haustral folds and other normal colonic structures tend to be circumferential and ridge-shaped.
The main idea is that the colon surface can be viewed as a terrain and polyps as mountains
(bumps) on the terrain. The unique topographic features of mountains (bumps) can assist us in
distinguishing polyps from the rest of the colon surface. Figure 1b is a picture from a 3D fly-
through of CTC. We notice the similarity between polyps in CTC fly through and mountains
in terrain navigation. In the case of CT colonography, we can survey the colon surface by
placing a camera above the detections. Using the ray casting technique, we compute the
distance from the camerato the surface. The inverted distance can be converted to the elevation
height from the base of the polyp. The height data is then digitized and stored in a 2D grid.
Due to the special characteristics of polyps, their height map will present concentric patterns
and other topographic features. Figure 2 shows one CT slice of a polyp, its 3D endoluminal
view and height map.

There are two main applications for the height map technique: one is the CAD system for polyp
detection, another is the measurement of polyp size. The paper is organized as follows. In
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section 2, we first describe our approach to apply the height map in our CAD pipeline. We then
describe the methods in height map generation, topographic feature computation, view
direction optimization, and polyp height and width measurement. In section 3, we present the
CAD results in both the training sets and independent test sets. We also analyze the correlation
and agreement between the manual height and width measurements and those derived from
the height map. Finally we provide some discussions in section 4.

Some initial results from this paper were previously published in two conference papers [22]
[23]. In this paper, we improve our technique by introducing virtual flattening techniques, and
new topographic features based on principal component analysis. We also conduct much more
thorough validation experiments and analysis and provide more discussions.

2. METHODS AND MATERIALS

The pipeline of our CAD system is illustrated in Figure 3. First a CTC data set is loaded into
the program. The colon surface is extracted using fuzzy connectness and iso-surface techniques
[5]. A curvature filter is applied to every vertex on the surface to exclude approximate 90% of
the colon surface from further consideration. The vertices passing the filter are then clustered
according to their connectivity and curvature attributes, and the centroid of each cluster is
treated as one detection. The detections are then sent to a segmenter for computation of
boundaries, 3D shape, and attenuation features. These features are then fed to a classifier
(support vector machine). A height map is generated for each detection passed through the
classifier. Topographic and texture features are computed for a second classification to reduce
the number of false positive detections. This pipeline has three classification stages: surface
curvature filter, CT feature classifier and height map feature classifier. This paper is focused
on the height map stage. The details of the first two stages can be found in [6,24].

2.1 Height map generation

The approach to generate a height map is illustrated in Figure 4. The method is based on a ray
casting technique. For every detection, a projection plane is defined and placed over it. The
projection plane is determined by its normal, its distance to the colon surface and the location
of the detection, and is represented as

P(n ,v,s5): n o(x — (v+ n -5))=0 1)

Here P is the projection plane, n is the unit normal of the plane, v is the detection location, s
is the distance from the plane to the detection, x is any point on the plane, o is dot product of
two 3D vectors. We use orthogonal projection to avoid the projection distortion associated with
perspective projection. For every point x; on the projection plane, a ray rj is cast onto the colon
surface. The point that ray rj encounters the colon surface is ;. The equation for the projection
ray is

T,

ei=x;— n -d; 2)

here d; is the distance between x; and e;, which is recorded at x;, and n is the unit normal of the
plane. We use an implicit iso-surface associated with the colon surface in the 3D image to
locate point ej. The iso-value in use is =700 HU.
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Since colon is a curved tubular structure and orthogonal projection is used, the height values
for pixels off the center of the map are artificially higher than they actually are (Figure 5). We
need to flatten the colon to get precise height measurement. We virtually flatten the colon by
compensating the height distance measurement according to the distance to the center of the

map. The process is illustrated in Figure 5 and equation 3,

Ad=r — Vr?2 — b2
d'=d+Ad (3)

here ris the radius of the colon tube, b is the distance to the center of the map, d is the measured
height distance, d' is the adjusted height distance. The radius of the colon section can be
computed from the center line to the colon surface. Figure 5a shows the virtual colon flattening.
Figure 5b is the height profile before the flattening. We can see that the height contrast between
polyp and its surrounding region is smaller than the real value. This effect can be significant
especially for flat polyps. Figure 5c is the height profile after the flattening.

After the distance map to the projection plane is computed and compensated, we normalize
and convert the distance map to a digitized height map using the following equation,

hi=d.' — d;/+ max D (4)

where d;’ and h; are the height distance and height value at pixel i, maxD is the maximum
distance in the distance map, and d. is the distance in the center of the map. In this way the
height map is normalized to a banded range around the center of the height map, which is the
height value for the candidate location. The height map is converted to a raster image where
the image intensity indicates the height. The brighter the pixel is, the higher the height is. The
physical size of the height map is 25mm * 25mm, and it is sampled in a 128*128 image grid.
A typical height map is shown in Figure 2c.

2.2 Topographic features

The height differential and directional slopes in the height map reveal the topographic features
of a terrain surface. In the case of a polyp with ideal semi-spherical shape, the slope from its
apex to the base should be homogeneous and big in every direction. In the case of haustral fold,
the slopes are big in the directions perpendicular to the ridge and small in the directions parallel
to the ridge. In the normal flat colon surface, the slopes are generally small in all directions.
Figure 6 demonstratesthe height map and 3D endoluminal view of polyp, haustral fold and
normal colon surface. We notice that the polyp height map presents a concentric pattern, while
the other two do not.

Just like identifying a mountain in a terrain, first we locate the apex in the height map. The
height map is centered at the location of the detection, i.e. the height of the center of the map
is the height of the point passing through the casting ray of the detection point (v in Figure 4).
Therefore we conduct the search for the apex in the center of the height map. In the case where
there is a plateau, the center of the plateau is used. From the peak, we compute the directional
slope for every direction defined by angle 8(Figure 7). The computation is done by
accumulating the height difference along the direction 6,
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s@)= Y. (H(O,t) — HO,t+1))=H(6,0) — H(6,n)
=1.n

H(O,)=h(A+r(0)1)
r(6)=(cos#,sinb) (5)

where s(6) is the accumulative directional slope at angle 6, A=(Ay, Ay) is the coordinate of the
apex, t is the time step, h(.) is the height value retrieved from the height map through linear
interpolation, H(0, t) is the height value represented by angle and step. 8 goes from 0 to 360
degree. n is the number of steps to accumulate the height difference, which is determined by
a sliding transition window technique (Section 2.4). We use 18 degree interval in current
system. Figure 7 illustrates how the directional slopes are computed. Several topographic
features can be derived from the directional slopes. The mean M(s) and standard deviation
STD(s) of directional accumulative slopes in all directions are among the most useful ones.

To further explore the characteristics of slope changes in all directions, we transform the
directional accumulative slopes into a contour in a polar coordinate system centered at the
apex. The angular coordinate is the slope direction (angle) and the radial coordinate is the
accumulative slope (Figure 8). We name this contour the slope contour. The slope contour
summarizes the characteristics of the slope distribution. We perform a principal component
analysis [25] on the slope contour and compute the principal and secondary axes of the contour.
The lengths of the principal and secondary axes (Lp, Ls) and the slope aspect ratio AS=L/Lg
are computed as topographic features. We also compute the compactness = 4x(area)/
(perimeter)2 as an additional feature. These features are translation, rotation and scale invariant.

2.3 Concentric index and projection direction optimization

In the ray casting method, different projection directions could produce very different height
maps. Figure 9 shows height maps of the same polyp in Figure 2 from different projection
directions. The middle one is the optimal projection where the projection plane is placed right
over the polyp. It demonstrates a concentric pattern, which is also the pattern to distinguish
polyps from other colon surfaces (Figure 6). We design a concentric index to gauge this pattern,

CI=M(s) — STD(s) (6)

where Cl is the concentric index, M(s) and STD(s) are the mean and standard deviation of
accumulative directional slopes. A height map with bigger and more homogeneous directional
slopes in all directions tends to have higher concentric index. Figure 9 marks the CI values
from different projection directions.

We optimize the projection direction by maximizing the concentric index. The projection plane
is determined by its normal (projection direction) and its distance to the colon surface. Since
we use orthogonal projection, the distance does not affect the height map generation. However,
if the plane is too far from the detection, it may be behind the opposite colon wall and the polyp
may be occluded; on the other hand, if the plane is too close to the detection, it may cut across
the polyp and thus the height map is not complete. We place the plane 10mm from the detection
as default, and move the plane closer if it is behind the opposite wall. The optimization process
can be written as,
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argmax(CI(P(n ,v,s))
; 0

Here Cl is the concentric index of the height map generated from the projection plane P, nis
the normal of the plane, v is the detection location, s is the distance from plane to detection.
Since v and s are known, the only variable to optimize is n. We sample all possible projection
directions to select the optimal direction. One way to generate the set of all directions in 3D
space is the spiral-point technique [26], which produces uniformly distributed points on a
sphere. The spherical coordinate (6, ¢) defines the projection direction. The k™ direction
generated by this technique is,

_ 2(k—1)
bk— - 1+_(N71)

6r=arccos(by)

— 3.6
dr= (¢kl+ \/N(l—bf)) mod2r

ﬁk:(sinélkcosm,sin(}ksin¢k,cosf)k) (8)

here N is the total number of projection directions, 1<k<N, ny is a projection direction,
0<6<m, 0<¢<2z. The spiral point technique is illustrated in Figure 10. The number of directions
N is determined by the angle interval between adjacent directions, which is approximately

2184\
N= "« | (aistheangle interval). For instance, the method generates 1908 directions at 5-
degree angle interval. Each direction requires one height map generation and evaluation, which
takes about 0.03 second in our system. Therefore, it takes about 1908*0.03 = 57 seconds to
exhaustively search all directions at 5-degree interval. The CAD system typically generates
about 50 detections per data set at this stage. It will take 3000 seconds (about 50 minutes) for
just the projection optimization alone, which makes the exhaustive search not practical. In
order to improve the time efficiency, we propose a multi-scale spherical search scheme. In this
scheme, the search starts with a big angle interval and decreases the angle interval in following
iterations. A full range search (0<6<r, 0<¢<2x) is conducted at the coarsest scale. After that,
a local search is conducted in the neighborhood of the direction obtained from the previous
scale. The range of neighborhood is twice of the angle interval in the previous scale. We use
a 3-scale searching scheme, with 30, 10 and 5 degree intervals at each scale. The first scale
takes (218.4/30)2 = 53 evaluations, the second scale of refinement at 10 degree intervals takes
(30/10*2+1)2=49 evaluations, and the third scale of refinement at 5 degree intervals takes
(10/5*2+1)2=25 evaluations. Altogether it takes at most 53+49+25=127 height map
evaluations for this scheme. To further limit the search, if a projection plane is out of the lumen
which indicates projecting from the back of the polyp, it should be excluded from further
consideration. The multi-scale searching technique is robust. The interval for the first scale is
30-degree, and we also add a 30-degree margin on both sides in the second scale. It then covers
3*30=90 degrees for any chosen projection angle, which is ¥ of the angle span. Furthermore,
polyps usually have one side against the colon wall, which makes almost half of the projection
angles invalid. We have compared the multi-scale search with the exhaustive search for 20
polyps and obtained the same projection angles for both methods.

2.4 Polyp Height and Width Measurement

Height and width are two important characteristics of a polyp. Their measurement is not trivial
since the polyp orientation and the boundary between polyp and normal colon are hard to
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determine. The height map can be used to address this problem. To conduct the measurement,
we need to locate the tip and base of a polyp in the height map. The highest point in the center
of the height map is used as the tip of the polyp. We define the interface between the polyp
surface and its surrounding colon region as the polyp neck. The neck can be detected by
examining the directional height profile. We use the same approach in Section 2.2 to generate
the directional height profile by shooting rays in all directions from the tip of the polyp. Starting
from the highest point in the center of the height map (the polyp tip), we sample the height
value along a specified direction to plot the height profile. The neck location occurs in two
scenarios in the height profile (Figure 11). In the first case (Figure 11a), the neck location is
at where the changes of the height values are smaller than a height threshold (ty,) for a certain
distance (distance threshold, tg). In the second case (Figure 11b), the neck location lies at where
the height value starts to increase. The first case indicates that the portion of polyp rests on a
flat colon region, while the second case implies that the portion of polyp touches other
structures such as haustral folds. We define a transition window to identify the two scenarios
in the height profile. The height of the transition window is the height threshold (t,) and the
width is distance threshold (tg). The transition window is slid along the height profile and stops
in the following two scenarios when it reaches the neck point: 1) the heights of all points in
the window are within a range,

|h,‘ — hj|<l‘],,Vf S W,Vj eWw ©)

here W is the transition window, i, j are points in the window, and hj and h; are heights of points
i and j in the height profile; or 2) the heights of all points in the window are bigger than that
of the first point in the window,

hj>hgVjeW (10)

here W is the transition window, K is the first point in the window, j is any other point in the
window. The size of the transition window is currently set as t,=1mm and ty=4mm. The size
of the window allows us to handle polyps with plateaus as large as 8mm without triggering the
termination of the sliding transition window.

Figure 12d shows the polyp tip and neck points in two height maps. For each neck point, we
can compute its relative height to the tip (dy) and its span distance along the profile (dg) from
the tip. The polyp height is the average height difference between polyp tip and polyp neck
points, and the polyp width is the average of span distances. They are computed as

PH=AVG(dy')
=1.. . .
PW= AVG (d;'+d;’)
i=1.N/2
Jj=i+N/2 (11)

Here PH is the polyp height, PW is the polyp width, N is the total number of directions in the
evaluation, dj! are dg4' are the height and distance of it" neck point. We use 20 directions at 18-
degree angle interval. We also compute the maximum and minimum width of the polyp.
Considering artifacts and outliers, we exclude the top 10% and bottom 10% of {dy} and {dq4}
values in the evaluation of height and width. Essentially, the height measurement is the depth
of protrusion from the colon wall and width measurement is the projected 2D spread.
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2.4 Texture features based on wavelet decomposition

The height maps of polyps demonstrate concentric patterns that differentiate them from other
structures. These patterns can be extracted by texture analysis. Texture analysis based on
wavelet decomposition has been applied in identifying forgery of paintings [27]. Wavelet is a
set of functions to represent a given signal sequence by its frequency components. In 2D
images, it allows us to analyze the signal in different image scales. We are able to extract
multiple scales of frequency information (edge, boundaries) from the height map. We use a
Haar kernel and conduct a four-level wavelet decomposition on the height map. Each level has
sub-bands in vertical, horizontal and diagonal directions. Figure 13 show a wavelet
decomposition of one height map. We compute six statistics features for each sub-band
coefficients (mean, variance, skewness, kurtosis, energy and entropy). We therefore obtain 78
(13*6) texture features from each map.

2.5 Feature selection and classifier

We use a committee of support vector machines (SVM) [28] as our classifier. SVM is a
supervised machine learning technique which defines a hyperplane to separate data in different
classes. SVM in higher dimensional space can lead to more accurate classification, but in the
meantime also increases the complexity of the model and may lead to overtraining of the data
and decrease the generality of the model. Hence, we developed a committee of SVMsto balance
the power of the classifier and the generality of the model. In the committee, each SVM is
established in a low dimensional feature space and their classification values are combined to
reach the committee decision. We used a SumProb [29] strategy in compiling the committee
decision, where the normalized distance to the decision boundary for each SVM is summed
up as the decision function.

The feature space has 90 features (12 topographic and 78 wavelet features). The topographic
features are listed in Table 1. They are put in 3 categories. We employed a forward stepwise
feature selection method [30] to select a pool of good performing feature vectors. We then
applied another stepwise method to form a SVM committee. The configuration of the
committee was determined by an ANOVA analysis. The committee has five members, and
each member has four features. The details of the SVM committee used in this paper can be
found in [30]. Table 2 lists the selected features in one committee formed by using our training
set. The wavelet features start with “w_", and the number at the end of feature name indicates
the wavelet sub-band. The rest are topographic features. Both topographic features and wavelet
features are used in the committee. Some features are repeated for different members.

The final classifier is created using a 10-fold scheme. At each fold, 9/10 of training cases are
used and an SVM committee with five SVM members is created. After that, we put all members
in the ten SVM committees in a big committee as the final classifier. Therefore, the final
committee has 5*10=50 SVM members.

2.6 Data specification and experiments

The CTC data were acquired as follows. Patients underwent 24-hour colonic preparation
consisting of oral administration of 90 mL sodium phosphate, 10 mg bisacodyl, 500mL barium
(2.1% by weight), and 120 mL diatrizoate meglumine and diatrizoate sodium given in divided
doses [31]. Each patient was scanned in both supine and prone positions. CT scanning
parameters included 1.25- to 2.5-mm section collimation and 1-mm reconstruction interval.
The patients also underwent optical colonoscopy on the same day of the CTC. After the CTC
data was transferred to a workstation, the polyps were manually identified and segmented by
a consensus panel consisting of a research trainee and an experienced radiologist to delineate
the polyp border in an axial view of the CTC. The manual segmentation was used as the
reference standard for CAD training and validation.
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We used separate training and test data sets. The classifier was created using the training set
and a 10-fold cross validation. The classifier was then independently validated on a separate
test set. Free response receiver operating characteristics (FROC) curves were used to evaluate
the performance. The evaluations were conducted in two polyp size categories of clinical
importance: >=10mm, and between 6mm and 9mm. Polyps <6émm are not thought to be
clinically important [32]. In order to test the effectiveness of the height map, the performances
were compared with and without the height map classification phase.

We also manually measured the height and width of polyps. Manual measurements were made
with a measurement tool in the Viatronix V3D software (research version 1.3.0.0; Viatronix,
Stony Brook, NY). Minimum and maximum widths were measured for each polyp in the 3D
view in Viatronix. An ellipse was used to model each polyp from a birds-eye view. The minor
axis of the ellipse corresponds to the minimum width and the major axis corresponds to the
maximum width. The height of the polyps from the colonic wall was measured in the 2D cross-
sectional view in Viatronix. The cross-sectional plane was chosen so that it was perpendicular
to the polyp base. The height was measured as the length from the peak to the neck of the polyp.
The manual measurement was conducted twice by the same operator in a two-week time
interval and the mean of two measurements was used. We conducted experiments to evaluate
the correlation and agreement of height map and manual measurements using regression and
Bland-Altman analysis [33]. Figure 12 shows two examples of polyp height maps and their
measurements.

3. RESULTS

The patient population consisted of 1186 adults between 40 and 79 years of age at 3 medical
institutions. In total, there were 226 polyps larger than 6mm. We divided the data into
independent training and test sets. Table 3 lists the distribution of CTC studies and polyps in
the training and test sets.

3.1 CAD results

Figure 14 shows the FROC curves of the training and test sets. The operating point is indicated
on the plot (big markers). The sensitivity and false positive (FP) rate were calculated for only
the detections that passed the initial curvature filter. We also performed 100 iterations of
bootstrap to get the error bars on the FROC curve at the operating point. We compared the
results before and after the height map features were applied in the classification (Table 4).
We also showed the 95% confidence interval for height map CAD. For polyps>=10mm, the
FP rate was reduced from 2.65 to 1.42 at 96% sensitivity in the training set and from 4.9 to 1.2
at 93% sensitivity in the test set. For polyps between 6-9mm, the FP rate was reduced from
5.14 to 2.33 at 77% sensitivity for polyps in the training set, and from 6.86 to 3.1 at 76%
sensitivity in the test set. Most false positive detections eliminated by the height map classifier
are fold structures and artifacts created by fluid interface. Figure 15 shows two of these
examples.

3.2 Height and width measurements

We randomly selected 50 polyps and manually measured their height and width in a reader
study to assess the conspicuity of polyps [34]. Those polyps are varied in size, histology, shape
and location. Table 5 lists the categorization of the measured polyps.

We first validate the height and width against the categorized OC size measurement. Figure
16 shows the Box-Whisker plots of the correlation. The regression trend line of the mean of
each category is also displayed. It indicates that heightmap measurements correlate better with
OC size than the manual measurements.
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The correlations of height map and manual measurements are shown in Figure 17. The paired
t-test for the height measurement shows that the Pearson correlation is 0.74, P(T<=t) is 0.11.
The paired t-test for the width measurement shows that Pearson correlation is 0.75, p(T<=t) is
0.17. The regression analysis shows that we get fairly good polyp height and width correlations.
However, the correlation is not statistically significant. One possible reason is that the height
map measurements and manual measurements do not exactly measure the same thing. The
manual measurement requires a subjectively chosen perpendicular cross plane, while the height
map method automatically optimizes the best plane for measurement.

We then conducted Bland-Altman analysis to evaluate the agreement of the two measurements
and the repeatability of two manual measurements. Figure 18 shows the Bland-Altman plot of
height and width measurement between the height map technique and the manual technique.
Figure 19 shows the Bland-Altman plot of the two repeated manual height and width
measurements. Table 6 lists the agreement of the Bland-Altman analysis in Figure 18-19. The
results indicate the agreement between the two methods is relatively low. Since we achieve
high correlations in paired t-tests, this means that there is a systematic difference between these
two techniques. The agreement of width measurement is better than that of height
measurement. These observations may be explained by the way the manual measurements are
conducted. For the height measurement, a perpendicular plane needs to be chosen, which is
not an easy manual task. Another observation is that the agreement of height measurement
from manual and height map method is comparable to the repeatability agreement of two
manual height measurements. This further indicates that manual height measurement is
subjective.

4. DISCUSSION AND CONCLUSION

We proposed a novel technique to distinguish colonic polyps from normal colon surfaces based
on topographical height maps. The novelty of this technique is that in addition to using the
original 3D CT image, it uses height maps which reveal several visual properties that
radiologists perceive to detect polyps. The technique can reduce false positives by more than
50%, and work well for both big polyps (>=10mm) and medium sized polyps (6-9mm).

The 2D endoluminal projection image technique proposed by Li et al. [17] [18] is close to our
height map method in the sense that we both try to mimic the radiologist’s detection process.
2D endoluminal projection is more visually realistic compared to height map. However, the
endoluminal projection method has several limitations. Firstly, lighting condition plays an
important role in the image formation and is difficult to optimize. Secondly, excessive and
complex background could influence the feature extraction for the main structures in the scene
(polyps in this case). Thirdly, texture features are dependent on the in-plane rotation and
translation of the projection plane. The height map approach handles these issues. The height
map generation does not rely on any lighting condition. A height threshold can be applied to
filter out most of the background. Topographic features based on the directional slopes from
the apex to the base of a polyp are invariant to in-plane scale, translation and rotation. The
height map is a 2D map. However 3D information is still preserved in the map since height
value is stored at each pixel grid. This enables us to compute 3D features such as height, spread,
and slope. Furthermore, we can also apply the wavelet transform to extract texture features of
the polyp pattern, which cannot be easily computed from the 3D data directly. The Harr wavelet
is currently used in our method, which is not rotation invariant. However since we are looking
for concentric texture pattern for polyps, directional analysis is not necessary.

Instead of using the height map classifier as a post-processing step to reduce false positive
detections, we can combine the features from 3D CT data and height map features to form a
hybrid classifier. The benefit of this scheme is that it may improve the sensitivity. However,

Pattern Recognit. Author manuscript; available in PMC 2009 July 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Yao etal.

Page 11

it requires height map evaluation on all detections before the second stage of classification,
which may be too computationally expensive since the second stage classification typically
eliminates 90% of false detections. Furthermore, putting all features together may over-train
the classifier. The two-stage classifiers in current system are trained separately. The height
map classifier is trained on the data from the first stage classifier (Figure 3). One can argue
that the performance improvement in the two-stage classifiers could be attributed to increased
classifier complexity. However, since we validated our system using separate test sets and
obtained the same improvement, this indicated that the system was not over-trained.

The height map is generated using the ray casting technique. Both orthogonal and perspective
projections were investigated. We chose the orthogonal projection since it is invariant to the
projection distance and can preserve polyp size information. Another advantage is that only
the projection direction needs to be set in the orthogonal projection, which makes the
optimization much simpler. Orthogonal projection is also much more efficient to compute since
we can pre-compute the projection rays. We adopted a simple virtual flattening algorithm to
compensate the artificial height difference caused by the curved colon surface. Unlike the
flattening techniques in [35] [36] [37], our virtual flattening operation is limited to a small local
neighborhood around the polyp. In Equation 3, r is generally much bigger than b (5 to 10 times),
so Ad is a small value. Therefore the geometric distortion associated with most flattening
algorithms is insignificant in our method.

The concentric pattern of the polyp can be presented only when the projection direction is
parallel to the polyp elevation direction. Choosing the correct projection direction is essential.
The concentric index based on the directional slope is proven to be an effective metric. Other
metrics such as image entropy to maximize the information in the map have also been employed
in computer vision in trying to get the optimal projection angle [38]. However, in our case,
more information does not equal stronger differentiating power. We search the entire projection
direction space through a multi-scale scheme. An optimization algorithm such as gradient
descent and Powell’s method [39] can be applied to improve the efficiency.

In future work, more topographic features such as profile curvatures, ridge lines and incident
radiation could be computed and applied in the classification. A more precise concentric index
will also be investigated. We are also working on using the height map features to evaluate
polyp conspicuity.
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a)

Figure 1. Terrain surface and colon surface
a) aerial view of Mount St Helens from NASA’s WorldWind
b) 3D endoluminal view from a fly-through in CTC of a 8-mm polyp
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A :
Figure 2. Colonic polyp and height map
a) 2D CT slice of a 10mm polyp, b) 3D endoluminal view, ¢) Height map
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Figure 3.
CAD pipeline
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Projection
ri plane
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colon

Figure 4.
Height map generation based on ray casting
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b) <)

a)

Figure 5. Virtual colon flattening
a) virtual colon flattening, b) height profile before flattening, c) height profile after flattening
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. J
Figure 6. Height map of structures in CTC

Left: 3D endoluminal view; Right: height map

First row: a 14-mm polyp; second row: haustral fold; third row: flat colon surface.
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Figure 7. Directional slope computation
A is the Apex
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Figure 8.
Slope contour
A'is Apex

Pattern Recognit. Author manuscript; available in PMC 2009 July 1.

Page 21




1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Yao etal.

CI=-0.64 ClI=21 CI=0.71

Figure 9.
Height maps of the same polyp in Figure 2 from different projection directions
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Figure 10.
Spiral point technique

Pattern Recognit. Author manuscript; available in PMC 2009 July 1.

Page 23



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Yao etal.

Page 24

| JEAY

Neck point " Transition window
Neck point

a) b)

Figure 11. Directional height profile and transition window

a) scenario 1: polyp connects to normal colon surface

b) scenario 2: polyp next to other structures or the arch of colon is highly curved. A is apex of
the height map.
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Figure 12. Examples of polyp height map

a) 2D transverse slice; b) 3D surface rendering; ¢) Height map; d) Height map with tip and
neck locations (dark dot is the tip, bright dots are the neck locations)

First row: a 10mm adenoma polyp; Manual measurement: height=5.9 mm, width=8.6mm;
Height map measurement: height=3.67mm, width=9.02mm.

Second row: a 6mm hyperplastic polyp; Manual measurement: height=3.0 mm, width=4.7mm;
Height map measurement: height=3.22mm, width=5.98mm.
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Figure 13. Wavelet decomposition
a) height map; b) four-level wavelet decomposition
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Figure 14.
FROC curve of CAD system
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Figure 15. Examples of false positive detections eliminated by height map features
First row: false positive on fold; second row: false positive on fluid interface
First Column: 2D view; second column: 3D view; third row: height map
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Height map measurement
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Box-whisker plots show correlation of polyp size measured in OC and height measurement
using height map (upper left), width measurement using height map (upper right), manual
height measurement (lower left), and manual width measurement (lower right).
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Figure 17.

Paired t-test of between manual and height map measurements
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Figure 18.
Bland-Altman plots of inter-method agreement of height and width measurements
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Figure 19.
Bland-Altman plots of repeatability agreement of manual height and width measurements
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Table 1

List of topographic features

Feature category

Feature name

Directional slope statistics

meanSlope, stdSlope, minSlope, maxSlope, concentric index

Slope Contour

principal axis, secondary axis, aspect ratio, radius, compactness

Dimension

height, width
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Table 2
Selected features in an SVM committee

Feature name

radius, height, w_entropy5, w_mean11

meanSlope, width, w_mean2, w_ entropy8

height, width, aspectRatio, w_kurtosis10

meanSlope, width, concentricindex, w_entropy9

minSlope, secondaryAxis, w_entropy7, w_STD9,
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Table 3

Data distribution
Total patients | Polyps >=6mm | >=10mm | 6-9 mm
Training set | 394 71 25 46
Test set 792 155 43 112
Total 1186 226 68 158
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Table 4

Performance comparison before and after height map is applied

Training set (6-9 mm)

Training set (>=10mm)

Test set (6-9 mm)

Test set (>=10mm)

Before height map After height map

Sensitivity | False positive rate | Sensitivity False positive rate
0.761 5.14 0.773 (0.755-0.802) | 2.33 (2.18-2.50)
0.96 2.65 0.958 (0..935-0.973) | 1.42 (1.23-1.54)
0.759 6.86 0.769 (0.756-0.792) | 3.09 (2.87-3.34)
0.93 49 0.930 (0.901-0.957) | 1.2 (1.02- 1.43)
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Polyp categories

Table 5

Size 6mm (31) 8mm (13) 10mm (6)
Histology | Adenoma (37) | Hyperplastic (13) | Carcinoma (0)
Shape Sessile (39) Pedunculated (8) | Flat (3)

Fold On fold (17) | Not no fold (33)
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Bland-Altman analysis of inter-method agreement and repeatability of manual

Table 6
measurements

Measurement | Mean Difference (mm) | 95% Bland-Altman Limits of Agreement (mm) | rValue
Inter-method

Height 0.1 -15,1.8 0.09

Width -1.3 -4.3,1.7 0.43
Repeatability

Height -0.1 -1.1,0.9 0.04

Width 0.0 -1.7,1.8 0.15
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