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Summary
The anti-CD20, B cell-specific mAb rituximab (RTX) has been approved for treatment of non-
Hodgkin's B cell lymphoma and rheumatoid arthritis. Under conditions of high B cell burden,
exhaustion of the body's effector mechanisms, e.g. NK cell-mediated killing, may lead to substantial
decreases in the immunotherapeutic efficacy of this mAb. Moreover, RTX treatment of patients with
chronic lymphocytic leukemia and high levels of circulating B cells can lead to removal of CD20
from the cells, thus allowing them to persist and resist clearance. RTX therapy for several
autoimmune diseases has proven to be effective, but in numerous instances there has been little
correlation between reductions in disease activity and changes in titers of pathogenic autoantibodies.
This paradox may be explained by a separate mechanism: Binding of RTX to B cells generates
immune complexes which act as decoys to attract monoycte/macrophages and thus reduce their
inflammatory activity in certain autoantibody-mediated diseases. Several second-generation anti-
CD20 mAbs with enhanced cytotoxic action have been developed and are being tested in the clinic
for treatment of cancer and autoimmune diseases. The application of these mAbs, potentially in
combination with immune effector modifying drugs, may successfully address the shortcomings of
current anti-CD20 immunotherapy.

Introduction to mechanisms of action
The introduction of the anti-CD20 mAb rituximab (RTX) has led to substantial advances in
treatment of diseases associated with B cells. RTX is now being used with some degree of
success, either alone or in combinations, for treatment of malignant and autoimmune diseases
[1-4*,5*]. The key features of the cytotoxic mechanism of RTX were demonstrated in 1994;
RTX promoted antibody-dependent cell-mediated cytotoxicity (ADCC) and complement–
dependent cytotoxicity (CDC) of a human lymphoid cell line expressing CD20, and was found
to be very effective at depleting B cells from peripheral blood and moderately effective at
clearing B cells from lymph nodes and bone marrow [6]. Translation of this prescient basic
science to the clinic has replicated and extended these findings. Animal models have
demonstrated that infusion of RTX promotes rapid opsonization of circulating B cells followed
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by phagocytosis by FcγR-expressing fixed tissue macrophages in liver (and possibly spleen)
[7-10]. Lefebvre al. demonstrated that properly differentiated human macrophages promote
substantial phagocytic killing of RTX-opsonized chronic lymphocytic leukemia (CLL) cells
[11*]. Apoptosis was proposed as a RTX cytotoxic mechanism, but in the absence of cross-
linking with non-physiologic reagents, the ability of RTX to induce apoptosis is marginal
[4*,7,12-16].

Thus, effective therapy with RTX, and most likely with several other anti-CD20 mAbs, is
dependent on host effector functions. Therefore, an important general question must be
considered: given that sufficient anti-CD20 mAb can be infused to saturate all CD20 sites on
accessible B cells, will exhaustion or saturation of the body's effector functions limit
therapeutic efficacy? Compelling evidence indicates that clearance by fixed tissue
macrophages as well as ADCC and CDC can be overwhelmed under conditions of high tumor
burden in cancer; alternatively effector functions may be compromised due to high burdens of
immune complexes (IC) found in autoimmune diseases. We will examine these issues in the
context of anti-CD20 therapies, but these questions may have applicability to other mAb-based
immunotherapies.

Limitations to current therapy: consequences of exhaustion of effector
mechanisms
NK cell-mediated ADCC can be exhausted

Since virtually all ADCC activity in peripheral blood mononuclear cells (PBMC) is mediated
by NK cells [17-20**,21], it is important to determine how many target cells can be killed by
an NK cell before it must “re-load” to continue its killing spree. Bhat and Watzl reported that
IL-2-activated NK cells can engage and kill ∼3-4 target cells in 16 hours; after this time the
cells appear to be exhausted, apparently due to substantial reductions in available perforin and
granzyme B [20**]. However, IL-2 treatment restored cytotoxic activity. Bowles and Weiner
found that changes in NK cell markers are well-correlated with ADCC activity [22]. Incubation
of PBMC with RTX-opsonized target cells led to upregulation of CD54 and almost complete
loss of FcγRIIIa (CD16) from the surface of NK cells; much of the CD16 appeared to be
internalized [5*,22]. It would be interesting to determine whether treatment of these cells with
IL-2 would restore CD16 levels and ADCC. Fisher et al. reported that NK cell-mediated ADCC
of RTX-opsonized cells promotes up-regulation of CD107a, a marker of degranulation and
presumably cell exhaustion [19]. Berdeja et al. found that ADCC may be significantly reduced
due to high burdens of RTX-opsonized cells [21]. They measured in vitro ADCC of PBMC of
eight patients with B cell lymphoma before and after RTX infusion. ADCC was substantially
depressed one hour after infusion (6% lysis versus 38% lysis) and was not completely recovered
after 24 hours. We suggest the cells were activated (and CD16 down-regulated) in vivo by
interaction with RTX-opsonized B cells. When patients received infusions of IL-2 followed
by leukapheresis and re-infusion of IL-2-treated lymphokine activated killer cells, RTX
treatment did not promote reduction in ADCC activity, providing additional motivation for use
of IL-2 to enhance and/or restore ADCC mediated by NK cells. Clinical studies such as this
one will undoubtedly be repeated, and tests for NK cell activation based on down-regulation
of CD16 and upregulation of CD54 and CD107a after RTX infusion may be quite informative
[19,22].

Complement exhaustion and supplementation
Kennedy et al. reported that RTX infusion in CLL patients depleted complement, and suggested
that treatment with fresh frozen plasma might restore RTX efficacy [23]. The case report of
Klepfish et al. provided support for this idea; fresh frozen plasma was required for RTX to
have therapeutic efficacy in a CLL patient [24].
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Shaving of CD20 after RTX infusion
Treatment of CLL patients with 375 mg/m2 doses of RTX leads to rapid clearance of circulating
RTX-opsonized B cells during the first few hours of infusion [23]. However, soon after
infusion, additional malignant B cells enter the bloodstream from other compartments, and
RTX and CD20 are removed (“shaved”) from these cells. The phenotype of circulating CLL
B cells soon after RTX infusion is identical to that of circulating B cells before RTX treatment,
except CD20 is reduced > 10-fold for days to weeks, thus severely limiting the efficacy of
subsequent RTX infusions [23,25]. In vitro experiments indicate the high affinity receptor
FcγRI plays a major role in this shaving reaction [26]. In addition, saturation of clearance
mechanisms may lead to substantial down-regulation of the low affinity receptors FcγRII and
FcγRIII involved in clearance [27**], thus favoring shaving over clearance. Li et al. established
a subcutaneous xenograft mouse model with human Z138 CD20+ cells to determine whether
shaving can occur at sites of tumor growth [28]. Analysis of tumors after RTX infusions
provided unambiguous evidence for significant loss of CD20 from the cells. These results
suggest that shaving may occur in compartments other than the bloodstream.

Recent clinical reports consistent with shaving
Laurent et al. identified CD20- mature B lymphocytes in nodular lymphoid infiltrates from
bone marrow after patients with follicular lymphoma received RTX [29]. Leandro et al. found
low or absent CD20 expression on immature and mature CD19+ cells in bone marrow aspirates
taken after RTX therapy for rheumatoid arthritis (RA) [30]. Similarly, Teng et al. found that
after RTX therapy, CD19+, CD20- B cells were present in bone marrow, and CD79a+, CD20-
B cells were demonstrable in the synovium [31]. Although shaving was not considered, all
three groups speculated that the decrease in B cell-associated CD20 was due to epitope masking
by bound RTX. Several reagents and strategies are available to unambiguously test for B-cell
bound RTX [23,32], and should allow for resolution of the question of shaving versus epitope
masking. The implications of shaving occurring in tissue compartments after RTX therapy are
substantial.

Improvements to current therapy
The clinical efficacy of RTX in several indications is well-documented, but limitations in its
therapeutic action have also been noted [4*]. Therefore, several new anti-CD20 mAbs are being
developed to more effectively harness effector functions. Clinical studies have linked RTX
efficacy in B cell lymphoma treatment with polymorphisms in FcγR expressed by effector cells
[4*,33]. Obviously the FcγRIIIa phenotype of patients' NK cells can not be changed to increase
ADCC; rather, several second generation anti-CD20 mAbs have been engineered to increase
the affinity of the Fc regions of the mAb for FcγRIIIa [34*,35*,36*]. This has been
accomplished by amino acid substitutions or modification of the carbohydrate structure of the
mAb. Lower concentrations of these mAbs are adequate to promote ADCC compared to
concentrations needed for RTX; moreover, higher absolute levels of ADCC may be achieved.
Clinical trials may reveal that these mAbs have enhanced activity compared to RTX, but the
problem of exhaustion of ADCC/clearance mechanisms due to high tumor burdens is likely to
remain an important issue. Parallel treatments based on use of IL-2 or infusion of IL-2-activated
cells may further augment the action of these mAbs.

CDC should play an important role in the RTX cytotoxic mechanism in B cell lymphoma
treatment [7,14,16,23,37]. Binding of RTX to CD20+ CLL cells promotes robust complement
activation and C3b fragment deposition on cells [7,23], but the downstream goal of cytolysis
may not be achieved; indeed, RTX has not been successful as a single agent in CLL treatment
[4*]. The key question is how can the CDC potency of a human IgG1 mAb be increased? High
affinity binding to a repeating epitope very close to the cell membrane should be advantageous,
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because C1q could be more effectively captured, and activated complement proteins could be
more precisely concentrated onto the cell, allowing for enhanced killing.

A second generation fully human IgG1 anti-CD20 mAb, ofatumumab (OFA), appears to fit
these criteria. OFA binds with high affinity to the small loop of the extracellular region of
CD20 close to the membrane, and promotes enhanced CDC of B cell targets refractory to RTX
[38,39*]. ADCC activity of OFA is similar to that of RTX, suggesting that interaction of RTX-
or OFA-opsonized cells with FcγR-expressing effector cells is comparable. Experiments with
isolated plasma and in whole blood indicate that OFA mediates much more killing of
lymphoma cell lines and of primary lymphoma cells; this increased killing must be mediated
by complement [38,39*]. In animal models, an initial high dose of OFA was required to deplete
B cells throughout the body after which relatively low plasma concentrations of ∼5-10 ug/ml
in monkeys were adequate to maintain B cell depletion [40].

In a phase 1-2 clinical trial of OFA for CLL, the median reduction in circulating B cells was
97% after the fourth infusion for patients who received a first dose of 500 mg followed by 3
weekly 2000 mg doses [41]. This very high level of clearance was found to be superior to more
modest clearance observed in similar studies of RTX treatment for CLL. Moreover, the clinical
response rate of CLL patients to OFA therapy was 50%, which was also noted to be greater
than response rates obtained for comparable trials with RTX. Since the efficacy of clearance
of OFA- or RTX-opsonized cells is expected to be similar for FcγR-dependent mechanisms,
CDC should be the mechanism responsible for the greater clearance of CLL cells and enhanced
clinical response observed for OFA. Both mAbs may consume complement equally, but the
higher levels of activated complement proteins close to the cell membrane induced by OFA
should promote greater CDC. Future experiments in clinical trials or animal models that
compare these mAbs with respect to complement depletion versus CDC will allow testing of
this hypothesis.

Anti-CD20 therapy for autoimmune disease
RTX was approved for RA treatment and is being examined in other autoimmune diseases
[1,2,42,43]. The rationale, successfully demonstrated in acquired angiodema, is to target CD20
+ precursor cells that would differentiate into autoantibody-producing plasma cells [44].
However, correlations between reductions in autoantibody levels and positive clinical
responses in other autoimmune diseases have rarely been demonstrated [2,5*,43,45-47],
leading us to postulate the IC decoy hypothesis (Figure 1).

The IC Decoy Hypothesis: Recent findings
RTX-opsonized B cells may serve as decoys by engaging FcγR on effector cells, explaining
RTX efficacy in immune thrombocytopenic purpura (ITP), in which IgG anti-platelet
antibodies otherwise promote platelet clearance via FcγR on fixed-tissue macrophages [48,
49]. After RTX treatment for ITP, platelet levels increase, but anti-platelet antibodies are
usually unchanged; RTX infusion may lead to “diverting these cells” (liver and splenic
macrophages) “from platelet phagocytosis” [49] (Figure 1A). RTX-opsonized B cells in the
bloodstream or in tissues can also act as decoys to divert monocytes or macrophages from
pathogenic interactions with tissue-associated IC, and reduce disease activity without affecting
autoantibody levels (Figure 1B) [5*]. RTX therapy for patients with vasculitis and disease-
associated antibodies to anti-proteinase-3 (anti-PR3) led to rapid clinical remissions [50], but
anti-PR3 antibodies decreased slowly. RTX treatment of patients with systemic lupus
erythematosus (SLE) or with antineutrophil cytoplasmic antibody (ANCA)-associated
vasculitis (AAV) led to rapid complete or partial remissions, but neither anti-dsDNA titers nor
ANCA levels changed significantly [51].
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Influence of the lifetime of antibody-producing cells
Variation in the lifetime of CD20-autoantibody-secreting cells may influence the time interval
between initiation of anti-CD20 B cell-depletion therapy and reduction of autoantibody levels.
Treatment of C57BL/6 mice with an anti-CD20 mAb suppressed immune responses to
challenge antigens and suppressed secondary responses, but had little impact on extent serum
immunoglobulin levels or on antibody-secreting cells in bone marrow, indicating CD20-
antibody-secreting plasma cells are long-lived [52**]. Use of the same anti-CD20 mAb in
mouse models for autoimmune diseases led to similar conclusions [53,54], thus suggesting that
B cell depletion therapies may be ineffective in reducing autoantibodies in some autoimmune
diseases, if cells which produce autoantibodies are long-lived CD20- plasma cells.

Saturation of clearance mechanisms
B cell depletion in an SLE mouse model with an anti-CD20 mAb was quite difficult, especially
for clearing splenic B cells [55*]. The authors suggested, “a constitutive excess of IC may
inhibit macrophage function, most likely in an FcγR-dependent manner”. There is substantial
similarity in this SLE mouse model to “exhaustion” of clearance mechanisms discussed
previously with respect to anti-CD20 mAb immunotherapy under conditions of high tumor
burden.

Concluding remarks
Anti-CD20 immunotherapy is successful in the treatment of various cancers and inflammatory
diseases. However, current therapy may be limited by exhaustion of immune effector
mechanisms and therefore the full potential of anti-CD20 immunotherapy may not yet be fully
realized. For example, high burdens of IgG-opsonized cells may deplete complement and also
exhaust cellular cytotoxicity mediated by NK cells and tissue macrophages. Ineffective killing
of CD20-positive cells may furthermore lead to substantial reductions in CD20 surface
expression (shaving). Strategies to address these limitations include the development of novel
anti-CD20 mAbs which more potently recruit effector function, and the potential combination
of antibody therapy with immune modifying drugs that mobilize or replenish effector functions.
Lessons learned from the strategies employed for CD20 immunotherapy may be useful for the
optimization of other immunotherapeutic mAbs.
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Glossary of abbreviations
ADCC  

antibody-dependent cell-mediated cytotoxicity

CDC  
complement-dependent cytotoxicity

CLL  
chronic lymphocytic leukemia

IC  
immune complex(es)

ITP  
immune thrombocytopenic purpura

OFA  
ofatumumab

PBMC  
peripheral blood mononuclear cells

RA  
rheumatoid arthritis

RTX  
rituximab

SLE  
systemic lupus erythematosus

Taylor and Lindorfer Page 9

Curr Opin Immunol. Author manuscript; available in PMC 2009 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
The Immune Complex Decoy Hypothesis [5*]. A. In ITP, autoantibodies bind to platelets, and
the IgG-opsonized platelets are removed and destroyed in the spleen (and possibly in the liver)
due to interaction with FcγR on fixed tissue macrophages. Infusion of RTX generates IgG-
opsonized cells that bind to the macrophages, thus sparing the platelets. Modified from [5*].
B. Alternatively, in RA and in SLE respectively, immune complexes in the joints and
concentrated in the synovium, or associated with the kidneys, interact with FcγR on monocyte/
macrophages which initiates an inflammatory cascade, leading to the release of numerous
inflammatory factors, ultimately leading to local tissue destruction. After RTX infusion,
diversion of the monocyte/macrophages to other sites, due to interaction of FcγR with RTX-
opsonized B cells, spares the synovium or kidney.

Taylor and Lindorfer Page 10

Curr Opin Immunol. Author manuscript; available in PMC 2009 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


