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Abstract The base pairs that encode the genetic information in DNA show large amplitude

localized excitations called DNA breathing. We discuss the experimental observations of

this phenomenon and its theoretical analysis. Starting from a model introduced to study the

thermal denaturation of DNA, we show that it can qualitatively describe DNA breathing

but is quantitatively not satisfactory. We show how the model can be modified to be

quantitatively correct. This defines a nonlinear lattice model, which is interesting in itself

because it has nonlinear localized excitations, forming a new class of discrete breather.

Keywords DNA breathing · Nonlinear dynamics · Base pair

1 Introduction

DNA is the molecule that encodes the information that organisms need to live and reproduce

themselves. Fifty years after the discovery of its double helix structure [1], it is still

fascinating physicists, as well as biologists, who try to unveil its remarkable properties. In

their paper, Watson and Crick wrote “it has not escaped our notice that the specific pairing

we have postulated immediately suggests a possible copying mechanisms for the genetic

material”. This remark attracted attention to the structure of biomolecules and it is at the

origin of one fundamental dogma in biology that form is function. However, DNA is not

the static entity that structural pictures show. Its fluctuations are even essential for function
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because the genetic information is encoded in the bases which are buried inside the structure.

In order to read the code, DNA must be locally opened by breaking the pairing between its

bases. Moreover, even in the absence of enzymes involved in the reading or duplication of

the code, DNA undergoes large-amplitude fluctuations. The lifetime of a base pair, i.e., the

time during which it stays closed, is only of the order of a few milliseconds. Experiments

show that these fluctuations, known by biologists as the “breathing of DNA”, are highly

localized. Here, we review the experimental observations of the fluctuational opening of

DNA. Then we introduce a simple model of DNA, which describes the molecule at the

mesoscale, i.e., at a scale intermediate between the atomic scale and the largest scale of

the full molecule. We show that nonlinear dynamics can lead to the observed breathing,

and by comparing the properties of the model with the experimental observations, we show

how the original model can be refined to better describe the actual properties of DNA.

This refinement leads to a nonlinear lattice model which turns out to be interesting in

itself because it exhibits unusual properties which raise interesting questions for nonlinear

science. This interplay between physics and biology, where physical modeling gives some

hints for the understanding of DNA properties, while the biological system suggests new

ideas for nonlinear science, is a reminder of the famous quotation of Stanislas Ulam: “Ask

not what physics can do for biology. Ask what biology can do for physics”.

2 The breathing of DNA: experimental studies

Figure 1 shows the structure of DNA. The backbone of the two entangled helices is made

of a chain of phosphates and sugar groups. The two strands are linked to each other by

large base plateaus, covalently bound to the sugar groups and forming pairs connected

by hydrogen bonds as shown in Fig. 2. There are four possible bases, symbolized by A

(adenine), T (thymine), G (guanine), C (cytosine), forming only two types of pairs, AT,

linked by two hydrogen bonds, and GC, linked by three hydrogen bonds. While the covalent

Fig. 1 The structure of DNA

in its B form in a full atomic

representation (left) or in a

schematic diagram showing

the interatomic bonds
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Fig. 2 The AT base pair of

DNA. The two large dots
schematize the sugar-phosphate

backbones. The dotted lines in

the central part of the diagram

indicate the hydrogen bonds that

connect the two bases
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bonds that form the backbones and the bases are very strong, the hydrogen bonds that

connect the two bases in a pair are much weaker. They can be broken by thermal fluctuations

at biological temperature, exposing the bases to the surrounding solvent before the base pair

closes again. It is these large fluctuations which are called the “breathing of DNA”. They are

well known by biologists and, for instance, they allow flat molecules (such as some dyes)

to be trapped within the DNA helix when base pairs close.

The breathing of DNA can be studied accurately using proton–deuterium exchange. If

DNA is dissolved into deuterated water, when the opening of a base pair exposes the protons

that form the hydrogen bonds to the solvent, the so-called imino protons, those protons can

be exchanged with deuterium from the water molecules of the solvent. The exchange rate

can be accelerated by a catalyst. Then, NMR can be used to detect the deuterium atoms

within the DNA molecule [2]. Kinetic experiments show that the lifetime of base pairs

(time during which they stay closed) is in the range of milliseconds at 35
◦

and ten times

more at 0
◦
. Lifetimes of the GC pairs linked by three hydrogen bonds are three times

longer than those of the AT pairs. At biological temperatures, the experiments show that

single base pair opening events are the only mode of base pair disruption. This indicates

that the large-amplitude conformational change that is able to break a pair and expose a

base to the solvent is a highly localized phenomenon. It should also be pointed out that

these localized fluctuations are observed in artificial molecules which contain homogeneous

sequences of identical base pairs. Therefore, the localization cannot be attributed to the

inhomogeneity of natural DNA sequences. At higher temperatures, the picture changes.

Thermal fluctuations can break the base pairs in large regions of DNA, leading to the so-

called DNA bubbles, which grow when temperature is raised, until full separation of the

strands. This melting transition of DNA is very sharp for homogeneous sequences. It can

be easily studied because the absorption of UV light at 219 nm increases drastically when

the base pairs are unstacked. The melting transition appears therefore as a sharp rise of the

UV absorption of the DNA solution, which only occurs within a few degrees for a short

DNA homopolymer. Depending on the sequence and salt concentration of the solution,

which affects the repulsion of the charged phosphate groups of the backbone, melting

occurs between 310 and 410 K [3]. This transition can be followed by differential scanning

calorimetry and Raman spectroscopy [4]. The changes observed in specific Raman band

frequencies and intensities as a function of temperature reveal that thermal denaturation

is accompanied by disruption of base pairs, unstacking of the bases and disordering of

the backbone. Furthermore, the intensity of some Raman bands at 1,240 and 1, 668 cm
−1

exhibits the same increase with temperature in the 340–360 K range as the variation of

enthalpy �H of the denaturation transition measured by differential scanning calorimetry.
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This shows that there is a link between an increase of the amplitude of the vibration of

the bases and DNA melting. Moreover, as melting occurs first through local opening of

DNA, the experiments appear to be compatible with the following pathway to melting: one

vibrational mode associated with base pair opening has an amplitude that grows locally until

it becomes so large that it leads to a local opening, forming a precursor of melting.

However, the wavelength of the light used in spectroscopic experiments is so large

compared to interatomic distances that standard spectroscopy cannot conclude about the

localization of the motions. The great interest of DNA is that one knows how to perform

local reactions at sites which can be precisely determined. This opens the possibility to

observe the local dynamics of the molecule through the response of a chromophore attached

to the region of interest. In [5], the authors studied the local dynamics of calf thymus

double-helical DNA by measuring the visible absorption band of the cationic dye ethidium

bromide, both free in solution and bound to DNA, for a temperature range 360–30 K in

two different solvent conditions. The comparison of the thermal behavior of the absorption

band of free and DNA-bound ethidium bromide gives information on the local dynamics

of the double helix in the proximity of the chromophore. The experiments show that above

280 K, the anharmonicity of the motion of the dye increases much faster when it is bound

to DNA than when it is free in solution. This is attributed to an onset of wobbling of

the dye in its intercalation site, which is likely to be connected with the onset of local

opening/unwinding of the double helix. The experiments clearly show that large amplitude

“premelting” motions of DNA occur well below the denaturation temperature [6]. The

use of a dye provides a method to probe these motions locally. However, although the

experiments of [5] can probe the “micro-environment” of DNA vibrations, they do not

prove that the motions observed in the vicinity of the dye are really localized in space. They

could extend along the helix. But the experiments can be refined by moving the probe along

the DNA molecule. This has been done with short DNA segments which form the stem

of a DNA hairpin [7]. In these experiments, the probe is a combination of a fluorophore

and a quencher, bound on the two strands. In the closed state, these two elements are next

to each other and electronic transfer between the fluorophore and the quencher prevents

fluorescence, while in the open state, fluorophore and quencher are sufficiently far apart

and the fluorescence of the fluorophore is observed. Recording the autocorrelation function

of the fluorescence allowed the authors of this study to investigate the dynamics of the

fluctuations of small DNA bubbles, extending over a few base pairs. They showed that

bubbles of 2 to 10 base pairs with lifetimes in the 50-μs range spontaneously open in double-

stranded DNA at 37
◦
C under low salt conditions (0.1 M).

Therefore, experiments using special molecular constructs, made possible by the ability

of biologists and chemists to initiate reactions at well-defined sites of DNA, are very

powerful. However, they can only report on the properties of the molecule at the sites of the

probes. Moreover, designing the molecular constructs may be difficult. Another powerful

method to investigate the properties of DNA with an excellent spatial resolution has been

designed recently. It uses photoinduced reactions in DNA exposed to high-intensity UV

laser pulses. This induces oxidative modifications affecting strongly the guanine bases (part

of all GC pairs along the sequence). Depending on the local conformation of the molecule at

the time of the pulse, two different modifications can be produced and they can be detected

by standard biochemical methods. A temperature study shows that the ratio between the

two modifications closely follows thermal opening of the base pairs [8]. The essential

point is that this method provides local information at the sites of all GC pairs in the

sequence. Thus, a single experiment provides a kind of mapping of the fluctuations along
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the DNA molecule. This experimental tool, which is already well tested, increases by one

order of magnitude the experimental data available. It is particularly useful to tune DNA

models up [9].

3 Nonlinear theory of the dynamics of DNA breathing

Therefore, although local observations may be challenging, the various methods which have

been used to study DNA fluctuations converge to the same conclusion: at biological or

room temperatures, DNA undergoes large amplitude-localized opening of the base pairs,

which can exist even in homopolymers. Understanding these observations is an interesting

challenge for a theoretician. Although the base pair dynamics are detected in some Raman

scattering experiments, the standard analysis of Raman vibrational modes cannot be used to

analyze the experiments because they are based on harmonic or weakly anharmonic modes,

which are not localized. The model must include the nonlinearities which are associated

with the large amplitude motions of the bases.

The simplest model (Fig. 3) is a model at the scale of a base pair [10] originally

introduced to study the thermal denaturation of DNA. It considers a single variable for

each base pair, the stretching y of the bond connecting the two bases. It is defined by its

Hamiltonian

H =
∑

n

p2

n
2m

+ W(yn, yn−1) + V(yn), with pn = m
dyn

dt
, (1)

where n is the index of a base pair and m its reduced mass. In the present study devoted to

the localization process, we do not include the genetic code. All base pairs are considered

to be the same to avoid any influence of disorder, which could introduce another source

of localization. Therefore the results that we discuss here are only valid for homopolymers.

The potential V(y) describes the interaction between the two bases in a pair. The model

of DNA melting [10] uses a Morse potential

V(y) = D
(
e−αy − 1

)2
, (2)

where D is the dissociation energy of the pair and α a parameter, homogeneous to the inverse

of a length, which sets the spatial scale of the potential. This expression has been chosen

n n+1n-1

V(y  )n W(y  ,  y      )
n n-1

y

V(y) = D( )e− αy − 1
2

V(y)

0 y

Fig. 3 The simple dynamical model for DNA nonlinear dynamics, described by the Hamiltonian (1)



78 M. Peyrard et al.

because it is a standard expression for chemical bonds and, moreover, it has the appropriate
qualitative shape: (a) it includes a strong repulsive part for y < 0, corresponding to the

steric hindrance mentioned above; (b) it has a minimum at the equilibrium position y = 0;

and (c) it becomes flat for large y, giving a force between the bases that tends to vanish, as

expected when the bases are very far apart; this feature allows a complete dissociation of

the base pair, which would be forbidden if we had chosen a simple harmonic potential.

The potential W(yn, yn−1) describes the interaction between adjacent bases along the

DNA molecule. It has several physical origins:

– the presence of the sugar-phosphate strand, which is rather rigid and connects the bases.

Pulling a base out of the stack in a translational motion tends to pull the neighbors due to

this link. One should notice, however, that we have not specified the three-dimensional

motion of the bases in this simple model. An increase of the base pair stretching could

also be obtained by rotating the bases out of the stack, around an axis parallel to the

helix axis and passing through the attachment point between a base and the sugar-

phosphate strand. Such a motion would not couple the bases through the strands. The

potential W(yn, yn−1) is an effective potential which can be viewed as averaging over

the different possibilities to displace the bases.

– the direct interaction between the base pair plateaus, which is due to an overlap of the

π -electron orbitals of the organic rings that make up the bases.

In a first step, a harmonic interaction W(yn, yn−1) was used, but this is a crude approximation

since experiments show that a base pair can open independently of its neighbors. The large

relative displacements rule out a low-order expansion of the potential, and the nonlinearity

of the stacking interaction should not be ignored. The appropriate shape of the potential is

imposed by the sharpness of the melting transition of DNA. This sharpness is associated

with an entropic effect. Opening the base pairs has an energy cost D, which is the energy

required to break the base pair, but there is an entropy gain because once they are open the

bases are freer to fluctuate. It is this effect which allows transitions in a one-dimensional

model like DNA [11]. The model can lead to realistic melting curves if the potential

W(yn, yn−1) takes into account the extra freedom of the broken base pairs. This can be

described [12] by choosing

W(yn, yn−1) = 1

2
K

(
1 + ρe−δ(yn+yn−1)

)
(yn − yn−1)

2 . (3)

This expression can be viewed as a harmonic interaction with a variable coupling constant.

As soon as either one of the two interacting base pairs is open (not necessarily both

simultaneously), the effective coupling constant drops from K ′ ≈ K(1 + ρ) down to K ′ ≈
K. The smaller coupling leads to an entropy increase, which promotes the transition by

reducing the free energy of the open state.

Figure 4 shows the dynamics of this model when it is in contact with a thermal bath that

describes the effect of the solvent on the DNA molecule. It shows characteristic features

which are consistent with the experimental observations of localized openings in DNA.

Some regions of the molecule appear as closed (light gray on the figure), while narrow

domains, appearing as black on the figure, correspond to a few base pairs which are open.

A careful examination of the figure shows that the opening is not static. The open regions

often appear on the figure as dashed lines, indicating an alternation of open and closed

states. This is a typical property of a nonlinear lattice such as the one that we used to

model DNA fluctuations (1). These motions are actually discrete breathers [13, 14]. Such

localized modes would not survive in a harmonic lattice, but due to the soft nonlinearity
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Fig. 4 Numerical simulation of the DNA model in contact with a thermal bath at 270 K. The stretching

of the base pairs is shown by a gray scale going from white for a closed pair to black for a fully open pair

(y ≥ 2.0 Å). The vertical axis extends along the DNA chain, which has 256 base pairs in this calculation, with

periodic boundary conditions. The horizontal axis corresponds to time. The time domain shown in this figure

is 2×10
−11

s. The parameters used for this calculation are m = 300 atomic mass units, D = 0.05254 eV,

α = 4.0 Å
−1

, K = 0.01 eV Å
−2

, ρ = 3.0, δ = 0.8 Å
−1

of the potential V, if a site vibrates with a very large amplitude its oscillation frequency

is significantly lower than the resonant frequency of its unexcited neighbors. As a result,

the energy transfer to the neighbors is not efficient, and the energy can stay on the excited

site. A soft nonlinearity can be expected from a qualitative analysis of DNA so that, even

if the model cannot claim to be fully realistic for DNA, the observations that we make

on the simple model can be expected to reflect the actual properties of the molecule. The

intuitive argument given above for the existence of localized oscillatory modes can be made

fully rigorous, and exact solutions of this type can be proved to exist for the DNA model

that we introduced [13, 15, 16]. What is important is that their existence is not tied to a

specific model. Only very generic features are required, essentially that the localized mode

frequency does not resonate with the frequencies of normal modes (phonons).

However, the existence of localized solutions is not sufficient to justify their observation

in a physical system like DNA. A mechanism for their creation must exist, which poses

the question of the localization of thermal fluctuations. At a first glance, it appears as a

breaking of equipartition of energy, but this is indeed not true. The observation of Fig. 4

and the study of the system on longer timescales show that the localized modes have a

finite lifetime. A mode can decay in one site, while another one appears elsewhere in the

system, so that, in the long term, the energy of the thermal fluctuation is evenly distributed

along a whole DNA homopolymer, as expected from statistical physics. It is, however,

remarkable that, on a timescale of the order of several hundred periods of oscillations of

a base pair, the distribution of the thermal fluctuations can vary significantly from place

to place in the molecule. In order to give a quantitative measurement of localization,

one can use local distribution functions. Let us consider a particular dynamical variable

A(n, t) which depends on site n and time t. A can be the displacement field yn(t), the

kinetic energy of an oscillator p2

n (t)/(2m), or the energy density en(t). The local distribution

function for A, P(A, n0, t0, �n,�t), is the normalized distribution of the values of A(n, t)
within the domain n0 − �n/2 ≤ n ≤ n0 + �n/2, t0 − �t/2 ≤ t ≤ t0 + �t/2. In the limit

�n → ∞, or �t → ∞, P tends to the equilibrium distribution for the variable A at the

temperature T of the simulation. On the contrary, for small �n and �t, P depends on space.

Figure 5 shows an example of this variation for the DNA model at T = 300 K, for �n =
4, �t = 2 × 10

−10
s. Localization can even be measured quantitatively by calculating

distances in probability space between the local distribution functions evaluated at different

points [17].
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Fig. 5 Local distribution

P(y, n0, t0,�n,�t) for the DNA

model at temperature T = 300 K.

�n = 4, �t = 2 × 10
−10

s. The

axis extending from left to right
gives the values of the

displacements y, and the axis
going from front to back
corresponds to n0. It extends

along the 128 cells of the lattice

used in the simulation, and the

vertical axis corresponds to the

distribution function P

Besides the highly localized fluctuations, Fig. 4 shows the presence of larger dark spots,

which correspond to open regions than span several base pairs of DNA. They correspond to

the DNA bubbles, which are the precursors of the melting transition. For the simple model

that we introduced, this melting transition can be studied by standard methods of statistical

physics [11]. The partition function of the model can be calculated exactly by numerical

methods, as well as other quantities such as the average stretching of the base pairs shown

in Fig. 6a. The sharp increase of 〈y〉 observed around 335 K is due to the separation of the

two DNA strands.

The theoretical results presented above seem to describe the experimental results on

DNA to a reasonable accuracy, and, as one cannot expect quantitative results from a model

which is so simple, it is tempting to consider that the model is satisfactory. However,

although a complete quantitative agreement with experiments cannot be expected, there

are some aspects of the results that show that the model cannot be accepted as it is. The

problem concerns the lifetime of the open states of the base pairs. With the model described

by (1), (2), and (3), the opening appears as a breathing mode, i.e., although the breather can

have a lifetime of hundreds of picoseconds, the base pair opens and closes with a period of

the order of a picosecond. This is not in agreement with the measurements of the kinetics

of the imino-proton exchanges which conclude that the lifetime of the open state is in the

nanosecond range (estimations are in the range 30 to 300 ns) [18]. Thus, although the model

gives statistical averages which can be fitted to experimental results for the melting curves

of short DNA segments [19], its dynamics is not consistent with the observations, which

suggests that it is qualitatively incorrect. Ideas to solve this discrepancy come from all-atom

molecular dynamics (MD) simulations [20]. As opening is a rare event, which may extend

over hundreds of nanoseconds, MD simulations, which have to study a very large number

of degrees of freedom, including those of the solvent, cannot study the lifetime of the open
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Fig. 6 Average stretching of the

base pairs in the DNA model

described by the Hamiltonian (1)

with the Morse potential (2)

(a) and with the modified

potential (4) (b). The parameters

of the model are K = 0.01 eV

Å
−2

, ρ = 3.0, δ = 0.8 Å
−1

, and

D = 0.05254 eV, α = 4.0 Å
−1

for (a) ; D = 0.0857 eV

α = β = 4.0 Å
−1

, E = 4.0 eV

Å
−1

for (b)
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state. But these simulations can be biased to observe the free energy pathway associated

with opening. This is done by adding a geometrical constraint imposed by a bias potential

that imposes a given opening. Then the fluctuations of the DNA structure are recorded for all

intermediate positions. Their probability distribution, corrected from the effect of the bias,

gives the free energy as a function of the opening [20]. The results are highly sensitive to

the details of the solvent and counterion dynamics, but they nevertheless show that the free

energy of the open state may have a shallow minimum. This is consistent with a dynamics

in which the base pair may stay open for a long time rather than vibrating as a breather.

Moreover, the simulations show that open bases can fluctuate a lot. Their motions include

rotations, which may hinder the reclosing of the pairs, inducing an energetic barrier for

closing. In a mesoscopic model, which only describes a subset of the degrees of freedom of

the system, the potentials are actually free energies that take into account all the degrees of

freedom which are not included in the model. Therefore, it is natural to replace the simple
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Morse potential by a more elaborate function which describes the effects discussed above,

and particularly the barrier for reclosing. To allow analytical calculations, we have chosen

the following expression

Vh(y) =

⎧
⎪⎪⎨

⎪⎪⎩

A
[
e−αy − 1

]2
if y < 0,

ay2 + by3 + cy4
if 0 ≤ y ≤ 1,

D + Ee−βy
(

y + 1

β

)
if y > 1 ,

(4)

which is determined when the parameters D, E, α, and β are selected. The other parameters

are calculated to ensure the continuity of the potential and of its first and second derivatives.

For y < 0, this potential is identical to a Morse potential, while for large values of y, it

decreases towards D after a hump which describes the barrier for reclosing. The polynomial

form for the intermediate range of y provides a smooth matching between the two domains.

We choose α = β = 4.0 Å
−1

as in the original Morse potential. The value of E = 4.0 Å
−1

has been selected to give a decay rate for the hump that extends on the proper spatial

scale, and the value of D is selected by calculating the melting temperature of the resulting

DNA model, using the transfer integral method [11] to compute 〈y〉, as shown in Fig. 6.

To obtain the same melting temperature as with the Morse potential, we have to select

D = 0.0857 eV. The resulting potential Vh(y) is shown in Fig. 7 together with the Morse

potential V(y). One can notice that the new potential has a higher value in the open state of

the bases. This is determined by the condition that we imposed on the melting temperature,

but it is consistent with the physics of DNA because the bases are hydrophobic. There is

a significant energy cost due to their interaction with the solvent in the open state, and the

new potential, which aims at a more accurate description of the free energy of the bases,

has to take this into account instead of simply describing the energy cost to break a base

pair, as done by the Morse potential. The melting curves for the two models are plotted in

Fig. 6. Their comparison shows that the melting is much sharper with the new model. This

is an interesting feature because it provides a better fit with the experimental observations

on DNA homopolymers, for which the transition is known to be very sharp.

Fig. 7 The potential Vh(y) for

α = β = 4.0 Å
−1

, E = 4.0 Å
−1

and D = 0.0857 eV ( solid line)

and the Morse potential with

α = 4.0 Å
−1

, D = 0.05254 eV

(dotted line) that gives the same

melting temperature for the DNA

model
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Fig. 8 Comparison of the dynamics of the model with the Morse potential V(y) (top figure) and with the

modified potential with a hump Vh(y) (bottom figure) obtained from a numerical simulation of the models in

contact with a thermal bath at 270 K. The stretching of the base pairs is shown by a gray scale going from

white for a closed pair to black for a fully open pair (y ≥ 2.0 Å). The vertical axis extends along the DNA

chain, which has 256 base pairs in these calculations, with periodic boundary conditions. The horizontal axis
corresponds to time. The parameters used for this calculation are K = 0.01 eV Å

−2
, ρ = 3.0, δ = 0.8 Å

−1
,

D = 0.05254 eV, α = 4.0 Å
−1

for the Morse potential (top figure) and α = β = 4.0 Å
−1

, E = 4.0 Å
−1

and

D = 0.0857 eV for the potential Vh(y) (bottom figure). The total time shown in these figures is 2 × 10
−8

s,

i.e., 1,000 times longer than for Fig. 4

This new model can be used to study the dynamics of DNA at controlled temperature, as

we did with the first model. Figure 8 compares the results for the Morse potential and for the

new potential Vh(y). The difference is striking. For the Morse potential, the parameters for

the simulation are exactly the same as those used to plot Fig. 4, but the time domain which is

shown in Fig. 8 is 1,000 times longer (20 ns). At this scale, the very short lifetime of the open

states given by the Morse potential shows up clearly. The results with the potential Vh(y)
are very different. First, only a few regions are affected by the opening. This is consistent

with the statistical calculation of the melting curve (Fig. 6), which shows that precursor

effects are small below the melting temperature. In order to evaluate the lifetimes of the

open and closed states, we performed long calculations with the parameters of Fig. 8 but a

total simulation time of 6.6 μs. For each base pair, we detect opening events, defined as an

increase of y beyond 2.6 Å, and closing events, defined as a drop of y below 0.6 Å. They

are used to compute the statistics of the lifetimes of the open and closed states. For the

Morse potential, the average lifetime of an open base pair is only 0.08 ns, while it increases

to 7 ns when we use the new potential, bringing it in the range measured in experiments

[18]. Moreover, the open states concern only one or two consecutive bases, in agreement

with the observations [2], while the Morse potential was giving larger bubbles, even well

below the melting transition. The average lifetime of a closed base pair is found to be

0.4 ns for the Morse potential, whereas we get 0.4 μs when we use the new model. This

value is still well below the experimental estimates of a few milliseconds [2], but the new

potential nevertheless improves the results by three orders of magnitude. The origin of the



84 M. Peyrard et al.

discrepancy certainly comes partly from the oversimplified model that we use. However,

it could also come from different thresholds to detect openings in the experiments and in

the simulations. In our simulations, any opening, even as short as a 20 ps, is detected and

therefore considered as an interruption of the closed state, hence shortening its lifetime.

In the experiments using proton–deuterium exchange, it is likely that very short bursts of

opening are not detected because they do not last long enough to allow the exchange.

All these results show that replacing the Morse potential V(y) by the potential with

a hump, Vh(y), introduces a huge qualitative and quantitative change in the dynamical

properties of the DNA model and brings the lifetime of the open states in the experimental

range, while the original model was wrong by several orders of magnitude. This is

remarkable because the changes in the potential are rather minor and by no means of several

orders of magnitude.

4 A nonlinear model inspired by DNA

In the previous section, we have shown that attempts to describe DNA at the mesoscopic

scale with a model including only one degree of freedom per base pair led us to introduce

a new nonlinear lattice, with a potential which is not a simple potential well. This naturally

raises the question of the mathematical properties of this new model. The initial lattice

model with an on-site Morse potential had oscillatory localized solutions, the discrete

breathers. A qualitative analysis of the new model suggests that it might have localized

oscillatory solutions, too. In order to test this idea, we used numerical simulations of the

nonlinear lattice described by the Hamiltonian

H =
N/2∑

n=−N/2

p2

n
2m

+ 1

2
K(yn − yn−1)

2 + Vh(yn), with pn = m
dyn

dt
, (5)

where Vh(y) is given by (4). Instead of the nonlinear coupling W(yn, yn−1) introduced to

describe the stacking interactions in DNA, we have chosen a harmonic interaction which

simplifies the analysis, and which is identical to the interaction used in the mathematical

studies of discrete breathers [13, 16]. To initiate a localized mode, we start from a lattice at

equilibrium except for the central particle which has an initial position yc (yn = 0 ∀n �= 0,

y0 = yc, pn = 0 ∀n). This initial condition creates a vibrational motion centered at site 0 and

small amplitude linear waves which are radiated away. The simulations have been carried

out with N = 512 particles, fixed boundary conditions, and a small damping on the last 32

particles at both ends of the lattice to absorb the small amplitude waves. After a transient,

this process generates a steady vibrational mode. It is highly localized because the amplitude

of the motion decays quickly when one moves away from the central site. Once the steady

state is reached, we determine the extrema ymin and ymax of the motion of the central particle,

the frequency � of the oscillation, and the energy of the breathing mode Eb computed as the

energy in the 20 sites around the center. Figure 9 shows the result for a coupling constant

K = 0.01, corresponding to the value used for the DNA model.

Figure 9 displays a rich behavior with two bifurcations in the dynamics. For a small

excitation (yc < 0.7), the localized modes oscillate around the minimum of the potential

Vh(y) located at y = 0. In this domain, the breather is very similar to breathers observed

with various on-site potentials having a single minimum, and it can be studied with the same

methods. A first bifurcation appears when the amplitude of the excitation is large enough

to move the central particle beyond the hump of the potential. Then, the particle tends to
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Fig. 9 Properties of the

localized oscillatory mode

created by exciting one particle

in the lattice described by

Hamiltonian (5). The top figure
(a) shows the extrema of the

oscillation ymin and ymax as a

function of the amplitude yc

of the excitation. For each value

of yc a vertical line is drawn

between ymin and ymax.

The bottom figure (b) shows

the frequency � (crosses)

and the energy Eb (squares) of

the breather versus yc. Lengths

are in Å, energy in eV, and

frequency in 10
14

s
−1

, which are

the units used for the DNA model
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fall downhill, moving to large values of ymax until it is brought backwards by its harmonic

coupling to its neighboring particles, which are still in the potential well, close to y = 0.

This leads to an oscillation which takes place entirely in the range of y which is beyond

the hump of Vh(y). This bifurcation is associated with a sharp drop in the frequency of the

breather because the oscillation no longer takes place in the narrow minimum of Vh(y).
When yc is increased beyond the bifurcation, the amplitude of the oscillation decreases,

until it vanishes for yc ≈ 1.67 and increases again. This behavior suggests that the value

yc ≈ 1.67 corresponds to a static equilibrium of the lattice and that the breather oscillates

around this static distortion of the lattice. We show below that such a static solution does

indeed exist. This domain is interesting because it corresponds to a new class of discrete

breathers, which oscillate around a stable excited state of the lattice. As shown below when

we derive the static solution, these modes cannot be studied with the same approximate

methods as usual breathers because the limit K → 0 is singular.

Increasing yc even more leads to a second bifurcation because the amplitude of the

motion is such that the central particle can again fall into the potential minimum, with a

value ymin < 0 as for the case of small amplitude excitations, but with a very large value of

ymax. This second bifurcation is also accompanied by a frequency drop. It is interesting to
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notice that, although the amplitude of the breather exhibits some discontinuities at the two

bifurcation points, its energy Eb is a continuous function of yc.

Let us now give an analytical proof of the existence of this spatially localized equilib-

rium. It corresponds to a solution of

K (yn+1 − 2yn + yn−1) = V ′
h
(yn), n ∈ Z (6)

satisfying yn → 0 as n → ±∞. Equivalently, {(yn, yn−1)}n∈Z defines a homoclinic orbit to

0 of a two-dimensional reversible map. As illustrated in Fig. 10, when the coupling constant

K varies one has in addition lim
K→0

y0 = +∞ and lim
K→0

yn = 0 for n �= 0.

Our existence proof is valid when K is small enough and relies on an extension to a

singular case of the anticontinuum limit for maps [21, 22] (see also [23] and its references).

In the classical anticontinuum limit, one starts from a well-defined solution of (6) for K = 0,

for which yn is assigned to a critical point of Vh for any n, and one uses the implicit function

theorem to continue this solution to K ≈ 0. In our case, one of the critical points lies at

Fig. 10 Properties of the static

solution for different values of K.

a The amplitude y0 as a function

of ln(K ) (squares) and the curve

y = −(1/β) ln(2K/Eβ). b The

static solution for different values

of K in logarithmic scale. Only

the positions of the particles near

the center of the solution are

shown. c y1/K (squares, left
scale) and y2/K2

(crosses, right
scale)
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infinity and the problem becomes singular for K = 0. Consequently, instead of the implicit

function theorem, one has to use the contraction mapping theorem in the neighborhood of a

suitable approximate solution ỹn, for which ỹn = 0 if n �= 0. Setting n = 0 in (6), ỹ0 can be

explicitly computed due to the specific form of Vh(y) for y > 1. One obtains

ỹ0(K ) = − 1

β
ln

(
2K
βE

)
. (7)

The following result ensures the existence of an exact localized equilibrium close to ỹn (in

what follows we denote by O Landau’s order symbol).

Theorem 1 There exists a constant K0 (depending on D, E, α, β) such that for 0 < K < K0,
problem (6) admits a spatially localized solution yn(K ) satisfying

Sup
n∈Z

|yn(K ) − ỹn(K ) | = O( | K ln (K ) | ), K → 0. (8)

Moreover, yn decays to 0 exponentially as n → ±∞ and has the symmetry y−n = yn.

To prove Theorem 1, we set yn = ỹn + un and look for symmetric solutions satisfying

u−n = un. The sequence u = {un}n≥0 is searched in the Banach space 	∞(N0) consisting of

real, bounded sequences, endowed with the usual supremum norm ‖ ‖∞. More precisely,

we look for u in the ball BR of radius R and center 0 in 	∞(N0), where R will be fixed small

enough. After elementary algebra, problem (6) can be rewritten

un = Gn(u) + K
2a

ỹ0(K ) δn1, n ≥ 0, (9)

where δij denotes the usual Kronecker symbol,

G0(u) = 1

β
(e−βu0 − 1 + βu0) + [β ỹ0(K ) ]−1 [ u0(e−βu0 − 1) + u1 ],

Gn(u) = f(un) + K
2a

(un+1 − 2un + un−1), n ≥ 1,

f(y) = y − 1

2a V ′
h
(y) = O(y2). Let us note Fn(u) the right side of (9) (it consists in pertur-

bative terms which are either O(‖u‖2∞) or become small for K ≈ 0). If R is fixed small

enough, then for all K > 0 small enough the map F : u �→ {Fn(u)}n≥0 defines a contraction

in BR, and thus problem (9) admits a unique solution u(K ) in BR in virtue of the contraction

mapping theorem. Using the estimate ‖G(u)‖∞ ≤ M‖u‖∞ (M < 1) in (9), one obtains in

addition ‖u(K )‖∞ ≤ C | K ln (K ) | and an exact solution yn(K ) = ỹn(K ) + un(K ) of (6).

Now there remains to show that yn tends to 0 as n → ±∞. If a sequence u converges to 0 as

n → +∞, then the same holds true for the sequence F(u). Consequently, for all k ≥ 0, the

sequence v(K ) = {Fk(0)}n≥0 tends to 0 as n → +∞. Since ‖v(K ) − u(K )‖∞ → 0 as k →
+∞ (classical property of successive approximations in the contraction mapping theorem),

it follows that lim
n→+∞ un(K ) = 0. Consequently, the corresponding orbit {(yn, yn−1)} of the

two-dimensional map associated with (6) belongs to the stable manifold of the origin (and to

its unstable manifold, since y−n = yn), therefore, yn decays to 0 exponentially as n → ±∞.

More precisely, we have yn ∼
±∞λ σ |n|

, where σ = K
2a + O(K2) denotes the stable eigenvalue

associated with the hyperbolic fixed point 0. This completes the proof of Theorem 1.
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Although we have restricted our attention to solutions having a single particle beyond

the hump at n = 0, it is worthwhile stressing that our method could also provide localized

solutions with multiple excited sites, as it the case, for example, in [23].

To end this analysis, we approximate the localized mode frequency � computed in Fig. 9,

in the limit of small amplitude oscillations around yn(K ) and for K ≈ 0. From estimate (8),

we conclude

� ≈
[

V ′′
h
(ỹ0(K ))

m

]1/2

≈
[

−2
K
m

ln

(
2K
βE

)]1/2

.

For the parameter values indicated in Fig. 7 (with K = 0.01 and m = 300), this approxima-

tion yields � ≈ 0.021, which is in good agreement with Fig. 9 for yc ≈ 1.67.

To test the results obtained in the proof of Theorem 1, we have determined the static

solution numerically. It can be obtained by a simple process. We impose a fixed position

y0 to the central particle, and we relax the lattice, i.e. we determine the positions of all

other particles in order to minimize the energy. Then, given the positions y−1, y0 and y1,

we can compute the total force f0 acting on the central particle due to the potential Vh and

its coupling with the neighbors. For an arbitrary value of y0, f0 does not vanish. But for

the value of y0 which corresponds to the static solution, f0 vanishes exactly. In this case, the

force deriving from the potential Vh is exactly compensated by the pulling exerted on the

central particle by its neighbors. Therefore, finding the static solution amounts to solving

the equation f0(y0) = 0, with respect to y0. Figure 10 shows the result for various values

of the coupling constant K. Figure 10a shows that the approximate solution ỹ0(K ) given

by (7) gives an excellent description of the exact static solution. Figure 10b confirms the

exponential decay of yn versus n and Fig. 10c shows that yi(K ) ∝ Ki
ln K (plotted for i = 1

and 2).

5 Conclusion

This work shows that the study of localized fluctuations in DNA is interesting both in

enhancing our understanding of the physics of DNA and for the mathematical theory of

nonlinear localized excitations.

Experiments show the existence of highly localized large amplitude motions of the base

pairs in DNA. This raises the question of the origin of this localization. A simple model

describing base pair opening only, i.e. focusing on the most relevant degree of freedom,

reproduces qualitatively, and even to a fairly good quantitative accuracy, the dynamics of

the localized fluctuations observed in the experiments. Although this is not a rigorous proof

that the localization observed in DNA is due to nonlinear effects, we believe that this is

a strong indication that it is the case. A simple model may sound less “realistic” than a

very detailed description, but, when it concentrates on the main qualitative properties of

the physical system of interest, it is also less likely to be wrong, because its main features

are hardly questionable. In this study, we have shown, however, that the model must meet

certain conditions to be acceptable. The statistical studies of equilibrium properties of DNA

had already shown that the stacking interactions had to be nonlinear to allow the model to

describe the sharp thermal denaturation of DNA homopolymers [10–12]. But, by focusing

on the dynamical properties of the base pair fluctuations, the present study has shown,

moreover, that the potential describing the interaction between the two bases in a pair must

have a hump, i.e. a barrier for reclosing, to lead to the correct order of magnitude for the
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dynamics of the fluctuations. This is a significant improvement towards the analysis of

actual DNA properties with a simple mesoscopic model.

This study also had an interesting output for the theory of nonlinear excitations because

the study of DNA leads to a model which has several bifurcations and exhibits a new class

of discrete breathers that do not oscillate around a ground state of the system but around a

static localized distortion of the lattice. We made a first analysis of this new type of discrete

breather, but it requires further investigations.
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