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Antonio Salas1*
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Abstract

Background: R0 embraces the most common mitochondrial DNA (mtDNA) lineage in West Eurasia, namely, haplogroup H
(,40%). R0 sub-lineages are badly defined in the control region and therefore, the analysis of diagnostic coding region
polymorphisms is needed in order to gain resolution in population and medical studies.

Methodology/Principal Findings: We sequenced the first hypervariable segment (HVS-I) of 518 individuals from different
North Iberian regions. The mtDNAs belonging to R0 (,57%) were further genotyped for a set of 71 coding region SNPs
characterizing major and minor branches of R0. We found that the North Iberian Peninsula shows moderate levels of
population stratification; for instance, haplogroup V reaches the highest frequency in Cantabria (north-central Iberia), but
lower in Galicia (northwest Iberia) and Catalonia (northeast Iberia). When compared to other European and Middle East
populations, haplogroups H1, H3 and H5a show frequency peaks in the Franco-Cantabrian region, declining from West
towards the East and South Europe. In addition, we have characterized, by way of complete genome sequencing, a new
autochthonous clade of haplogroup H in the Basque country, named H2a5. Its coalescence age, 15.668 thousand years ago
(kya), dates to the period immediately after the Last Glacial Maximum (LGM).

Conclusions/Significance: In contrast to other H lineages that experienced re-expansion outside the Franco-Cantabrian
refuge after the LGM (e.g. H1 and H3), H2a5 most likely remained confined to this area till present days.
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Introduction

Haplogroup R0, formerly known as pre-HV [1], is defined by

the absence of transitions A73G and G11719A relative to

haplogroup R. There is one main sub-branch of R0 defined by

the lack of C14766T (haplogroup HV) and a minor branch

known as R0a [2]. HV embraces the most frequent haplogroup

in Europe (,40%), namely, haplogroup H, which is defined by

the lack of the characteristic transitions A2706G and C7028T.

HV also contains some other less frequent clades, such as HV1,

HV2, and specially HV0, where haplogroup V is nested. Most of

the haplogroup H sub-lineages are most likely of Middle Eastern

origin (as it is the case of the majority of the typical West

European clades). Overall, R0 shows frequency patterns

declining from West towards East and South Europe and

Middle East [1,3,4].

By way of complete genome sequencing, Achilli et al. [1]

identified numerous sub-branches of haplogroup H. These authors

demonstrated for the first time that, although haplogroup H overall

in Europe is rather uniform, the sub-clades H1 and H3 show

frequency peaks centered in Iberia and surrounding areas. The

phylogeographic distribution of these lineages and their coalescence

ages (,11 kya) lead these authors to conclude that H1 and H3

represent a signal of late-glacial expansion of hunter-gatherers that

repopulated Central and Northern Europe from about 15,000 years

ago, after the LGM. These patterns mirror those previously observed

by the same authors for haplogroup V [5], which also shows a clear-

cut clinal geographical distribution in Europe, with a peak in the
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Franco-Cantabrian area and coalescence ages ranging from

16.364.8 kya in West Europe to 8.562.3 kya in the East Europe.

Therefore, the geographic and diversity patterns of these three

lineages pointed to a re-colonization period of Europe from western

refuge locations after the LGM period. Apart from adding

substantially to the resolution of the haplogroup H phylogeny,

another contemporary study [3] also showed that some lineages such

as H1*, H1b, H1f, H2a, H3, H6a, H6b, and H8, have distinct

phylogeographic patterns within Europe. The study by Brandstätter

et al. [6] further contributed to the dissection of the phylogeny of

haplogroup H, although with a more technical perspective. More

recently, Roostalu et al. [4] studied the population stratification of

haplogroup H sub-lineages in West Eurasia, with special focus to

Near Eastern populations and the Caucasus. Again, the authors

demonstrated that most of the haplogroup H lineages of present-day

Near Eastern-Caucasus area expanded after the LGM and

presumably before the Holocene. The study of Abu-Amero et al.

[2] was also very useful in providing further resolution at the level of

complete genome sequencing within R0a. The refined knowledge of

the mtDNA phylogeny to the level of complete genomes opened the

doors to a wide spectrum of different applications of medical and

forensic interest; see also [7,8,9,10].

On the other hand, the mtDNA phylogeny needs continuous

updating in order to ease future population and phylogenetic studies

(e.g. [11,12]). Due to the growing interest of geneticists in unraveling

the internal variation within haplogroup H, several conflicts have

arisen in the phylogeny and nomenclature of R0 sub-clades. For

example, the recent publication of Roostalu et al. [4] added new

branches to the phylogeny of haplogroup H, but for instance, their

label H19 was used to name a different branch in the contemporary

study of Achilli et al. [1]. To give another example, based on

complete genome sequencing, Behar et al. [13] referred to a new

clade, R0a1, with three minor sub-clades (R0a1a, R0a1b, and

R0a1c); however, they did not notice the contribution by Abu-

Amero et al. [2], where new complete genomes and new sub-

branches of R0a had been reported; thus, for instance, the R0a1 in

Behar et al. [13] matched a branch previously coined (preHV)1b by

Abu-Amero et al. [2] (therefore using also the old nomenclature; see

[14]). Some of the problems related to R0a were mentioned in

Brandstätter et al. [6] and Brandstätter et al. [15]; although many

problems still remain (see below).

The goals of the present study are: i) provide new insights into

the distribution and population variability of haplogroup H sub-

lineages in North Iberia to a high level of phylogenetic resolution;

ii) resolve the many existing conflicts in the nomenclature and

phylogeny of R0 that nowadays represent a challenge for future

inter-population studies; iii) refine the phylogeny of R0 by way of

inspecting the existing mtDNA complete genomes (plus coding

region segments) available in the literature and GenBank

(.1,100); and iv) contribute to enrich the known phylogeny of

haplogroup H at the level of complete genome sequencing, by

characterizing a new autochthonous clade observed in the Basque

Country, namely H2a5.

Methods

Samples
We have collected samples from three main North Iberia

regions. A total of 282 healthy unrelated individuals were obtained

from Galicia (northwest Iberia) (which is an independent sample to

the one reported in [16,17]). Three different locations were

sampled in Cantabria (N = 135; North-Central Iberia), including

39 healthy unrelated individuals from Valle del Pas, 45 from Valle

del Liébana, and 51 from Santander. Several individuals from

Valle del Pas were previously reported for the HVS-I segment in

Maca-Meyer et al. [18] . For most of the analysis, these three

locations were lumped in a single group (Cantabria). A total of 101

individuals suffering autism were collected from Catalonia

(northeast Iberia). Since mtDNA lineages do not play a role as

medium to high penetrance factors in autism (which is likely to be

a polygenic and multifactorial disease), this sample can be

considered to represent (from a mtDNA point of view) a random

sample from the region (a case-control association study performed

by the authors adds support to this statement). Finally, eight

samples carrying substitution C4592T in the sample set of 75

individuals from the Basque Country (bordering East Cantabria)

screened in [19], and presumably belonging to a new minor clade

of haplogroup H (here baptized as H2a5), were selected for

complete genome sequencing.

Oral informed consent was required for the samples collected in

Galicia and Cantabria, and all of them were anonymized. Written

informed consent was required for the samples collected in

Catalonia and were also anonymized; then, DNA extracts were

submitted to the laboratory in Santiago de Compostela were the

genotyping was carried out. In addition, the study was approved

by the Ethical committee of the University of Santiago de

Compostela. The study conforms to the Spanish Law for

Biomedical Research (Law 14/2007- 3 of July).’’

Genotyping protocols and nomenclature
All the samples from Galicia, Cantabria, and Catalonia were

sequenced for the HVS-I region (N = 518). Those samples

belonging to R0 or with a dubious adscription to other non-R0

haplogroups (N = 293; ,57%) were further genotyped for a set of

71 coding region SNPs mainly defining different branches within

R0 (more information below). A total of 283 samples (,55%) were

finally classified as belonging to some R0 sub-branch.

The protocol for PCR amplification and automatic minisequen-

cing is fully described in Text S1. Protocols for automatic

sequencing of control region mtDNAs and complete genome

sequencing are also shown in Text S1.

MtDNA variation is referred to the revised Cambridge

Reference Sequence [20]. Haplogroup nomenclature is based on

previous studies [1,2,3,4,5,6,7,13,15,21,22,23]. As introduced

above, an important number of conflicts have arisen among past

studies, most of them because of the neglect of already existing

nomenclature, or the delay of updating results from information

available in the literature, or simply because overlapping of

different publications. In order to reconcile the nomenclature

conflicts between different studies, we have followed a chronolog-

ical criterion when possible but only in case this nomenclature was

harmonious with the almost worldwide accepted nomenclature

rules and phylogenetic features [11].

Monitoring genotyping errors
We have used the mtDNA tree as a reference to avoid as much

as possible artefactual profiles and documentation errors in

mtDNA sequences and in SNP genotypes [24,25,26,27,28,29].

When detecting some unexpected SNP pattern, we confirmed the

genotypes by repeating the SNP genotyping using single-plex

minisequencing and automatic sequencing, as performed in

Álvarez-Iglesias et al. [9].

Genetic diversity estimates and analysis of geographical
patterns

DnaSP 4.10.3 software [30] was used for the computation of

different diversity indices, including haplotype and nucleotide
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diversities and mean number of pairwise differences [31,32,33].

Departure from normal distribution of pairwise differences was

checked using the Harpending’s r (raggedness) index [34]. Selective

neutrality was tested using the Tajima [35] and Fu and Li tests [36].

The geographical representations of haplogroup frequencies

were obtained using Surfer 8.0 (http://www.goldensoftware.com).

The data used was collected from previous studies [3,4,6,14] and

the present one, representing a total of 24 different population

samples. We used the inverse-squared distance method. Hap-

logroup frequencies are presented in a regular grid covering part

of Eurasia (including Europe), Middle East and the Arabian

Peninsula. Only data points within the same landmass, either

island or continent, were considered for interpolation. In addition,

we carried out analysis of spatial autocorrelation using the Spatial

Autocorrelation Analysis Program (SAAP; http://www.exetersoft-

ware.com/cat/saap.html) in order to detect and evaluate statisti-

cally signals of gradients (clines), gradients irradiating from the

center of a particular area (depressions) or isolation by distance

models; see for instance Barbujani [37].

Phylogeographic analysis
R0 and its different sub-lineages are the main focus of the

present article; however, there are only few studies focusing on the

internal variability of R0 suitable for population comparisons

[1,3,4,14,38,39]. In addition, different haplotype searches were

carried out using literature mtDNA datasets, most of them

containing just HVS-I data; thus, in the literature there are more

than 30,000 West Eurasian mtDNA profiles available that can be

used for phylogeographic purposes.

Estimation of the time to the most recent common ancestor of

each cluster and SDs were carried out according to Saillard et al.

[40] and employing an evolutionary rate estimate which is

intermediate between the one provided in [41] and [42],

according to the procedures followed in [43]. Thus, the calibration

corresponds now to 4,610 years per substitutions considering all

the substitutions in the entire coding-region.

Results

The rationale for SNP selection and the R0 phylogeny
R0 differs from R* by lacking A73G and G11719A. R0 contains

haplogroup HV which likewise embraces the most common

haplogroup in Europe, H, but also haplogroup HV0a (where

haplogroup V is nested) and some other minor branches such as

HV1 and HV2. Within haplogroup H, there are at least 25 sub-

haplogroups; many of them can be further sub-divided into minor

branches.

MtDNA coding region SNP genotyping has been designed here

with the aim of covering as much as possible the R0 phylogeny;

given priority to those SNPs representing the most frequent sub-

lineages, and also those characterizing branches that do not have

any known diagnostic polymorphism in the control region. SNP

selection in the present study considers the full set of SNPs

reported in Brandstätter et al. [6] (with the exception of SNP

A14552G which is replace here by C3936T; both leading to

haplogroup H12) plus a selection of additional variants that define

further sub-branches of R0 within Europe; see e.g. [4]. In

addition, the analysis of the literature and complete genomes

sequences available in GenBank has allowed us to infer new minor

sub-lineages of R0 (see e.g. Text S2 and Table S1).

When selecting mtDNA SNPs, it called our attention the many

inconsistencies existing in the nomenclature of haplogroup H and

its sub-lineages. One of the aims of the present study was therefore

to resolve these nomenclature conflicts in order to ease inter-

population genetic studies. These problems and the rationale to

determine new sub-branches of R0 are shown in Text S2 and

Table S1. The updated classification tree of haplogroup R0 and its

sub-clades is shown in Figure 1 and Figure 2. These figures also

indicate the SNPs selected and genotyped in the present study. We

also incorporated in the minisequencing assays various diagnostic

sites for haplogroups HV1 and HV2 (sister clades of H and HV0),

and other polymorphisms covering several major branches of

haplogroup R, namely, haplogroup U (A12308G) and JT

Figure 1. Phylogeny of haplogroup R0. An expanded view of the haplogroup H phylogeny is shown in Figure 2. Underlined positions signal
parallel mutations, while @ indicates a back mutation. In bold are the control region variants, whereas dots indicate the SNPs selected and genotyped
in the present study.
doi:10.1371/journal.pone.0005112.g001
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(C15452A). The transition C12705T defining macro-haplogroup

N was also added.

The advantages of using a minisequencing multiplex genotyping

procedure versus other mtDNA SNP genotyping methods are

reported and explained in Text S3. Some phylogenetic inconsis-

tencies have been observed in our data, but all of them were

confirmed by sequencing (see M&M); the most relevant ones are

also described in Supplementary Data S2.

Global mtDNA patterns in North Iberia
The three North Iberian samples analyzed in the present study

show a typical West European mtDNA haplogroup composition

(Table S2). Some haplogroups show slight differences in

frequency. For example, while haplogroup H sums ,39% of the

total mtDNAs in Catalonia and Cantabria, it makes-up ,44% of

the mtDNA pool in Galicia. Haplogroup V reaches its highest

frequency in Cantabria, ,9%, and decrease substantially in

Galicia (,4%), and in Catalonia (,3%). These differences in

frequencies are not statistically significant (under a Chi-square test)

but the patterns observed are in agreement with previous findings

[5,16].

All the HVS-I profiles obtained were searched among datasets

compiled from the literature (more than 83.000 profiles) but only

considering the common sequence range from position 16090 to

16365. A total of ,5%, ,10%, and ,14% of the mtDNAs from

Cantabria, Galicia and Catalonia, respectively, were still not

observed in the literature. Catalonia shows the highest levels of

sequence diversity, followed by Galicia and Cantabria (see also

below and Table 1 for variability within haplogroup H). As

expected, the most common haplotype was the one that matches

the rCRS sequence, being very common in Galicia (,20%; range

16090–16365), but decreasing in frequency towards Cantabria

(,13%) and Catalonia (,12%).

A small percentage of the total mtDNAs analyzed belonged to

non-Eurasian lineages. Thus, several sub-Saharan mtDNA profiles

were detected in Galicia (,2.5%) and Catalonia (,3%); none in

Cantabria. Curiously, six out of the ten sub-Saharan haplotypes

observed belong to haplogroup L1b; this clade originated in

western Africa but it was also carried to America during the period

of the Atlantic slave trade [44,45,46]. For instance, the L1b1

profile found in Galicia, T16126C C16187T T16189C C16223T

C16264T C16270T C16278T A16293G T16311C (note also the

presence in Galicia of another derivative haplotype with A16317G

on top), is found in many sub-Saharan regions [47,48], but also in

America [49,50,51]. The rare haplotype, C16169T C16193T

T16195C C16223T T16243C C16261T, observed in Galicia

belongs to the uncommon sub-Saharan haplogroup L3x2 typically

found in Ethiopia and Yemen [52]; peculiarly, this haplotype was

also detected in an independent sample collected from the same

region some years ago [16,17].

Some typical Native American profiles were also observed in the

Catalonian sample. For instance, the haplogroup D1 profile

T16189C C16223T T16325C T16362C (excluding the ‘speedy’

transversion A16183C) is commonly found in South America

[53,54], or the A2 haplotype C16111T T16189C C16223T

C16290T G16319A T16362C (excluding highly mutable transi-

tion T16519C), which is also common in all around America

[49,50].

In Catalonia we have also observed one rare East Asian profile,

C16104T C16111T T16140C A16162G 16169+C A16182C

A16183C T16189C C16228T C16234T T16243C, belonging to

B5b. Members of this haplogroup appear frequently in Japan,

Taiwan, Korea, etc. [9,55].

The presence at low frequency of non-western European

lineages in Catalonia could be explained by recent gene flow

because it is well-known that this region has received important

Figure 2. Phylogeny of haplogroup H. See legend of Figure 1 for more details.
doi:10.1371/journal.pone.0005112.g002
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Table 1. Summary statistics of HVS-I sequences in the North Iberian populations analyzed in the present article and other
European populations.

HG Population N k S Nmut H6SE p6SE M VO(M) r D FL

All the sample

Galicia*1 282 150 (0.53) 93 102 0.95260.010 0.013860.001 3.76 5.06 0.012 22.328** 24.727**

Catalonia*1 101 79 (0.78) 71 73 0.98460.007 0.016660.001 4.59 6.29 0.014 22.187** 23.557**

Cantabria*1 135 61 (0.45) 60 62 0.97160.007 0.013560.001 3.72 3.85 0.018 22.099* 22.596*

HG-H

Galicia*1 124 51 (0.41) 49 50 0.80060.038 0.00660.001 1.73 2.08 0.035 22.528*** 24.447**

Catalonia*1 44 30 (0.68) 33 33 0.93760.030 0.00960.001 2.48 1.93 0.043 22.300** 23.836**

Cantabria*1 52 26 (0.50) 25 26 0.87560.042 0.00660.001 1.78 1.33 0.067 22.251** 22.480**

Volga-Ural*2 50 18 (0.36) 17 18 0.81960.049 0.00660.001 1.61 1.39 0.050 21.884* 21.966

Finland*2 31 16 (0.52) 15 16 0.90860.035 0.00960.001 2.42 1.53 0.092 21.338 21.083

Estonia*2 50 31 (0.62) 30 31 0.93660.026 0.00960.001 2.54 2.31 0.035 22.114* 23.113*

Slovakia*2 50 30 (0.60) 31 30 0.93960.027 0.00960.001 2.49 2.23 0.045 22.090* 22.455*

France*2 50 19 (0.38) 17 19 0.76260.063 0.00560.001 1.31 1.33 0.097 22.187** 22.569*

Balkans*2 50 31 (0.62) 30 31 0.95360.018 0.00960.001 2.52 1.77 0.053 22.120* 22.852*

Turkey*2 50 31 (0.62) 27 31 0.91460.032 0.00860.001 2.13 1.59 0.055 22.311** 23.113*

Near East*2 50 36 (0.72) 30 36 0.94360-023 0.00960.001 2.56 2.08 0.040 22.301** 24.097**

Asia*2 48 29 (0.60) 26 29 0.94760.019 0.01060.001 2.89 2.37 0.029 21.962* 22.261

Eastern Slavs2 50 30 (0.60) 31 30 0.94460.023 0.00960.001 2.35 1.67 0.057 22.162* 23.280*

Arabian Peninsula*3 52 29 (0.56) 30 30 0.94760.017 0.00860.001 2.32 1.34 0.074 22.153* 23.050*

Armenia*3 54 27 (0.50) 33 33 0.91460.031 0.00960.001 2.53 2.35 0.030 22.158* 21.685

Daghestan*3 60 26 (0.43) 33 33 0.85960.042 0.00860.001 2.17 2.28 0.023 22.268** 22.323

Georgia*3 30 15 (0.50) 16 16 0.87460.050 0.00860.001 2.11 2.12 0.031 21.617 20.682

Jordan*3 33 18 (0.55) 25 25 0.84760.062 0.00860.001 2.24 2.30 0.024 22.227** 22.586*

Karatchaians-Balkanians*3 50 21 (0.42) 23 23 0.94360.017 0.01260.001 3.23 2.00 0.059 21.202 0.411

Lebanon*3 34 20 (0.59) 23 23 0.90760.041 0.00860.001 2.09 1.88 0.061 22.171* 23.548**

Northwest Caucasus*3 69 35 (0.51) 38 38 0.89560.034 0.00960.001 2.42 2.70 0.026 22.256** 22.953*

Ossetia*3 45 22 (0.49) 26 27 0.88360.002 0.00960.001 2.58 2.84 0.029 21.950* 22.445

Syria*3 28 19 (0.68) 23 23 0.96660.019 0.00960.001 2.38 1.38 0.098 22.139* 22.667*

Turkey*3 90 46 (0.51) 44 46 0.89860.029 0.00860.001 2.24 2.10 0.037 22.408** 22.957*

Austria*4 964 116 (0.12) 75 81 0.68360.017 0.00560.001 1.15 1.07 0.041 22.468*** 25.322

Germany*4 28 20 (0.71) 20 20 0.95260.030 0.01060.001 2.73 1.88 0.042 21.657 21.116

Hungary*4 55 15 (0.27) 22 22 0.67760.070 0.00660.001 1.64 2.61 0.073 22.059* 22.160

Macedonia*4 88 30 (0.34) 28 29 0.89260.025 0.00760.001 2.01 1.84 0.058 22.000* 21.707

Romania*4 100 29 (0.29) 29 29 0.91760.017 0.00960.001 2.48 2.04 0.034 21.690 22.160

N = sample size, k = number of different haplotypes (divided by N in brackets).
S = Number of polymorphic (segregating) sites.
Nmut = total number of mutations.
H = haplotype diversity and standard error.
p= nucleotide diversity and standard error.
M = average number of nucleotide differences.
VO(M) = observed variance of M.
r = Harpending’s (raggedness) index.
D = Tajima’s test of selective neutrality.
FL = Fu and Li’s D* statistics.
Statistical significance: *, P-value,0.05.
**P-value,0.02.
*1Present study.
*2Loogväli et al. [3].
*3Roostalu et al. [4].
*4Brandstätter et al. [15].
doi:10.1371/journal.pone.0005112.t001
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flow of immigrants in the last decades; more than Galicia and

Cantabria.

Diversity patterns of R0 in North Iberia
Several diversity indices were computed for the three North

Iberian samples analyzed in the present study (Table 1). Overall,

the Catalonian sample shows the highest values of sequence and

nucleotide diversity (however with overlapping ranges considering

a confidence interval of two standard errors) and also for the

average number of nucleotide differences. The Cantabrian region

shows the lowest values again for the three mentioned indices.

The patterns of variability within haplogroup H are quite

different around Europe and Middle East. For instance, Galicia

shows one of the lowest sequence diversity values within Eurasia

(Table 1), in agreement with a previous independent study from

the region [16]); and it is also among the regions with lowest values

of nucleotide diversities (together with Cantabria).

Both the Tajima’s D and the Fu and Li’s tests show significantly

negative values in almost all the populations (Table 1), suggesting

that all of them have passed through population expansions. The

mismatch distributions (data not shown) also support this

hypothesis as well as the raggedness r index (Table 1) indicating

that the mismatch distributions are unimodal and then compatible

with population expansion.

Phylogeographical patterns of R0 sub-lineages
Using the SNP genotyping strategy described above, less than

10% of the lineages within haplogroup H could not be allocated to

some of the already known H sub-branches (Table S3).

The distribution of haplogroup frequencies along the North

Iberian fringe shows patterns moderately stratified.

On average, ,42% of the mtDNAs in the total sample belongs to

haplogroup H; the Galician sample reaches the highest frequency

(,44%), and it is slightly lower (,39%) in Cantabria and Catalonia.

H* represents 15% and 10% of the total haplogroup H lineages

in Catalonia and Galicia, respectively, but only 4% in Cantabria.

H1a (without counting H1a1 and H1a2) represents 8% of the

haplogroup H mtDNAs in Cantabria, but it makes-up only 2% in

Galicia and 0% in Catalonia. Again with respect to haplogroup H,

H1 is more frequent also in Cantabria (46%) than in Galicia (38%)

and Catalonia (36%); whereas haplogroup V has a clear peak in

Cantabria, ,16% of the total R0 haplotypes (but only ,9% in

Galicia and ,6% in Catalonia).

The maps of Figure 3 show the spatial frequency distribution of

different sub-lineages of haplogroup H. Some clades get the highest

frequency in Iberia, such as H1, H3, and H5a or are only observed

in this region (H4); while others are virtually absent in Iberia but are

significantly more prevalent in Central Europe (e.g. H11).

In addition, haplogroups H1, H3, and H5a display clinal

patterns as determined by their spatial correlograms (Figure S1).

The frequency of these three haplogroups has a peak in the

Franco-Cantabrian refuge area and declines towards East Europe.

The autochthonous nature of the H2a5 clade in the
Basque Country

It was first notice in a study by Pereira et al. [19] by way of

sequencing several small coding region mtDNA segments, the

presence of the coding region variant C4952T in ,6% of their

samples from the Basque Country.

A scrutiny of more than 5,500 coding region segments (most of

them available in GenBank and some only in the literature) and in

Google searches (sensu [56,57]) revealed that this variant was only

reported twice, curiously in two medical studies [58,59] where no

detailed information on the geographical origin of the carriers was

provided. Therefore, the multiple occurrence of this transition in

the Basque Country could point to a diagnostic site for an

autochthonous lineage in this region. These features lead us to

further investigate these mtDNAs by way of complete genome

sequencing the eight available Basque samples carrying transition

C4592T.

This analysis revealed a new sub-clade of haplogroup H,

baptized here as H2a5. All these sequences share the following

diagnostic variants: A1842G C4592T G13708A C16291T

T16519C (Figure 4). Six out of the eight complete genomes are

identical while the other two show one private variant each. The

coalescence age for this sub-lineage is 15.769 kya.

Discussion

Analysis of mtDNA variation based exclusively on few RFLP

markers and/or the HVS-I region have lead in the past to

simplistic perceptions of Europe as a uniform population. The

results presented in previous studies [1,3,4,6,15,60] and those

shown here, demonstrate that population stratification in Euro-

pean population can only be revealed when using higher

phylogenetic resolution. Analysis of complete genomes ideally

provides the maximum level of resolution; however, genotyping

Figure 3. Geographic maps of haplogroup frequencies for haplogroups H*, H1, H2a, H3, H4, H5a, H6a, H7, H8, H11. Dots in the map
of H* indicate the location of the populations used. Codes for populations are: [1] Galicia, [2] Cantabria, [3] Catalonia (present study); [4] Volga-Ural,
[5] Finland, [6] Estonia, [7] Eastern Slavs, [8] Slovakia, [9] France, [10] Balkans, [11] Central Asia [3]; [12] Turkey, [13] Armenia, [14] Georgia, [15]
Northwest Caucasus, [16] Daghestan, [17] Ossetia, [18] Karatchians-Balkarians, [19] Syria, [20] Lebanon, [21] Jordan, [22] Arabian Peninsula [4]; [23]
Austria [6]; [24] Tuscani [14].
doi:10.1371/journal.pone.0005112.g003

Figure 4. Phylogeny of haplogroup H2a5.
doi:10.1371/journal.pone.0005112.g004
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complete mtDNA molecules demands great economical and

personal effort in large-scale population projects. Complete

genome sequencing is generally carried out when the analysis

focuses on a particular group of mtDNAs presenting some

interesting phylogenetic or population feature [1,3], such as

performed here for the analysis of members belonging to

haplogroup H2a5. At a population level, the coding region

genotyping strategy presented here represents a way to overcome

the drawback of whole genome genotyping and allow at the same

time obtaining high resolution information from the mtDNA

genome.

A total of 518 samples from three main locations in North Iberia

were sequenced for the HVS-I segment. About 55% of them could

be ascribed to R0. All these samples were further screened for a set

of 71 coding region SNPs in order to sub-classify them into

different R0 sub-clades. As indicated by the various diversity

indices computed, Galicia and Cantabria show low diversity

values, especially for the overall haplogroup H. The present study

also revealed moderate levels of stratification in North Iberia,

which could be relevant in other fields of research, such as in

forensic casework [61] or in medical studies, where population

sub-structure could explain most of the false positives of

association in case-control studies [62].

When compared to other European and Middle East

populations, we observed geographical patterns for H1, H3 and

H5a that are statistically clinal, with frequency peaks in the

Franco-Cantabrian region decreasing towards East Europe. This

is compatible with a process of demographic repopulation of

Europe after the LGM period centered in this climatic and

geographic refuge, as it was previously demonstrated by Torroni et

al. [5] and Achilli et al. [1].

We have also described a new minor autochthonous clade in

Basques, H2a5. This lineage has been dated in 15.668 kya; this

age fits also with the period of population expansion that followed

the LGM (although with a large standard error). However, this

branch was exclusively found in the Basque country at a significant

frequency (,6%). The absence of this clade in other parts of

Europe could be due to the limited sample size still available in the

literature; however, we can speculate with the fact that all the

evidences taken together resemble the findings of Torroni et al. [5]

and Achilli et al. [1] regarding the ‘imprint’ of post-LGM human

population re-expansions centered in the Franco-Cantabrian

refuge on the mtDNA variability.
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9. Álvarez-Iglesias V, Jaime JC, Carracedo Á, Salas A (2007) Coding region
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