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Abstract

If one formulates Helmholtz’s ideas about perception in terms of modern-day theories one arrives
at a model of perceptual inference and learning that can explain a remarkable range of
neurobiological facts. Using constructs from statistical physics it can be shown that the problems
of inferring what cause our sensory input and learning causal regularities in the sensorium can be
resolved using exactly the same principles. Furthermore, inference and learning can proceed in a
biologically plausible fashion. The ensuing scheme rests on Empirical Bayes and hierarchical
models of how sensory information is generated. The use of hierarchical models enables the brain
to construct prior expectations in a dynamic and context-sensitive fashion. This scheme provides a
principled way to understand many aspects of the brain’s organisation and responses.

In this paper, we suggest that these perceptual processes are just one emergent property of systems
that conform to a free-energy principle. The free-energy considered here represents a bound on the
surprise inherent in any exchange with the environment, under expectations encoded by its state or
configuration. A system can minimise free-energy by changing its configuration to change the
way it samples the environment, or to change its expectations. These changes correspond to action
and perception respectively and lead to an adaptive exchange with the environment that is
characteristic of biological systems. This treatment implies that the system’s state and structure
encode an implicit and probabilistic model of the environment. We will look at models entailed by
the brain and how minimisation of free-energy can explain its dynamics and structure.
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INTRODUCTION

This paper illustrates how ideas from theoretical physics can help understand the structure
and dynamics of biological systems, in particular the brain. This is not a rigorous treatment,
but a series of heuristics that provide an interesting perspective on how biological systems
might function. The first section motivates and describes a free-energy principle that
addresses the maintenance of structural order seen in living systems. The subsequent
sections use this principle to understand key functional and structural aspects of neuronal
systems, with a focus on perceptual learning and inference. This work pursues an agenda
established by von Helmholtz in the nineteenth century, who sought a basis for neuronal
energy in his work on conservation laws in physics. This ambition underlies many energy-
based approaches to neural networks (Borisyuk and Hoppensteadt 2004), including the
approach described here.
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Despite the latitude for disorder, the nervous system maintains an exquisite configurational
and dynamic order. This order is preserved on both an evolutionary and somatic time-scale.
The amount of reproducible anatomic information pertaining to the brain is now so vast it
can only be organised electronically (e.g., Stephan et a/ 2001). Furthermore, the brain’s
spatiotemporal responses, elicited experimentally, are sufficiently reproducible that they
support whole fields of neuroscience (e.g., human brain mapping). The premise of this paper
is that this precise structural and functional organisation is maintained by causal structure in
the environment. The principles behind this maintenance and the attending neuronal
mechanisms are the subject of this paper.

The analysis presented in this paper rests on some fairly mathematical and abstract
approaches to understanding the behaviour of systems. These approaches were developed
primarily in statistical physics and machine learning. The payoff for adopting this
mathematical treatment is that many apparently diverse aspects of the brain’s structure and
function can be understood in terms of one simple principle; namely the minimisation of a
quantity (free-energy) that reflects the probability of sensory input, given the current state of
the brain. We will see that this principle can be applied at different time-scales to explain
perpetual inference, attention and learning. Furthermore, exactly the same principle can
explain how we interact with, or sample, the environment; providing a principled account of
adaptive behaviour. It highlights the importance of perception for action and enforces a
mechanistic view of many ethological and neuronal processes. Another payoff is the
disclosure of some rather counterintuitive conclusions about our brains; for example, it
suggests that everything we do serves to minimise surprising exchanges with the
environment (and other people); it suggests that perception plays a secondary role in
optimising action; it suggests that the salience, attention and the encoding of uncertainty in
the brain are all aspects of the same underlying process; it suggests the hierarchal structure
of our brains is transcribed from causal hierarchies in the environment. Finally, it furnishes
clear links among other important formulations of adaptive systems; for example, we will
see that value, in microeconomics and reinforcement learning, is synonymous with
(negative) free-energy and surprise. Similarly, adaptive fitness can be formulated in terms of
free-energy, which allows one to link evolutionary and somatic timescales in terms of
hierarchical co-evolution.

Many people now regard the brain as an inference machine that conforms to the same
principles that govern the interrogation of scientific data (MacKay, 1956; Neisser, 1967;
Ballard et al, 1983; Mumford, 1992; Kawato ef a/1993; Rao and Ballard 1998; Dayan et al,
1995; Friston, 2003; Kérding and Wolpert 2004; Kersten et a/ 2004; Friston 2005). In
everyday life, these rules are applied to information obtained by sampling the world with our
senses. Over the past years, we have pursued this perspective in a Bayesian framework to
suggest that the brain employs hierarchical or empirical Bayes to infer the causes of its
sensations. This model of brain function can explain a wide range of anatomical and
physiological facts; for example, the hierarchical deployment of cortical areas, recurrent
architectures using forward and backward connections and functional asymmetries in these
connections (Angelucci et al, 2002a; Friston 2003). In terms of synaptic physiology, it
predicts associative plasticity and, for dynamic models, spike-timing-dependent plasticity. In
terms of electrophysiology it accounts for classical and extra-classical receptive field effects
and long-latency or endogenous components of evoked cortical responses (Rao and Ballard,
1998; Friston 2005). It predicts the attenuation of responses encoding prediction error, with
perceptual learning, and explains many phenomena like repetition suppression, mismatch
negativity and the P300 in electroencephalography. In psychophysical terms, it accounts for
the behavioural correlates of these physiological phenomena, e.g., priming, and global
precedence (see Friston 2005 for an overview)
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It is fairly easy to show that both perceptual inference and learning rest on a minimisation of
free-energy (Friston 2003) or suppression of prediction error (Rao and Ballard 1998). The
notion of free-energy derives from statistical physics and is used widely in machine learning
to convert difficult integration problems, inherent in inference, into easier optimisation
problems. This optimisation or free-energy minimisation can, in principle, be implemented
using relatively simple neuronal infrastructures. The purpose of this paper is to suggest that
perception is just one emergent aspect of free-energy minimisation and that a free-energy
principle for the brain can explain the intimate relationship between perception and action.
Furthermore, the processes entailed by the free-energy principle cover not just inference
about the current state of the world but a dynamic encoding of context that bears the
hallmarks of attention and perceptual salience.

The free-energy principle states that systems change to decrease their free-energy. The
concept of free-energy arises in many contexts, especially physics and statistics. In
thermodynamics, free-energy is a measure of the amount of work that can be extracted from
a system, and is useful in engineering applications (see Streater 1993 for discussion of free-
energy theorems). It is the difference between the energy and the entropy of a system. Free-
energy also plays a central role in statistics, where, borrowing from statistical
thermodynamics, approximate inference by variational free-energy minimization (also
known as variational Bayes, or ensemble learning) has maximum likelihood and maximum a
posteriori methods as special cases. It should be noted that the only link between these two
uses of the term ‘free-energy’ is mathematical; /.e., both appeal to the same probabilistic
fundaments. It is the second sort of free-energy, which is a measure of statistical probability
distributions that we apply to the exchange of biological systems with the world. The
implication is that these systems make implicit inferences about their surroundings. Previous
treatments of free-energy in inference (e.g., predictive coding) have been framed as
explanations or descriptions of the brain at work. In this paper, we try to go a step further by
suggesting that free-energy minimisation is mandatory in biological systems and has a more
fundamental status. We try to do this by presenting a series of heuristics that draw from
theoretical biology and statistical thermodynamics.

This paper has three sections. In the first, we lay out the theory behind the free-energy
principle, starting from a selectionist standpoint and ending with the implications of the free-
energy principle for neurobiology. The second section addresses the implementation of free-
energy minimisation in hierarchical neuronal architectures and concludes with a simple
simulation of sensory evoked responses. This illustrates some of the key behaviours of
brain-like systems that self-organise in accord with the free-energy principle. A key
phenomenon; namely, suppression of prediction error by top-down predictions from higher
cortical areas, is examined in the third section. In this final section, we review some key
issues in neurobiology that can be understood under the free energy principle.

In this section, we develop a series of heuristics that lead to a variational free-energy
principle for biological systems and, in particular, the brain. We start with evolutionary or
selectionist considerations that transform difficult questions about how biological systems
operate into simpler questions about constraints on their behaviour. These constraints lead to
the important notion of an ensemble density that is encoded by the state of the system. This
density is used to construct a free-energy for any system that is in exchange with its
environment. We then consider the implications of minimising this free-energy with regard
to quantities that determine the system’s (/.e., brain’s) state and, critically, its action upon
the environment. We will see that this minimisation leads naturally to perceptual inference
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about the world, encoding of perceptual uncertainty (7.e., attention or salience), perceptual
learning about the causal structure of the environment and, finally, a principled exchange
with, or sampling of, that environment.

In what follows, free-energy becomes a Lyapunov function for the brain. A Lyapunov
function is a scalar function of a system’s state that decreases with time; it is also referred to
colloquially as a Harmony function in the neural network literature (Prince and Smolensky,
1997). There are many examples of related energy functionals® in the time-dependent partial
differential equations literature (e.g., Kloucek, 1998). Usually, one tries to infer the
Lyapunov function given a system’s structure and behaviour. However, we address the
converse problem: given the Lyapunov function, what would systems that minimise free-
energy look like?

Thermodynamics and biological systems

We start with an apparent anomaly: biological systems and especially neuronal systems
appear to contravene the second law of thermodynamics. The second law states that the
entropy of closed systems increases with time. Entropy is a measure of disorder or, more
simply, the number of ways the elements of a system can be rearranged. In the physical
sciences the second law of thermodynamics is fundamental and has attained almost cult
status: As noted by Sir Arthur Eddington “If someone points out to you that your pet theory
of the universe is in disagreement with Maxwell’s equations, then so much the worse for
Maxwell’s equations. And if your theory contradicts the facts, well, sometimes these
experimentalists make mistakes. But if your theory is found to be against the Second Law of
Thermodynamics, | can give you no hope; there is nothing for it but to collapse in deepest
humiliation” (http://en.wikipedia.org/Second_law). The fact that the second law applies only
to ‘closed’ systems is quite important because biological systems are open, which means
they have the opportunity to resist the second law; but how?

Thermodynamics and fluctuations—The second law applies to macroscopic or
ensemble behaviour. It posits time-irreversible behaviour of a system, despite the fact that its
microscopic dynamics can be time-reversible. This apparent paradox is resolved with the
Fluctuation Theorem (see Evans & Searles 2002). The Fluctuation Theorem shows that the
entropy of small systems can decrease but as the system’s size or the observation time gets
longer, the probability of this happening decreases exponentially. The fluctuation theorem is
important for non-equilibrium statistical mechanics, and includes the second law as a special
case. Critically, the Fluctuation Theorem holds for dissipative, non-equilibrium systems. A
dissipative system is an open system, which operates far-from-equilibrium by exchanging
energy or entropy with the environment. Recently, the Fluctuation Theorem has been
applied to non-equilibrium transitions between equilibrium states to show how free-energy
differences can be computed from thermodynamic path integrals (Crooks 1999). Equivalent
derivations for deterministic systems highlight the close relationship between non-
equilibrium free-energy theorems and the Fluctuation Theorem (Evans 2003). These non-
equilibrium free-energy theorems are of particular interest because they apply to dissipative
systems like biological systems.

The nature of biological systems

If the Fluctuation Theorem is so fundamental, why do we see order emerging all around us?
Specifically, why are living systems apparently exempt from these thermodynamic laws?
How do they preserve their order (/.e., configurational entropy)z, immersed in an

1A functional is a function of a function.

Synthese. Author manuscript; available in PMC 2009 March 25.


http://en.wikipedia.org/Second_law

syduasnue|A Joyiny siapun4 JIAd adoin3 ¢

syduosnuelA Joyiny sispun4 DA @doing ¢

Friston and Stephan

Page 5

environment that is becoming irrevocably more disordered? The premise here is that the
environment unfolds in a thermodynamically structured and lawful way and biological
systems embed these laws into their anatomy. The existence of environmental order is
assured, at the level of probability distributions, through thermodynamics. For example,
although disorder always increases, the second law per se is invariant. This invariance is
itself a source of order. In short, organisms could maintain configurational order, if they
transcribed physical laws governing their environment into their structure. One might ask
how this transcription occurs. However, a more basic question is not how biological systems
arise, but what are they?

What is the difference between a plant and a stone? The obvious answer is that the plant is
an open non-equilibrium system, exchanging matter and energy with the environment,
whereas the stone is an open system that is largely at equilibrium: Morowitz computed the
thermal bonding energy required to assemble a single Escherichia colibacterium. He
concluded “if equilibrium process alone were at work, the largest possible fluctuation in the
history of the universe is likely to have been no longer than a small peptide” (Morowitz
1968; p68). In short, biological systems must operate far-from-equilibrium: The flow of
matter and energy in open systems allows them to exchange entropy with the environment
and self-organise. Self-organisation (Ashby 1947, Haken 1983) refers to the spontaneous
increase in the internal organisation of open systems. Typically, self-organising systems also
exhibit emergent properties. Self-organisation only occurs when the system is far-from-
equilibrium (Nicolis and Prigogine 1977). The concept of self-organisation is central to the
description of biological systems and also plays a key role in chemistry, where is it often
taken to be synonymous with self-assembly3.

Beyond self-organisation—Biological systems are thermodynamically open, in the
sense that they exchange energy and entropy with the environment. Furthermore, they
operate far-from-equilibrium, showing self-organising behaviour (Ashby, 1947; Nicolis and
Prigogine, 1977; Haken 1983; Kauffman 1993). However, biological systems are more than
simply dissipative self-organising systems. They can negotiate a changing or non-stationary
environment in a way that allows them to endure over substantial periods of time. This
means that they avoid phase-transitions that would otherwise change their physical structure.
A key aspect of biological systems is that they act upon the environment to change their
position within it, or relation to it, in a way that precludes extremes of temperature, pressure
or other external fields. By sampling or navigating the environment selectively, they keep
their exchange within bounds and preserve their physical integrity. A fanciful example is
provided in Figure 1: Here, we have taken a paradigm example of a non-biological self-
organising system, namely a snowflake and endowed it with wings so that it can act on the
environment. A normal snowflake will fall and encounter a phase-boundary, at which its
temperature will cause it to melt. Conversely, snowflakes that maintain their altitude and
regulate their temperature may survive indefinitely, with a qualitatively recognisable form.
The key difference between the normal and adaptive snowflake is the ability to change their
relationship with the environment and maintain thermodynamic homeostasis. Similar
mechanisms can be envisaged in an evolutionary setting, wherein systems that avoid phase-
transitions will be selected above those that cannot (c.£, the selection of chemotaxis in
single-cell organisms). By considering the nature of biological systems in terms of selective

2Configurational entropy measures randomness in the distribution of matter in the same way that thermal entropy measures the
distribution of energy.

The theory of dissipative structures was developed to understand structure formation in far-from-equilibrium systems. Examples
include turbulence and convection in fluid dynamics (e.g., Bénard cells), percolation and reaction-diffusion systems such as the
Belousov-Zhabotinsky reaction. Self-assembly is another important example from chemistry that has biological implications (e.g. for
pre-biotic formation of proteins). Self-organization depends on a (reasonably) stationary environment that couples to the system to
allow an appropriate exchange of entropy and energy.
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pressure, one can replace difficult questions about how biological systems emerge with
questions about what behaviours they must exhibit to exist. In other words, selection
explains fiow biological systems arise; the only outstanding issue is what characteristics they
must possess. The snowflake example suggests biological systems act upon the environment
to preclude phase-transitions. It is therefore sufficient to define a principle that ensures this
sort of exchange. We will see that free-energy minimisation is one such principle.

A free-energy formulation

To develop these arguments formally, we need to define some quantities that describe an
agent, phenotype or system, mand its exchange with the environment. This exchange rests
on quantities that describe the system, the effect of the environment on the system and the
effect of the system on the environment. We will denote these as A, 3 and a respectively. §
can be thought of as system states that are caused by environmental forces; for example, the
state of sensory receptors. This means that 3 can be regarded as sensory input. The quantities
a represent forces exerted by effectors that act on the environment to change sensory
samples. We will represent this dependency by conditioning the sensory samples

p#) — p (5l) ON action. Sometimes, this dependency can be quite simple: for example, the
activity of stretch receptors in muscle spindles is affected directly by muscular forces
causing that spindle to contract. In other cases, the dependency can be more complicated; for
example, the oculomotor system, controlling eye position, can influence the activity of every
photoreceptor in the retina.

The tilde means that =y, y&, y&&, K covers generalised motion in terms of high-order
temporal derivatives. This allows a to change the motion or trajectory of sensory input
through its higher derivatives by interacting with forces that cause 5. We will call these
environmental causes . This formulation means that sensory input is a generalised
convolution of the action and unknown or hidden causes. We will unpack these quantities
later. At the moment, we will simply note that they can be high-dimensional and time-
varying. See also Figure 2.

A free-energy bound—The basic premise we start with is that biological systems must
keep 3 within bounds (/.e., phase-boundaries) through adaptive changes in a. Put simply,
adaptive systems or agents should minimise unlikely or surprising exchanges with the
environment. We can express this more formally by requiring adaptive systems to minimise
surprise, or maximise the following quantity

Q@la)=In pQGla,m) 1

In fact, it is fairly simple to show that any member of a population, whose population
density, p (j|m) is at equilibrium, must, on average increase Q (j|a) (Friston et a/in
preparation).

The conditional surprise —In  p (3o, m) Measures the improbability of exchange given a

particular agent and its action. Each point in the space of exchange 3, « € ®” will have a
measure of this sort, which will be high if the exchange is compatible with mand low if not
(7.e., high in domains populated by m). More intuitively, we would be surprised, given a
particular system, to find it in some environments (e.g., a snowflake in a sauna). In a
selectionist setting, the quantity Q (3|«) could be regarded as the agaptive value of a
particular exchange. From a statistical perspective, O (j|a) is also known as the /og-evidence
or marginal likelihood (marginal because it obtains by integrating out dependencies on the
causes, ). These two perspectives are useful because they link selection in theoretical
biology to Bayesian model selection in machine learning; we will exploit this link below by
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treating the system or agent as a model of its sensory input. Finally, O (|e) also plays the
role of the value in microeconomics and value-learning. Value-learning is a branch of
computational neuroscience that deals with the reinforcement of actions and optimisation of
policies. In short, for a given agent we require action to optimise®

QGla)=In[p F. %) d? 2

where p (3, 9|) is the joint density of environmental effects and their unknown causes,
conditioned an action. However, this maximisation must be accomplished by changes in
action, which can only be a function of 3 and the internal states, A of the agent; because
these are the only variables it has access to.

Clearly, the system cannot perform the integration in Eq.2 because it does not know the
causes. However, it can optimise a bound on the integral using a relatively simple gradient
descent. One such bound is the free-energy, which is a scalar function of sensory and
internal states®

F@G§ o) =—=n p@da),+In q31),

= [q@:) 2 ay 3

>~ Infq@:0) E5do=— 0 Gla)

The inequality is an example of something called Jensen’s inequality, which follows simply
from the concavity of the log function. To make this bound, F (3, A|a) & function of internal
states A , we have introduced ¢ (;4), which is an arbitrary density function on the causes
that is encoded by the system’s internal states. Usually, ¢ (%:4) is called an ensemble
a’ensizjf3 and can be regarded as the probability density that the causes ¢ would be selected
from an ensemble of environments. For example, A could be the mean and variance of a
Gaussian distribution on temperature, .

The free-energy (/.e., the bound) above comprises two terms. The first is the energy
expected under the ensemble density. This energy is simply the surprise or information
about the joint occurrence of the sensory input and its causes. The second term is the
negative entropy of the ensemble density. Notice that action can be considered causes of
sensory input that are not covered by the ensemble density. In what follows, we look at the
ensemble density and its role in adaptive behaviour.

The ensemble and generative densities—The free-energy formulation in Eq.3 has a
fundamental implication: systems that minimise the surprise of their interactions with the
environment by adaptive sampling can only do so by optimising a bound, which is a
function of the system’s states. Formulating that bound in terms of Jensen’s inequality
requires that function to be a probability density, which links the system’s states to the
hidden causes of its sensory input. In other words, the system is compelled to represent the
causes of its sensorium. This means adaptive systems, at some level, represent the state and
causal architecture of the environment in which they are immersed. Conversely, this means
that causal regularities in the environment are transcribed into the system’s configuration.

Note that the free-energy is defined by two densities; the ensemble density ¢ (9:4) and the
generative density, p (3, 9|a), from which one could generate sensory samples and their

4Dropping the dependency on m for clarity.

<. >gmeans the expectation under the density ¢.
61n statistical physics, an ‘ensemble’ denotes a fictitious collection of replicas of the system in question, each of which represents a
possible state that the real system might be in.
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causes. The generative density factorises into a likelihood and prior density, p 5|9, @) p (9),
which specify a generative model. This means the free-energy formulation induces a
generative model for any system and an ensemble density over the causes or parameters of
that model. The functional form of these densities is needed to evaluate the free-energy. We
will consider functional forms that may be employed by the brain in the next section. At the
moment, we will just note that these forms enable the free-energy to be defined as a
function, F (3, A|) of the system’s sensory input and internal state. Figure 2 shows a
schematic of the quantities introduced so far; and how they relate to each other.

The free-energy principle

The free-energy principle states that all the quantities that can change; /.e., that are part of
the system, will change to minimise free-energy. These quantities are the internal parameters
A and the action parameters, a. This principle, as we will see below, is sufficient to account
for adaptive exchange with the environment by ensuring a bound on adaptive value is
optimised. We now consider the implications of minimising the free-energy with respect to
A and a respectively.

Perception: Optimising A—Clearly, if action is to minimise surprise, the free-energy
bound should be reasonably tight. A tight bound is assured when the free-energy is
minimised with respect to internal parameters. In this case, it is fairly easy to show that the
ensemble density approximates the conditional density of the environmental causes, given
the sensory samples. This can be seen by rearranging Eq.3 to show the dependence of the
free-energy on A.

F=—-In pQ@la)+D(q@:) || p(@F.@) 4

Only the second term is a function of A ; this is a Kullback-Leibler cross-entropy or
divergence that measures the difference between the ensemble density and the conditional
density of the causes. Because this measure is always positive, minimising the free-energy
corresponds to making the ensemble density the same as the conditional density; at which
point the free-energy becomes the surprise; F= — Q= —1n p (jla). This is quite a
fundamental result that underlies free-energy optimisation schemes in statistical physics and
machine learning and rests on the fact that the divergence cannot be less than zero (in the
sense that a distance cannot be negative). This means that if one has minimised the free
energy, one has implicitly minimised surprise, because the second term in Eq.4 will be zero.

Put simply, when the free-energy minimised, the ensemble density encoded by the system’s
parameters becomes an approximation to the posterior probability of the causes of its
sensory input. This means the system implicitly infers the causes of its sensory samples.
Clearly, this approximation depends upon the physical structure of the system and the
implicit form of the ensemble density; and how closely this matches the causal structure of
the environment. Those systems that can match their internal structure to the causal structure
of the environment will attain a tighter bound (see below).

Action: Optimising a—Changing the system to move or re-sample the environment by
minimising the free-energy with respect to action enforces a sampling of the environment

that is consistent with the ensemble density. This can be seen with a second rearrangement
of Eq.3 that shows how the free-energy depends upon a.

F=—(n pQGlda)+Dq@ | p@) s
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In this instance, only the first term is a function of action. Minimising this term corresponds
to maximising the log-probability of sensory input, expected under the ensemble density. In
other words, the system will sample sensory inputs that are the most likely under the
ensemble density. However, as we have just seen, the ensemble density approximates the
conditional distribution of the causes given sensory inputs. This inherent circularity obliges
the system to fulfil its own expectations. In other words, the system will expose itself
selectively to causes in the environment that it expects to encounter. However, these
expectations are limited to the repertoire of physical states the system can occupy, which
specify the ensemble density. Therefore, systems with a low free-energy can only sample
parts of the environment they can encode with their repertoire of physical states. Because the
free-energy is low, the inferred causes approximate the real causes. This means the system’s
physical state must be (in general) sustainable under these causes, because each system is its
own existence proof (where a system can be any unit of section; 7.¢., a phenotype or a
species). In short, low free-energy systems will look like they are responding adaptively to
changes in the external or internal milieu, to maintain a homeostatic exchange with the
environment.

This paper is concerned largely with perceptual inference and learning in neural systems.
However, there are many intriguing issues that arise when we consider that the free-energy
principle is served by sampling from the environment selectively to maximise the
predictability of sensory input. This sort of behaviour is found in many biological systems,
ranging from the chemotactic movement of single-cell organisms to the phototropic
behaviour of plants. In nervous systems there are numerous examples of sensory
homeostasis, ranging from simple reflexes that reverse proprioceptive perturbations, to
smooth pursuit eye movements responsible for stabilisation of the retinal image.
Heuristically, these mechanisms can be viewed as suppressing free-energy by re-sampling
the environment to minimise the prediction error incurred by a mismatch between what is
sampled and the prediction afforded by perceptual inference. This suggests that motor and
sensory systems in the brain should be in intimate anatomic relation. This is the case at
spinal, subcortical and cortical levels. For example, the primary motor and sensory cortex
are juxtaposed along the central sulcus and are strongly interconnected (Huffmann &
Krubitzer 2001). Similarly, at a subcortical level, the superior collicullus represents a point
of convergence for sensory information (through direct projections from the retina) and
visual predictions (from visual, parietal and frontal cortex to the intermediate and deep
layers). Neuronal discharges in the deep layers, that initiate saccades, define motor-fields
that coincide with visual receptive fields in the superficial layers (Andersen et a/1989).

In summary, the free-energy principle can be motivated, quite simply, by noting that
systems that minimise their free-energy respond to environmental changes adaptively. It
follows that minimisation of free-energy may be a necessary, if not sufficient, characteristic
of evolutionary successful systems. The attributes that ensure biological systems minimise
their free-energy can be ascribed to selective pressure, operating at somatic (/.¢., the life
time of the organism) or evolutionary timescales (Edelman, 1993). These attributes include
the functional form of the densities entailed by the system’s architecture. Systems which fail
to minimise free-energy will have sub-optimal representations or ineffective mechanisms for
action and perception. These systems will not restrict themselves to specific domains of their
milieu and may ultimately experience a phase-transition (e.g., death). Note that in this
formulation, adaptive action depends on perception; perception per seis only necessary to
ensure a tight bound on the value-function minimised by action. Before returning to
selective mechanisms, we will unpack the quantities describing the system and relate their
dynamics to processes in neuroscience.

Synthese. Author manuscript; available in PMC 2009 March 25.



syduasnue|A Joyiny siapun4 JIAd adoin3 ¢

syduosnuelA Joyiny sispun4 DA @doing ¢

Friston and Stephan

Page 10

The mean-field approximation—Clearly, the quantities describing hidden causes in the
environment could be enormous in number and variety. A key difference among them is the
timescales over which they change. We will use this distinction to partition causes into three
sets 9=1,, 9, 9o that change on a timescale of milliseconds, seconds and minutes, and
factorise the ensemble density in terms of marginal densities

g@®= [lg@:d)
= gk q(34,) g Doide)

This induces a partitioning of the system’s parameters into A = 1,,1,,1¢that encode time-
varying marginals of the ensemble density. The first, 1,, are system quantities that change
rapidly. These could correspond to neuronal activity or electromagnetic states of the brain
that change with a timescale of milliseconds. The causes 9, they encode correspond to
evolving environmental states, for example, changes in the environment caused by structural
instabilities or other organisms. The second partition A, changes more slowly, over seconds.
These could correspond to the kinetics of molecular signalling in neurons; for example
calcium-dependent mechanisms underlying short-term changes in synaptic efficacy and
classical neuromodulatory effects. The equivalent partition of causes in the environment
may be contextual in nature, such as the level of radiant illumination or slowly varying
fields that set the context for more rapid fluctuations in its state. Finally, Agrepresent
system quantities that change slowly; for example long-term changes in synaptic
connections during experience-dependent plasticity, or the deployment of axons that change
on a neurodevelopmental timescale. The corresponding environmental quantities are
(relatively) invariant aspects of its causal architecture. These could correspond to physical
laws and other structural regularities that shape our interactions with the world.

In statistical physics, the factorization in Eq.6 is known as a mean-field approximation.’
Clearly, our approximation with these marginal densities is a little arbitrary, but it helps
organise the functional correlates of their respective optimisation in the nervous system.
More precisely, we are assuming that the brain uses the same mean-field approximation
used above because it has evolved to exploit the ensuing computational efficiency; the
mean-field approximation greatly finesses the minimisation of free-energy when considering
particular mechanisms. These schemes usually employ variational techniquesS.

Optimising variational modes

We now revisit optimisation of system parameters that underlie perception in more detail,
using the mean-field approximation. Because variational techniques predominate in this
approximation, the free-energy in Eq.3 is also known as the variational free-energy and A;
are called variational parameters. The mean-field factorisation means that the approximation
cannot cover the effect of random fluctuations in one partition, on the fluctuations in
another. However, this is not a severe limitation because these effects are modelled through
mean-field effects (/.e., through the means of random fluctuations). This approximation is
particularly easy to motivate in the present framework, because random fluctuations at fast
timescales are unlikely to have a direct effect at slower timescales and their influence can be
sensibly approximated with their average.

"The basic idea of a mean-field approximation is to approximate a very high dimensional probability distribution with the product of a
number of simpler (marginal) densities. This is often used to cope with problems that are otherwise computationally or analytically

intractable.

Variational techniques were introduced by Feynman (1972), in the context of quantum mechanics, using the path integral
formulation. They have been adopted widely by the machine learning community (e.g., Hinton and von Camp, 1993; MacKay, 1995).
Established statistical methods like expectation maximisation and restricted maximum likelihood (Dempster et a/, 1977, Harville
1977) can be formulated in terms of free-energy (Neal and Hinton, 1998, Friston ef a/2006).
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Using variational calculus it is simple to show (see Appendix 1) that, under the mean-field
approximation above, the marginal ensemble densities have the following form

q () o< exp (I (9:))
1@)=(In pG.0),, '

where 7 (,9;) is simply the log-probability of the input and its causes ,, expected under the
ensemble density of the other partitions, g, We will call this the variational energy. From
Eq.7 it is evident that the mode (highest point) of the ensemble density maximises the
variational energy. The mode is an important variational parameter. For example, if we
assume ¢ (¢%;) is Gaussian, then it is parameterised by two variational parameters A, = u;%;
encoding the mode or expectation and covariance respectively. This is known as the Laplace
approximation and will be used later. In what follows, we will focus on minimising the free-
energy by optimizing p;; noting that there may be other variational parameters describing
higher moments. Fortunately, under the Laplace approximation, the only other variational
parameter required is the covariance. This has a simple form, which is an analytic function
of the mode and does not need to be represented explicitly (see Friston et a/ 2006 and
Appendix 2). We now look at the optimisation of the variational modes x,;and the
neurobiological and cognitive processes this optimisation entails:

Perceptual inference: Optimising p,—Minimising the free-energy with respect to
neuronal states z,, means maximising 7 (:9,,)

My=max 1(9,)

[@)=(n pGid,a)+in p@),, °
The free-energy principle is served when the variational mode of the states (/.e., neuronal
activity) changes to maximize the posterior probability of the causes. Eq.8 shows that this
can be achieved, without knowing the true posterior, by maximising the expected log-
likelihood and prior that specify a probabilistic generative model (second line). As
mentioned above, this optimisation requires the functional form of the generative model. In
the next section, we will look at hierarchical forms that are commensurate with the structure
of the brain. For now, it is sufficient to note that the free-energy principle means that brain
states will come to encode the most likely causes in the environment generating sensory
input.

Generalised coordinates—Because states are time-varying quantities, it is important to
think about what their ensemble density encodes. This includes not just the states at one
moment in time but their high-order motion. In other words, a particular state of the
environment and its probabilistic encoding can embody dynamics by representing the paths
or trajectories of states in generalised coordinates. Generalised coordinates are a common
device in physics and normally cover position and momentum.? In the present context, a
generalised state includes the current state, and its generalised motion ¢,=y, ', u"’, (/.€., the
state and its first, second, efc. derivatives with time), with corresponding variational modes

.uua/vt;ull;,:, K. Itis fairly simple to show (Friston, 2007) that the optimisation in Eq.8 can be
achieved with a rapid gradient descent, while coupling high to low-order motion via mean-
field terms

9Generalised coordinates include any non-standard (non-Cartesian) coordinate system applied to the analysis of a physical system. For
example, a system of /m particles in three dimensions may have up to 3/ degrees of freedom, and therefore 3/7 generalised
coordinates (one for each dimension of motion of each particle). A system of mrigid bodies in three dimensions may have up to 6m
generalised coordinates (three axes of rotation and three axes of translation for each body).
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u&,=«k (S, [ Sutp,
u&, =k 91 (,) [+,
u&,=x O ®,) [9u +u,

e

H&, =K

Here u&, mean the rate of change of 1, and x is some suitable rate constant. The
simulations in the next section use this descent scheme, which can be implemented using
relatively simple neural networks. Note, when the conditional mode has found the maximum
of 1 (9, its gradient is zero and the motion of the mode becomes the mode of the motion;

ie., u&uzu;. However, it is perfectly possible, in generalised coordinates, for these
quantities to differ. At the level of perception, psychophysical phenomena suggest that we
use generalised coordinates, at least perceptually: for example, on stopping, after looking at
scenery from a moving train, the world is perceived as moving but does not change its
position. The impression that visual objects change their position in accord with their motion
is something that we have learned about the world. It is also something that can be
unlearned, temporarily (e.g., perceptual after-effects). We now turn to how these causal
regularities are learned.

Perceptual context and attention: Optimising py—If we call the causes that change
on an intermediate timescale, «, contextual, then optimizing ,, corresponds to encoding the
probabilistic contingencies in which the fast dynamics of states evolve. This optimization
can proceed as above; however, we can assume that the context changes sufficiently slowly

that we can make the approximation, ,u;=0. Because, these variational parameters change
more slowly than the neuronal states, the free-energy may change substantially. This means
the variational parameters optimise the sum of free-energy over time10. This gives the
simple gradient ascent

p8e, =« [0 (8,) /99, dt
18,)=(n pG.Ogg

We will see later that the conditional mode 1, encoding context might correspond to the
strength of lateral interactions among neurons in the brain. These lateral interactions control
the relative effects of top-down and bottom-up influences on perceptual inference. This
suggests that attention could be thought of in terms of optimizing contextual parameters of
this sort. It is important to note that, in Eq.10, the dynamics of 1., are determined by the
expectation under the ensemble density of the perceptual states. This means that it is
possible for the system to adjust its internal representation of probabilistic contingencies in a
way that is sensitive to the states and their history. A simple example of this, in psychology,
would be the Posner paradigm, where a perceptual state, namely an orienting cue, directs
visual attention to a particular part of visual space in which a target cue will be presented. In
terms of the current formulation, this would correspond to a state-dependent change in the
variational parameters encoding context that bias perceptual inference towards a cued part of
the sensorium.

The key point here is that the mean-field approximation allows for inferences about rapidly
changing perceptual states and more slowly changing context to influence each other
through mean-field effects (/.e.,. the expectations in Eq.8 and Eq.10). This can proceed

1011 the simulations below, we use peristimulus time. The integral of energy over time is known as action, which means that, strictly
speaking, it is variational action that is optimised (see below).

Synthese. Author manuscript; available in PMC 2009 March 25.



syduiosnuel Joyiny sispun4 JINd adoin3 ¢

syduosnuelA Joyiny sispun4 DA @doing ¢

Friston and Stephan

Page 13

without representing the joint distribution in an ensemble density over state and context
explicitly (¢.f, Rao 2005). Another important interaction between variational parameters
relates to the encoding of uncertainty. Under the Laplace assumption, this is encoded by the
conditional covariances. Critically the conditional covariance of one ensemble is a function
of the conditional mode of the others (see Eq.A5 in Appendix 2). In the present context, the
influence of context on perceptual inference can be cast in terms of encoding uncertainty.
We will look at neuronal implementations of this in the next section.

Perceptual learning: Optimising pg—Optimizing the variational mode encoding 4,
corresponds to inferring and learning structural regularities in the environment’s causal
architecture. As above, this learning can be implemented as a gradient ascent on the time

integral of (ﬂy), which represents an expectation under the ensemble density encoding the
generalised states and context.

o=k [O1 (8p) |00 pdt
(@) =(In p(§,D)y,q,

In the brain, this descent can be formulated as changes in connections that are a function of
pre-synaptic prediction and post-synaptic prediction error (see Friston 2003; 2005 and the
next section). The ensuing learning rule conforms to simple associative plasticity or, in
dynamic models, spike-timing-dependent plasticity. In the sense that optimizing the
variational parameters that correspond to connection strengths in the brain encodes causal
structure in the environment, this instance of free-energy minimisation corresponds to
learning. The implicit change in the brain’s connectivity endows it with a memory of past
interactions with the environment that affects the free-energy dynamics underlying
perception and attention. This is through the mean-field effects in Eq.8 and Eq.10. Put
simply, sustained exposure to environmental inputs causes the internal structure of the brain
to recapitulate the causal structure of those inputs. In turn, this enables efficient perceptual
inference. This formulation provides a transparent account of perceptual learning and
categorization, which enables the system to remember associations and contingencies among
causal states and context.

Variational action and free-energy

The integrals over time, in Eq.10 and Eq.11, speak to a more general principle that entails
the minimisation of action (c.£, Hamilton’s principle of stationary action). Action is the
time-integral of energy

A= [F Glo)dt
> —[QGle)ydi=- [In pGla)dt

Strictly speaking, all variational parameters optimise action, which is a bound on the integral
of the surprise or free-energy. For time-varying variational parameters, the principle of
stationary action requires the variation &,; A of action with respect to g (1%;, r) to be zero. The
Fundamental Lemma of variational calculus states that 11

54,A=0 & 8,0,F (1)=0
F(1)=d,A

11Here, and later we write JrA as a short form for the partial derivative JA/Jt; similarly, 5gA denotes the variation of A with respect

to g(9).
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This means that the variation of the free-energy with respect to 4 (9, r) should be zero at all
times. This is simply the free-energy principle (see Appendix 1). In brief, we only need to
invoke variational action if some of the marginal ensemble densities do not change with
time; otherwise the free-energy principle is sufficient. The variational action can also be
regarded as a bound on the path-integral of adaptive value as the system’s interaction with
the environment evolves (7.e., summarises the value of sensory interactions harvested over a
period of time). In what follows, one can think about variational action as a generalisation of
the marginal likelihood, to cover dynamic models.

Model optimisation

Hitherto, we have considered only the quantitative optimisation of variational parameters
given a particular system and its implicit generative model. Exactly the same free-energy (or
stationary action) principle can be applied to optimise the model itself. Different models can
come from populations of systems or from qualitative changes in one system over time. A
model here corresponds to a particular architecture that can be enumerated with the same set
of variational parameters. Removing a part of the system or adding, for example, a synaptic
connection, changes the model and the variational parameters in a qualitative or categorical
fashion.

Model optimisation involves maximising the marginal likelihood (or variational action) of
the model itself. In statistics and machine learning this is equivalent to Bayesian model
selection, where the free-energy is used to approximate the log evidence or marginal
likelihood, Q ~ In  p (§|m;) for a particular model, /77;. This approximation can be motivated
easily using Eq.4: If the system has minimised its free-energy and the divergence term is
near zero, then the free-energy approaches the negative log-evidence. Therefore, modes that
maintain a low free-energy (/.e., a low variational action) are likely to have a high marginal
likelihood.

An evolutionary perspective might consider the variational action A = —fQ (Fle) dt in terms
of adaptive fitness, which is defined for any system’s exchange with the environment and is
independent of its internal state, A. An adaptive system will keep this exchange within
bounds that ensure its physical integrity. Systems that fail to suppress free-energy will
encounter surprising interactions with the environment that may remove them from the
population. Notice that the ensuing hierarchical selection rests upon interplay between
optimising the parameters of each model and optimising an ensemble of models.
Optimisation at both levels is prescribed by the free-energy principle. In the theory of
genetic algorithms, similar schemes are referred to as hierarchical co-evolution (e.g.,
Maniadakis and Trahanias, 2006). A similar relationship is found in Bayesian inference,
where model selection is based on the free-energy approximation to the model evidence that
is furnished by optimising the parameters of each model. In short, free-energy may be a
useful surrogate for adaptive fitness in an evolutionary setting and the log-evidence in model
selection.

In short, within an organism’s lifetime its parameters minimise free-energy, given the model
implicit in its phenotype. At a supraordinate level, the models themselves may be selected,
enabling the population to explore model space and find optimal models. This exploration
depends upon the heritability of key model components, which could be viewed as priors
about environmental niches the system can model.

Summary—The above arguments suggest biological systems sample their environment to

fulfil expectations that are generated by the model implicit in their structure. The free-
energy principle explains adaptive behaviour without invoking notions of reinforcement or
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operant conditioning: From the point of view of the agent, it is simply sampling the
environment so that its sensory input conforms to its expectations. From its perspective, the
environment is an accommodating place; fluctuations or displacements caused by
environmental forces are quickly explained away by adaptive re-sampling. Because action is
not encoded by the ensemble density, these adaptive responses may not be perceived.
However, for someone observing this system, it will appear to respond adaptively to
environmental changes and avoid adverse conditions. In other words, it will seem as if
certain stimulus-response links are selectively reinforced to ensure the homeostasis of its
internal milieu, where this reinforcement emerges spontaneously in the larger context of
action and perception under the free-energy principle.

The assertion that adaptive systems should minimise unlikely or surprising exchanges with
the environment may seem implausible at first glance. For example, one of the most likely
things to happen is death; and minimizing an organism’s avoidance of death doesn’t seem
very adaptive. The key thing to note here is that surprise is conditioned on the organism; it is
the surprise, given the system’s expectations embodied in its phenotype or current state.
Clearly, if a phenotype expects to die and it conforms to a free-energy principle, it will die.
The argument is that when natural selection operates on a population, such phenotypes will
disappear, leaving those that expect to live (there may be exceptions to this, if death entails
progeny; other interesting exceptions are phase-transitions in developmental trajectories;
e.g., in metamorphic insects).

It might be thought that the relationship between value and surprise is ambiguous; in the
sense that some valuable events are surprising, whereas value is the converse of surprise.
Again, this is resolved by noting that surprise is conditional on the agent. Although, wining
a lottery may be improbable it is not surprising, in the sense you expected to win on
entering; imagine you won a lottery that you had not entered: you would immediately think
there had been a mistake (which would be unexpected and of little value). In short, surprise
is distinct from improbability because is depends on expectations under the model of the
environment used to evaluate probability (7.e., In p ()) # In p()4m) ). In this sense, it is
conceptually (if not mathematically) the same as ‘Bayesian surprise’, invoked to explain
visual search and the deployment of attention (ltti and Baldi 2006). The definition of
Bayesian surprise rests on the divergence between the prior and conditional densities
elaborated during perceptual inference. This again emphasises the role of prior expectations
in shaping surprise or value. The distinction between conditional surprise and improbability
suggests that, a prioriwe expect to be (for example) rich, are chronically surprised that we
are not but value monetary gains that transiently render our expectations valid.

A further counterintuitive aspect of minimising surprise is that it seems to preclude
exploratory behaviour, novelty-seeking and risk-taking. However, this is not the case.
Optimisation of free-energy may engage different mechanisms at different time-scales.
Below, we will focus on dynamics and gradient descent that may be used in the brain.
However, at an ethological level different schemes may operate; for example, stochastic
explorations of the free-energy function (c.f., genetic algorithms). This would entail
sampling the environment is a stochastic fashion to find samples with the least surprise.
From an observers point of view this would appear like random or exploratory behaviour.
From the agent’s point of view, everything is surprising, so it might as well sample
desperately until something familiar is encountered. The trade-off between exploration and
exploitation is a central theme in evolutionary theory, learning theory, microeconomics and
optimization theory (e.g. March 1991) and can be applied easily to free-energy functions.

In this section, we have developed a free-energy principle for the evolution of an organism’s
state and structure and have touched upon minimisation of free-energy at the population
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level, through hierarchical selection. Minimising free-energy corresponds to optimising the
organism’s configuration, which parameterises an ensemble density on the causes of sensory
input and optimising the model itself in somatic or evolutionary time. Factorization of the
ensemble density to cover quantities that change on different timescales provides an
ontology that maps nicely onto perceptual inference, attention and learning. In the next
section, we consider how the brain might instantiate the free-energy principle with a special
focus on the likelihood models implied by its structure.

GENERATIVE MODELS IN THE BRAIN

In this section, we will look at how the rather abstract principles of the previous section
might be applied to the brain. We have already introduced the idea that a biological structure
encodes a model of its environment. We now look at the form of these models implied by
the structure of the brain and try to understand how evoked responses and associative
plasticity emerge naturally with minimisation of free-energy. In the current formulation,
attributes or quantities describing the brain parameterise an ensemble density of
environmental causes. To evaluate the free-energy of this density we need to specify the
functional form of the ensemble and generative densities. We will assume a Gaussian form
for the ensemble densities (/.¢€., the Laplace approximation), which is parameterised by its
mode or expectation and covariance. The generative density is specified by its likelihood
and priors. Together these constitute a generative model. If this model is specified properly,
we should be able to predict, using the free-energy principle, how the brain behaves in
different contexts. In a series of previous papers (e.g., Friston and Price, 2001; Friston 2003;
2005) we have described the form of hierarchical generative models that might be employed
by the brain. In this section, we will cover briefly the main points again.

Perception and sensation

This section is about trying to understand cortical responses in terms of perceptual inference
and learning. The specific model considered here rests on empirical Bayes, using generative
models that are embodied in cortical hierarchies. This model can be regarded as a
mathematical formulation of the longstanding notion (Locke 1690) that “our minds should
often change the idea of its sensation into that of its judgement, and make one serve only to
excite the other”. In a similar vein, Helmholtz (1860) distinguished between perception and
sensation. “It may often be rather hard to say how much from perceptions as derived from
the sense of sight is due directly to sensation, and how much of them, on the other hand, is
due to experience and training” (see Pollen 1999). In short, there is a distinction between
percepts, which are the products of recognising the causes of sensory input, and sensation
per se. Recognition, 7.e., inferring causes from sensation, is the inverse of generating sensory
data from their causes. It follows that recognition rests on models, learned through
experience, of how sensations are caused. In this section, we will consider hierarchical
generative models and how cortical responses can be understood as part of the recognition
process. The particular recognition scheme we will focus on is empirical Bayes, where prior
expectations are abstracted from the sensory input, using a hierarchical model of how those
data were caused.

Conceptually, empirical Bayes and generative models are related to “analysis-by-synthesis’
(Neisser 1967). This approach to perception, from cognitive psychology, involves adapting
an internal model of the world to match sensory input and was suggested by Mumford
(1992) as a way of understanding hierarchical neuronal processing. The idea is reminiscent
of Mackay’s epistemological automata (MacKay 1956) which perceive by comparing
expected and actual sensory input (Rao 1999). These models emphasise the role of
backward connections in mediating predictions of lower level input, based on the activity of
higher cortical levels. Recognition is simply the process of solving an inverse problem, by
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jointly minimising prediction error (/.e., free energy) at all levels of the cortical hierarchy.
This perspective explains many physiological and behavioural phenomena, e.g. extra-
classical receptive field effects and repetition suppression in unit recordings, the mismatch
negativity (MMN) and P300 in event-related potentials (ERPs), priming and global
precedence effects in psychophysics. Critically, many of these emerge from the same basic
principles governing inference with hierarchical generative models.

To finesse the inverse problem, posed by non-invertible generative models, constraints or
priors are required. These resolve the ill-posed problems that confound recognition based on
purely forward architectures. It has long been assumed that sensory units adapt to the
statistical properties of the signals to which they are exposed (see Simoncelli and Olshausen
2001 for review). The Bayesian framework for perceptual inference has its origins in
Helmholtz’s notion of perception as unconscious inference. Helmholtz realised that retinal
images are ambiguous and that prior knowledge was required to account for perception
(Kersten et a/2004). Kersten et a/ (2004) provide an excellent review of object perception as
Bayesian inference and ask a fundamental question “Where do the priors come from?
Without direct input, how does image-independent knowledge of the world get put into the
visual system?” In the next subsection we answer this question and show how empirical
Bayes allows most of the necessary priors to be learned and induced online, during
inference.

Hierarchical dynamic models in the brain

A key architectural principle of the brain is its hierarchical organisation (Zeki and Shipp,
1988; Felleman and Van Essen, 1991; Mesulam, 1998; Hochstein and Ahissar, 2002). This
organisation has been studied most thoroughly in the visual system, where cortical areas can
be regarded as forming a hierarchy; with lower areas being closer to primary sensory input
and higher areas adopting a multimodal or associational role. The notion of a hierarchy rests
upon the distinction between forward and backward connections (Rockland and Pandya,
1979; Murphy and Sillito, 1987; Felleman and Van Essen, 1991; Sherman and Guillery,
1998; Angelucci et a/, 2002a). The distinction between forward and backward connections is
based on the specificity of cortical layers that are the predominant sources and origins of
extrinsic connections in the brain. Forward connections arise largely in superficial pyramidal
cells, in supra-granular layers and terminate in spiny stellate cells of layer four or the
granular layer of a higher cortical area (Felleman and Van Essen, 1991; DeFelipe et a/
2002). Conversely, backward connections arise largely from deep pyramidal cells in infra-
granular layers and target cells in the infra and supra granular layers of lower cortical areas.
Intrinsic connections are both intra and inter-laminar and mediate lateral interactions
between neurons that are a few millimetres away. Due to convergence and divergence of
extrinsic forward and backward connections, receptive fields in higher areas are generally
larger than in lower areas (Zeki and Shipp, 1988). There is a key functional distinction
between forward and backward connections that renders backward connections more
modulatory or non-linear in their effects on neuronal responses (e.g., Sherman and Guillery,
1998). This is consistent with the deployment of voltage sensitive and non-linear NMDA
receptors in the supra-granular layers (Rosier et al. 1993) that are targeted by backward
connections. Typically, the synaptic dynamics of backward connections have slower time
constants. This has led to the notion that forward connections are driving and illicit an
obligatory response in higher levels, whereas backward connections have both driving and
modulatory effects and operate over greater spatial and temporal scales.

The hierarchical structure of the brain speaks to hierarchical models of sensory input. For
example
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In this model sensory states, yare caused by a non-linear function of internal states,

(XD, D) plus a random effect AL. The dynamic states X1 have memory and evolve
according to equations of motion prescribed by the non-linear function x), AY). These
dynamics are subject to random fluctuations 1A and perturbations from higher levels that
are generated in exactly the same way. In other words, the input to any level is the output of
the level above. This means causal states X/ link hierarchical levels and dynamic states x(/
are intrinsic to each level, linking states over time. The random fluctuations can be assumed

to be Gaussian, with a covariance encoded by some hyper-parameters 9% and independent

across levels. The functions at each level are parameterised by . This form of hierarchical
dynamical model is very generic and subsumes most models found in statistics and machine
learning as special cases. These cases depend on the choice of the functions and assumptions
about the form of the priors. For example, static models discount dynamic states X and
retain only the functions g(42) (e.g., g(A?) = &) A9 for mixed effects models used in
analysis of variance), where assumptions about the covariance of 1A correspond to
empirical priors on the causes.

This model specifies the functional form of the generative density in generalised coordinates
of motion (see Appendix 3) and induces an ensemble density on the generalised states

9P=5® 0. If we assume neuronal activity is the variational mode "=, ¥ of these
states and the variational mode of the model parameters ﬂ(yi) and 0;” corresponds to synaptic
efficacy or connection strengths, we can write down the variational energy as a function of
these modes using Eq.8; with y=;,*

I(ﬂu) - _ %Zé(i)TH(i)é(i)
l
P b e
é(,.)_[ & }_ A g ()
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Here (@ is a generalised prediction error for the states at the ~th level. The generalised
predictions of the causal states and motion of the dynamic states are 3® and f(i) respectively

(see Appendix 3). Here, . #=,/® ;"® ,/"® K represents the generalised velocity of 7.
1l (H(yi)) are the precisions of the random fluctuations that control their amplitude and
smoothness. For simplicity, we have omitted terms that depend on the conditional
covariance of the parameters; this is the same approximation used by expectation
maximisation (Dempster ef af, 1977).

The dynamics and architecture of perceptual inference—As mentioned above, we
will focus on the optimization of the ensemble density covering the states, implicit in
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perception or perceptual inference. From Eq.8 we obtain an expression that describes the
dynamics of neuronal activity under the free-energy principle.

ﬂ&l(:'): (89, g0+D
16

- ﬂ;(i) _ Kag((>)T Oz Ka;:a(i*(:)’f NGRGRY)
/v i
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These dynamics describe how neuronal states self-organise when the brain is exposed to
sensory input. The form of Eq.16 is quite revealing; it is principally a function of prediction
error, namely the mismatch between the expected state of the world, at any level, and that
predicted on the basis of the expected state in the level above. Critically, inference only
requires the prediction error from the lower level x® and the higher level zG+D. This drives

conditional expectations gfj) to provide a better prediction, conveyed by backward
connections, to explain the prediction error away. This is the essence of the recurrent
dynamics that self-organise to suppress free-energy or prediction error; /.e., recognition

. ~ &0 () (@
dynamics; 2%, =h (8( ),8(“)).
Critically, the motion of the expected states is a linear function of the bottom-up prediction
error. This is exactly what is observed physiologically, in the sense that bottom-up driving
inputs elicit obligatory responses in higher levels that do not depend on other bottom-up
inputs. In fact, the forward connections in Eq.16 have a simple form12
~10g)  -Iog) 0

08T
9= . .
~12f D-(I1of")

oY

17

This comprises block diagonal repeats of the derivatives gy = dgldx (similarly for the other
derivatives). Dis a block matrix with identity matrices in its first diagonal that ensure the
internal consistency of generalised motion. The connections are modulated by the precisions
encoded by u(yi). The lateral interactions within each level have an even simpler form

Qg+ DT i+D= HS,HD 0 18

e 0 0

and reduce to the precisions of the causes at that level. We will look at the biological
substrate of these interactions below.

The form of Eq.16 allows us to ascribe the source of prediction error to superficial
pyramidal cells, which means we can posit these as encoding prediction error. This is
because the only quantity that is passed forward from one level in the hierarchy to the next is
prediction error and superficial pyramidal cells are the major source of forward influences in
the brain (Felleman & Van Essen 1991; Mumford 1992). Attributing this role to superficial
pyramidal cells is useful because these cells are primarily responsible for the genesis of
electroencephalographic (EEG) signals that can be measured non-invasively. The prediction
error itself is formed by predictions conveyed by backward connections and dynamics

intrinsic to the level in question. These influences embody the non-linearities implicit in

and 7; see Eq.17. Again, this is entirely consistent with the non-linear or modulatory role
of backward connections that, in this context, model interactions among inferred states to

128 is the Kronecker tensor product, and /denotes the identity matrix.
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predict lower level inferences. See Figure 3 for a schematic of the implicit neuronal
architecture.

In short, the dynamics of the conditional modes are driven by three things. The first links
generalised coordinates to ensure the motion of the mode approximates the mode of the
motion. This ensures the representation of causal dynamics is internally consistent. The
second is a bottom-up effect that depends upon prediction error from the level below. This
can be thought of as a likelihood term. The third term, corresponding to an empirical prior,
is mediated by prediction error at the current level. This is constructed using top-down
predictions. An important aspect of hierarchical models is that they can construct their own
empirical priors. In the statistics literature these models are known as parametric empirical
Bayes models (Efron and Morris, 1973) and rely on the conditional independence of random
fluctuation at each level (Kass and Steffey 1989).

In summary, the dynamics of perceptual inference at any level in the brain are moderated by
top-down priors from the level above. This is recapitulated at all levels, enabling self-
organisation through recurrent interactions to minimise free-energy by suppressing
prediction error throughout the hierarchy. In this way, higher levels provide guidance to
lower levels and ensure an internal consistency of the inferred causes of sensory input at
multiple levels of description.

Perceptual attention and learning

The dynamics above describe the optimization of conditional or variational modes
describing the most likely cause of sensory inputs. This is perceptual inference and
corresponds to Bayesian inversion of the hierarchical generative model described in Eq.14.
In this simplified scheme, in which conditional covariances have been ignored, minimising
the free-energy is equivalent to suppressing hierarchical prediction error. Exactly the same
treatment can be applied to changes in extrinsic and intrinsic connectivity encoding the
conditional modes 2, and pg.

As above, the changes in these modes or synaptic efficacies are relatively simple functions
of prediction error and lead to forms that are recognisable as associative plasticity. Examples
of these derivations, for static systems are provided in Friston (2005). The contextual
variables are interesting because of their role in moderating perceptual inference. Eq.16
shows that the influence of prediction error from the level below and the current level is

scaled by the precisions I1 (,ug)) and I1 (,u(y'm) that are functions of .. This means that the
relative influence of the bottom-up likelihood term and top-down prior is controlled by
modulatory influences encoded by s, This selective modulation of afferents is exactly the
same as gain-control mechanisms that have been invoked for attention (e.g., Treue and
Maunsell, 1996; Martinez-Trujillo and Treue, 2004). It is fairly simple to formulate neuronal
architectures in which this gain is controlled by lateral interactions that are intrinsic to each
cortical level (see Figure 3).

As noted in the previous section changes in ., are supposed to occur at a timescale that is
intermediate between the fast dynamics of the states and slow associative changes in
extrinsic connections mediating the likelihood model. One could think of 1, as describing
the short-term changes in synaptic efficacy, in lateral or intrinsic connections that depend
upon classical neuromodulatory inputs and other slower synaptic dynamics (e.g., after-
hyperpolarisation potentials, slow changes in synchronized oscillations and molecular
signalling). The physiological aspects of these intermediate dynamics provide an interesting
substrate for attentional mechanisms in the brain (see Schroeder et a/, 2001 for review) and
are not unrelated to the ideas in Yu and Dayan (2005). These authors posit a role for
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acetylcholine (an ascending modulatory neurotransmitter) mediating expected uncertainty.
Neural modulatory neurotransmitters have, characteristically, much slower time constants,
in terms of their synaptic effects, than glutamatergic neurotransmission that is employed by
forward and backward extrinsic connections.

The Bayesian brain

The similarity between the form or structure of the brain and statistical models means that
perceptual inference and learning lends itself nicely to a hierarchical treatment, which
considers the brain as an empirical Bayesian device. The dynamics of neurons or
populations are driven to minimise error at all levels of the cortical hierarchy and implicitly
render themselves posterior or conditional modes (/.e. most likely values) of the causes
given sensory inputs. In contradistinction to supervised learning, hierarchical prediction
does not require any desired output. Unlike many information theoretic approaches they do
not assume independent causes. In contrast to regularised inverse solutions (e.g. in machine
vision) they do not depend on a priori constraints. These emerge spontaneously as empirical
priors from higher levels.

The scheme implicit in Eq.16 sits comfortably with the hypothesis (Mumford, 1992) “on the
role of the reciprocal, topographic pathways between two cortical areas, one often a “higher’
area dealing with more abstract information about the world, the other ‘lower’, dealing with
more concrete data. The higher area attempts to fit its abstractions to the data it receives
from lower areas by sending back to them from its deep pyramidal cells a template
reconstruction best fitting the lower level view. The lower area attempts to reconcile the
reconstruction of its view that it receives from higher areas with what it knows, sending
back from its superficial pyramidal cells the features in its data which are not predicted by
the higher area. The whole calculation is done with all areas working simultaneously, but
with order imposed by synchronous activity in the various top-down, bottom-up loops”. We
have tried to show that this sort of hierarchical prediction can be implemented in brain-like
architectures using mechanisms that are biologically plausible. Furthermore, this sort of
scheme arises from some basic principles concerning adaptive systems and free-energy.

Backward or feedback connections?—There is something slightly counterintuitive
about generative models in the brain. In this view, cortical hierarchies are trying to generate
sensory predictions from high-level causes. This means the causal structure of the world is
embodied in the backward connections. Forward connections simply provide feedback by
conveying prediction error to higher levels. In short, forward connections are the feedback
connections. This is why we have been careful not to ascribe a functional label like
‘feedback’ to backward connections. Perceptual inference emerges from mutually informed
top-down and bottom-up processes that enable sensation to constrain perception. This self-
organising process is distributed throughout the hierarchy. Similar perspectives have
emerged in cognitive neuroscience on the basis of psychophysical findings. For example,
Reverse Hierarchy Theory distinguishes between early explicit perception and implicit low-
level vision, where “our initial conscious percept - vision at a glance - matches a high-level,
generalised, categorical scene interpretation, identifying “forest before trees” (Hochstein and
Ahissar (2002).

Schemes based on generative models can be regarded as arising from the distinction
between forward and inverse models adopted in machine vision (Ballard 1983; Kawato et a/
1993). Forward models generate inputs from causes (c.7. generative models); whereas
inverse models approximate the reverse transformation of inputs to causes (c.7. recognition
models). This distinction embraces the non-invertability of generating processes and the ill-
posed nature of inverse problems. As with all underdetermined inverse problems the role of
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constraints is central. In the inverse literature a priori constraints usually enter in terms of
regularised solutions. For example: “Descriptions of physical properties of visible surfaces,
such as their distance and the presence of edges, must be recovered from the primary image
data. Computational vision aims to understand how such descriptions can be obtained from
inherently ambiguous and noisy data” (Poggio et a/1985). The architectures that emerge
from these schemes suggest that “Feedforward connections from the lower visual cortical
area to the higher visual cortical area provide an approximated inverse model of the imaging
process (optics)”. Conversely, “ the back-projection from the higher area to the lower area
provides a forward model of the optics” (Kawato ef a/1993). See also Harth ef a/(1987).
This perspective highlights the importance of backward connections and the role of
empirical priors during Bayesian inversion of generative models.

Summary—In conclusion, we have seen how a fairly generic hierarchical and dynamical
model of environmental inputs can be transcribed onto neuronal quantities to specify the
free-energy and its minimisation. This minimisation corresponds, under some simplifying
assumptions, to a suppression of prediction error at all levels in a cortical hierarchy. This
suppression rests upon a balance between bottom-up (likelihood) influences and top-down
(prior) influences that are balanced by representations of uncertainty. In turn, these
representations may be mediated by classical neural modulatory effects or slow post-
synaptic cellular processes that are driven by overall levels of prediction error. Overall, this
enables Bayesian inversion of a hierarchical model of sensory input that is context-sensitive
and conforms to the free-energy principle. We will next illustrate the sorts of dynamics and
behaviours one might expect to see in the brain, using a simple simulation.

Generative and recognition models—Here, we describe a very simple simulation of a
two-layer neuronal hierarchy to show the key features of its self-organised dynamics, when
presented with a stimulus. The system is shown in Figure 4. On the left is the system used to
generate sensory input and on the right is the neuronal architecture used to invert this
generation; 7.e., to recognise or disclose the underlying cause. The generative system used a
single input (a Gaussian bump function) that excites a damped oscillatory transient in two
reciprocally connected dynamic units. The output of these units is then passed through a
linear mapping to four sensory channels. Note that the form of the neuronal or recognition
model recapitulates the generative model: The only difference is that the causal states are
driven by prediction errors which invoke the need for forward connections (depicted in red).
The inferred causes, with conditional uncertainty (shown as 95% confidence intervals)
concur reasonably with the real causes. The input pattern is shown as a function of time and
in image format at the top of the figure. This can be thought of as either a changing visual
stimulus, impinging on four photo-receptor channels or, perhaps, a formant over time-
frequency in an acoustic setting.

This simulation can be regarded as reproducing sensory evoked transients and corresponds
to Bayesian inversion of the generative model shown on the left hand side of the figure. In
this context, because we used a dynamical generative model, the inversion corresponds to a
deconvolution. If we allow the connection strengths in the recognition model to minimise
free-energy, we are also implicitly estimating the parameters of the corresponding
generative model. In machine learning and signal-processing this is known as blind
deconvolution. Examples of this are shown in Figure 5. Here, we presented the same
stimulus eight times and recorded the prediction error in the input or lowest level, summed
over all peristimulus time. The initial values of the parameters were the same as in the
generative model (those used in Figure 4). The upper panels show the stimulus and predicted
input, in image format, for the first and last trial. It can be seen that both the first and eighth
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predictions are almost identical to the real input. This is because the connection strengths,
1.e., conditional modes of the parameters (in the recognition model), started with the same
values used by the generative model. Despite this, optimising the parameters enables the
recognition model to encode this stimulus more efficiently, with a progressive suppression
of prediction error with repeated exposure. This effect is much more marked if we use a
stimulus that the recognition model has not seen before. We produced this stimulus by
adding small random numbers to the parameters of the generative model. At the first
presentation, the recognition model tries to perceive the input in terms of what it already
knows and has experienced (c.f, an illusion); in this case, a prolonged version of the
expected stimulus. This produces a large prediction error. By the eighth presentation,
changes in the parameters enable it to recognise and predict the input almost exactly, with a
profound suppression of prediction error with each repetition of the input.

Repetition suppression—This simple simulation shows a ubiquitous and generic aspect
of free-energy minimisation schemes and indeed real brain responses; namely repetition
suppression. This phenomenon describes the reduction or suppression in evoked responses
on repeated presentation of stimuli. This can be seen in many contexts, ranging from the
mismatch negativity in EEG research (Natanen, 2003) to fMRI examples of face processing
(see Henson et al, 2000 and Figure 6). In the next section we look more closely at this and
related phenomena.

SUPPRESSING FREE-ENERGY IN THE BRAIN

There are clearly a vast number of predictions and experiments that follow from the free-
energy treatment of the previous sections. We have reviewed many of these elsewhere (e.g.,
Friston and Price, 2001; Friston, 2003; 2005). In this section, we review briefly some
aspects of functional brain anatomy that relate to the theoretical treatment above. From the
previous section, we can suggest that activity in a cortical hierarchy self-organises to
minimise its free-energy through minimising prediction error. Is this sufficient to account for
classical receptive fields and functional segregation seen in cortical hierarchies, such as the
visual system?

Classical receptive fields

The answer is yes. We have shown previously that minimising free-energy is equivalent to
maximising the mutual information between sensory inputs and neuronal activity encoding
their underlying causes (Friston 2003). There have been many compelling developments in
theoretical neurobiology that have used information theory (e.g. Barlow 1961, Optican and
Richmond 1987, Linsker 1990, Oja 1989, Foldiak 1990). Many appeal to the principle of
maximum information transfer (e.g. Linsker 1990, Atick and Redlich 1990, Bell and
Sejnowski 1995). This principle has proven extremely powerful in predicting many of the
basic receptive field properties of cells involved in early visual processing (e.g. Atick and
Redlich 1990, Olshausen and Field 1996). This principle represents a formal statement of
the common sense notion that neuronal dynamics in sensory systems should reflect,
efficiently, what is going on in the environment (Barlow 1961).

Extra-classical receptive fields

Classical models (e.g. classical receptive fields) assume that evoked responses will be
expressed invariably in the same units or neuronal populations, irrespective of context.
However, real neuronal responses are not invariant but depend upon the context in which
they are evoked. For example, visual cortical neurons have dynamic receptive fields that can
change from moment to moment. A useful synthesis that highlights the anatomical
substrates of context-dependent responses can be found in Angelucci et a/ (2002b). The key
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conclusion is that “feedback from extrastriate cortex (possibly together with overlap or inter-
digitation of coactive lateral connectional fields within V1) can provide a large and
stimulus-specific surround modulatory field. The stimulus specificity of the interactions
between the centre and surround fields may be due to the orderly matching structure and
different scales of intra-areal and feedback projection excitatory pathways.”

Extra-classical effects are commonplace and are generally understood in terms of the
modulation of receptive field properties by backward and lateral afferents. There is clear
evidence that horizontal connections in visual cortex are modulatory in nature (Hirsch and
Gilbert 1991), speaking to an interaction between the functional segregation implicit in the
columnar architecture of V1 and activity in remote populations. These observations suggest
that lateral and backwards interactions may convey contextual information that shapes the
responses of any neuron to its inputs (e.g. Phillips and Singer 1997) to confer the ability to
make conditional inferences about sensory input.

The most detailed and compelling analysis of extra-classical effects, in the context of
hierarchical models and predictive coding, is presented in Rao and Ballard (1999). These
authors exposed a hierarchical network to natural images. The neurons developed simple-
cell-like receptive fields. In addition, a subpopulation of error units showed a variety of
extra-classical receptive field effects suggesting that “non-classical surround effects in the
visual cortex may also result from cortico-cortical feedback as a consequence of the visual
system using an efficient hierarchical strategy for encoding natural images.” One non-
classical feature the authors focus on is end-stopping. Visual neurons that respond optimally
to line segments of a particular length are abundant in supragranular layers and have the
curious property of end-stopping or end-inhibition; vigorous responses to optimally oriented
line segments are attenuated or eliminated when the line extends beyond the classical
receptive field. The explanation for this effect is simple: because the hierarchy was trained
on natural images, containing long line segments, the input caused by short segments could
not be predicted and error responses could not be suppressed. This example makes a
fundamental point: the selective response of these units does not mean they have learned to
encode short line segments. Their responses reflect the fact that short line segments have not
been encountered before and represent an unexpected visual input, given the context
established by input beyond the classical receptive field. In short, their response signals a
violation of statistical regularities that have been learned.

If these models are right, interruption of backward connections should disinhibit the
response of supragranular error units that are normally suppressed by extra-classical stimuli.
Rao and Ballard (1999) cite inactivation studies, of high-level visual cortex in anaesthetised
monkeys, in which disinhibition of responses to surround stimuli is observed in lower areas
(Hupe et a/1998). Furthermore, removal of feedback from V1 and V2 to the lateral
geniculate nucleus (LGN) reduces the end-stopping of LGN cells (Murphy and Sillito 1987).

Long-latency evoked responses

In addition to explaining the form of classical receptive fields the temporal form of evoked
transients is consistent with empirical (hierarchical) Bayes. This is summarised nicely by
Lee and Mumford (2003); “Recent electrophysiological recordings from early visual
neurons in awake behaving monkeys reveal that there are many levels of complexity in the
information processing of the early visual cortex, as seen in the long latency responses of its
neurons. These new findings suggest that activity in the early visual cortex is tightly coupled
and highly interactive with the rest of the visual system.” Long-latency responses are used to
motivate hierarchical Bayesian inference in which “the recurrent feedforward/feedback
loops in the cortex serve to integrate top-down contextual priors and bottom-up observations
so as to implement concurrent probabilistic inference.”
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The prevalence of long-latency responses in unit recordings is mirrored in similar late
components of event-related potentials (ERPs) recorded non-invasively. The cortical
hierarchy in Figure 3 comprises a chain of coupled oscillators. The response of these
systems, to sensory perturbation, usually conforms to a damped oscillation, emulating a
succession of late components. Functionally, the activity of error units at any one level
reflect states that have yet to be explained by higher-level representations and will wax and
wane as higher-level causes are selected and refined. The ensuing transient provides a
compelling model for the form of ERPs, which look very much like damped oscillation in
the alpha range. In some instances specific components of ERPs can be identified with
specific causes. For example the N170, a negative wave about 170ms after stimulus onset, is
elicited by face stimuli, relative to non-face stimuli. In what follows, we focus on a few
examples of late components. The emerging theme is that late components reflect inference
about supraordinate or global causes at higher levels in the hierarchy.

Examples from neurophysiology—This example considers evidence for hierarchical
processing in terms of single-cell responses, to visual stimuli, in the temporal cortex of
behaving monkeys. If perceptual inference rests on a hierarchical generative model, then
predictions that depend on the high-order attributes of a stimulus must be conferred by top-
down influences. Consequently, one might expect to see the emergence of selectivity, for
high-level attributes, afterthe initial visual response (although delays vary greatly, it
typically takes about ten milliseconds for spikes to propagate from one cortical area to
another). The late emergence of selectivity is seen in motion processing. A critical aspect of
visual processing is the integration of local motion signals generated by moving objects.
This process is complicated by the fact that local velocity measurements can differ
depending on contour orientation and spatial position. Specifically, any local motion
detector can measure only the component of motion perpendicular to a contour that extends
beyond its field of view (Pack and Born 2001). This aperture problem is particularly relevant
to direction-selective neurons early in the visual pathways, where small receptive fields
permit only a limited view of a moving object. Pack and Born (2001) have shown “that
neurons in the middle temporal visual area (known as MT or V5) of the macaque brain
reveal a dynamic solution to the aperture problem. MT neurons initially respond primarily to
the component of motion perpendicular to a contour’s orientation, but over a period of
approximately 60 ms the responses gradually shift to encode the true stimulus direction,
regardless of orientation”. It is interesting to note that extra-classical receptive field effects
in supragranular V1 units are often manifest 80-100 milliseconds after stimulus onset,
“suggesting that feedback from higher areas may be involved in mediating these effects”
(Rao and Ballard 1999).

Examples from electrophysiology—In the discussion of extra-classical receptive field
effects above we established that evoked responses, expressed 100ms or so after stimulus
onset, could be understood in terms of a failure to suppress prediction error when the local
information in the classical receptive field was incongruent with the global context,
established by the surround. Exactly the same phenomena can be observed in ERPs evoked
by the processing of compound stimuli that have local and global attributes (e.g. an
ensemble of L shaped stimuli, arranged to form an H). For example, Han and He (2003)
have shown that incongruence between global and local letters enlarged the posterior N2, a
component of visually evoked responses occurring about 200ms after stimulus onset. This
sort of result may be the electrophysiological correlate of the global precedence effect
expressed behaviourally. The global precedence effect refers to a speeded behavioural
response to a global attribute relative to local attributes and the slowing of local responses
by incongruent global information (Han and He 2003).
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Examples from neuroimaging—Although neuroimaging has a poor temporal
resolution, the notion that V1 responses, evoked by compound stimuli, can be suppressed by
congruent global information can be tested easily. Murray et a/(2002) used functional MRI
to measure responses in V1 and a higher object processing area, the lateral occipital
complex, to visual elements that were either grouped into objects or arranged randomly.
They “observed significant activity increases in the lateral occipital complex and concurrent
reductions of activity in primary visual cortex when elements formed coherent shapes,
suggesting that activity in early visual areas is reduced as a result of grouping processes
performed in higher areas. These findings are consistent with predictive coding models of
vision that postulate that inferences of high-level areas are subtracted from incoming
sensory information in lower areas through cortical feedback.”

CONCLUSION

In this paper, we have considered the characteristics of biological systems, in relation to
non-adaptive self-organizing and dissipative systems. Biological systems act on the
environment and sample it selectively to avoid phase-transitions that will irreversibly alter
their structure. This adaptive exchange can be formalised in terms of free-energy
minimisation, in which both the behaviour of the organism and its internal configuration
minimise its free-energy. This free-energy is a function of the ensemble density encoded by
the organism’s configuration and the sensory data to which it is exposed. Minimisation of
free-energy occurs through action-dependent changes in sensory input and the ensemble
density implied by internal changes. Systems that fail to maintain a low free-energy will
encounter surprising environmental conditions, in which the probability of finding them
(7.e., surviving) is low. It may therefore be necessary, if not sufficient, for biological systems
to minimise their free-energy.

The variational free-energy is not a thermodynamic free-energy but a free-energy formulated
in terms of information theoretic quantities. The free-energy principle discussed here is not a
consequence of thermodynamics but arises from population dynamics and selection. Put
simply, systems with a low free-energy will be selected over systems with a higher free-
energy. The free-energy rests on a specification of a generative model, entailed by the
organism’s structure. Identifying this model enables one to predict how a system will change
if it conforms to the free-energy principle. For the brain, a plausible model is a hierarchical
dynamic system in which neural activity encodes the conditional modes of environmental
states and its connectivity encodes the causal context in which these states evolve. Bayesian
inversion of this model, to infer the causes of sensory input, is a natural consequence of
minimising free-energy or, under simplifying assumptions, the suppression of prediction
error.

The ideas presented in this paper have a long history, starting with the notions of neuronal
energy described by Helmholtz (1860) and covering ideas like analysis by synthesis
(Neisser, 1967) and more recent formulations like Bayesian inversion and predictive coding
(e.g., Ballard et al, 1983; Mumford, 1992; Dayan et al, 1995; Rao & Ballard, 1998). The
specific contribution of this paper is to provide a general formulation of the free-energy
principle to cover both action and perception. Furthermore, this formulation can be used to
connect constructs from machine learning and statistical physics with ideas from
evolutionary theory theoretical neurobiology biology and microeconomics.
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Appendix 1

Free-form variational density

This appendix derives the functional form of the ensemble density.
Lemma: The free-energy is maximised with respect to ¢,=¢4 (9;) when

I g=I1@)~In Z & q@)=5exp (9))
1(@) =(L (1)), Al
L@®=In p@G.9

where Z;j is a normalisation constant (i.e., partition function). We will call 7 (;9,) the
variational energy, noting its expectation under g; is the negative expected energy.
q\i=q (%;), where ¥; denotes parameters not in the i-th set.

Proof: The Fundamental Lemma of variational calculus states that ~is maximised with
respect to g;when, and only when

04,F=0 = 0,fi=0
fi=00,F A2

&g;F is the variation of the free-energy with respect to g; From Eq.1
fi= =gl @) dd\+[qigln - q(9) dd

—qil (%) +qiln  gi+q; In Z; = A3
(9qiﬁ= —1(’[9,‘)4-111 q[+1I1 Z;

We have lumped terms that do not depend on g, into In Z; The extremal condition is met
when J,f;= 0, giving Eq.A.1.

Appendix 2

The conditional covariances

Under the Laplace approximation, the variational density assumes a Gaussian form g;=
My ;Z ) with variational parameters p;and Z;, corresponding to the conditional mode and
covariance of the /~th parameter set. The advantage of this approximation is that the
conditional covariance can be evaluated very simply: Under the Laplace approximation the
free-energy is

F=L()+3% (Ui+In[Z+p; In 27e)

Ui=tr (8L () /09:0%) A4
1) =L () +3 XU,
J#i

p;is the number of parameters in the /~th set. The conditional covariances obtain as an
analytic function of the modes by differentiating the free-energy and solving for zero

OF |0%=10L (1) /09:00;+3%7'=0 =

1= - 9L (u) /09,00, Ao
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This solution for the conditional covariances does not depend on the mean-field
approximation but only on the Laplace approximation. See Friston et al (2006) for more
details.

Appendix 3

Dynamic models

Here we consider the functional form of the generative density for hierarchical dynamic
models of the sort described in the main text. To simplify things, we will deal with a single
level and generalise to multiple levels later.

y=g (x,v) +2

x&=f(x,v) +w A6

The continuous nonlinear functions Ax,1) and g(x, V) of states are parameterised by 9,.
Stochastic fluctuations z(#) are assumed to be analytic such that the covariance of

3=z.7.z ,K iswell defined in generalised coordinates; similarly for random fluctuations in
the states, ;. Under local linearity assumptions, the generalised motion § is

y=8+7% F=f+w
&=8 (IX, V) ) ’f=f(’x, V) ’
8 =8xX T8V f=fix+f,v A7
g =gx +gv  f=fux+f"
M M

This induces a variational density ¢ (¢, #) on generalised causes ¢,=%, 7 that are necessary to
generate 5. Here, =g, ¢, ¢ ,K and f=f, £, £, K are predictions of the generalised response

7 and velocity of the dynamic states ¥’ =x', x”, x, K, in the absence of random fluctuations.
The equations on the right prescribe dynamics by coupling low and high-order motion of 5.

The likelihood and priors
Gaussian assumptions about the fluctuations furnish the functional form of the likelihood,
p(Gl9) =N (é, 1L, 1), where H(ﬂy)v is the precision (/.e., inverse covariance) of 3 that controls
its amplitude and smoothness. The priors are

p @ =p(F10y)p ) p @ p(8)p ()
p(8)=N (m,.11;1) A8
P (9) =N (7o, TT;")

Gaussian assumptions about fluctuations in the dynamic states induce empirical priors on

their generalised velocity, P (illﬂ\;f) =N (f ) H;l), where H(ﬂy)x is the precision of . These
impose dynamic constraints and confer memory on the states. We assume Gaussian priors
on the parameters and hyperparameters13 and flat priors on the remaining states.

13Noting that nonlinearities in H(ﬁy)u and the functions in Eq.A.6 allow for any arbitrary transform to non-Gaussian priors.
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We now have now the functional form of the likelihood and priors of the generative model.
This enables us to specify the variational energies that the modes have to optimise; from A.1

I(,)=—-%&l,&, - 167,643 U, +1Ug
I(ny)= - 1e0M0,8, - L&l TL,e,+1U,+1U,

I (ug) = — 38113, — &l Moo+ 3 U +5U,

&=y - g (PwﬂG)

éx:ﬁ.t - f(:au’ luﬂ) A9
Ey=Hy — Tty

Eg=Hg — Ttg

- &y
.k

X

H(/‘Y)f[ H& Hg ]

Where 7 is the generalised velocity of j . So far we have assumed the priors p () are flat.
However, we can impose a priori structure on these states using hierarchical models:

The hierarchical generalization of Eq.A.1, with y= X9 is

WirD=g ( x®, V(i)) 470

3&O=f (20, 1) 430 A10

This induces empirical priors on the states and lends the generative density a Markov form
(Kass and Steffey, 1989), through independence assumptions about the random fluctuations
in different levelsl4,

PG =p (519 p (9 197) K

p (0100 D) =p (¥ O, 59) p (x2) p (50195
p (YO0, 50) =N ( 7O -

p(#DY) =N (30,007

All

The prediction g"=z (ﬁff) 19;")) plays the role of a prior expectation on (-1 and its prior

precision is estimated empirically as H(ﬁy)‘(,l); hence empirical Bayes (Efron and Morris,
1973). In short, a hierarchical form endows a model with the ability to construct its own
priors. This feature is central to many inference and estimation procedures ranging from
mixed-effects analyses in classical covariance component analysis to automatic relevance
determination. See Friston et a/ (2006) for a fuller discussion of static models.

In hierarchical models, the variational energies are (omitting constants)

14\we have omitted conditional dependence on the parameters and hyperparameters for clarity.
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I(ﬂu)__% ( (t)TH(l) (l) ~(1)TH(1) (l))
1) = - 13 (B0 080 +507 11 (z)) 10094 1y, 11U,
I (ug)=— %Z( I)Tﬂff)éff)+5F;)THy)~(l) 1 (l)TH(l)gg) "
1
0= — g (12, u?) :
-
0=~ (3.
g(ozﬂ(;)ﬂ(o
@_ O 0]
=Hg )

The gradients of these quantise specify the dynamics of the variational parameters as
described in the main text. Note that we have omitted terms pertaining to conditional
uncertainty from the expressions for the states and parameters. This is the same
approximation used in expectation maximisation and simplifies neuronal implementation

@
considerably. In fact, U, = 0 when H(ﬂy)‘, is linear in the hyperparameters, because
0L () /09,00,=0 (see Eq.A.4).
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Figurel.

Schematic highlighting the difference between dissipative, self-organising systems (like
normal snowflakes) and adaptive systems (like adaptive snowflakes) that can change their
relationship to the environment. By occupying a particular environmental niche, biological
systems can restrict themselves to a domain that is far from phase-boundaries. The phase-
boundary depicted here is a temperature phase-boundary that would cause the snowflake to
melt (/.e., induce a phase-transition). In this fanciful example, we have assumed that
snowflakes have been given the ability to fly and maintain their altitude (and temperature)
and avoid being turned into raindrops.
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Figure 2.

Schematic detailing the quantities that define the free-energy. These quantities refer to the
internal configuration of the brain and quantities that determine how a system is influenced
by the environment. This influence is encoded by the variables 3 that could correspond to
sensory input or any other changes in the system state due to external environmental forces
or fields. The parameters a correspond to physical states of the system that change the way
the external forces act upon it or, more simply, change the way the environment is sampled.
A simple example of these would be the state of ocular motor systems controlling the
direction of eye gaze. p (|9, @) is the conditional probability of sensory input given its
causes, 1, and the state of effectors (/.e., action). 4 (%:4) is called an ensemble density and is
encoded by the system’s parameters, A. These parameters (€.g., mean or expectation) change
to minimise free-energy, Fand, in so doing, make the ensemble density an approximate
conditional density on the causes of sensory input.
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Figure 3.

Schematic detailing the neuronal architectures that encode an ensemble density on the states
and parameters of hierarchical models. The upper panel shows the deployment of neurons
within three cortical areas (or macro-columns). Within each area the cells are shown in
relation to the laminar structure of the cortex that includes supra-granular (SG) granular
(L4) and infra-granular (1G) layers The lower panel shows an enlargement of a particular
area and the speculative cells of origin of forward driving connections that convey
prediction error from a lower area to a higher area and the backward connections that carry
predictions. These predictions try to explain away input from lower areas by suppressing the
mismatch or prediction error. In this scheme, the source of forward connections is the
superficial pyramidal cell population and the source of backward connections is the deep
pyramidal cell population. The differential equations relate to the free-energy minimisation
scheme detailed in the main text.
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Figure 4.
Diagram showing the generative model (left) and corresponding recognition; 7.e., neuronal
model (right) used in the simulations. Left panel: this is the generative model using a single

cause Y, two dynamic states x\", " and four outputs y4,K, y4. The lines denote the

dependencies of the variables on each other, summarised by the equation on top (in this
example both the equations were simple linear mappings). This is effectively a linear
convolution model, mapping one cause to four outputs, which form the inputs to the
recognition model (solid arrow). The architecture of the corresponding recognition model is
shown on the right. This has a corresponding architecture, but here the prediction error units,

ggj), provide feedback. The combination of forward (red lines) and backward influences
(black lines) enables recurrent dynamics that self-organise (according to the recognition

equation; i=h (é(i), é(m))) to suppress and hopefully eliminate prediction error, at which
point the inferred causes and real causes should correspond.

Synthese. Author manuscript; available in PMC 2009 March 25.



s1duosnuBIA Joyiny sispund OINd edoin3 g

s1dLIOSNUBIA JoLINy sispund DN 8doin3 g

Friston and Stephan

Page 38

predictable stimulus unpredictable stimulus

input input

15t prediction 15t prediction

¥ 8! prediction

| 8th prediction

Prediction error reduced

s Repetition
5 suppression
°
©
()
S
0
12345678 12345678
repetition repetition
Figureb5.

Results of repeated presentations to the simulated neural network shown in the previous
figure. Left panels: the four channel sensory data used to evoke responses and the
predictions from these evoked responses for the first and last of eight trials are shown on
top, in image format. The corresponding prediction error (summed over the entire trial
period after rectification) is shown below. As expected, there is a progressive reduction in
prediction error as the system learns the most efficient causal architecture underlying the
generation of sensory inputs. Right panels: exactly the same as above but now using an
unpredictable or unfamiliar stimulus that was created using a slightly different generative
model. Here, learning the causal architecture of this new stimulus occurs progressively over
repeated presentations, leading to profound reduction in prediction error and repetition
suppression.
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Figure®6.

A summary of the results of an fMRI experiment reported in Henson et a/(2000). The upper
panel shows responses to visually presented faces for the first presentation (blue) and the
second presentation (red). This is a nice example of repetition suppression as measured
using fMRI. The inserts show voxels that were significantly activated by all faces (red) and
those that showed significant repetition suppression in the fusiform cortex (blue).
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