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Abstract
Interstitial lung disease encompasses a large group of chronic lung disorders associated with
excessive tissue remodeling, scarring, and fibrosis. The evidence of a redox imbalance in lung fibrosis
is substantial, and the rationale for testing antioxidants as potential new therapeutics for lung fibrosis
is appealing. Current animal models of lung fibrosis have clear involvement of ROS in their
pathogenesis. New classes of antioxidant agents divided into catalytic antioxidant mimetics and
antioxidant scavengers are being developed. The catalytic antioxidant class is based on endogenous
antioxidant enzymes and includes the manganese-containing macrocyclics, porphyrins, salens, and
the non–metal-containing nitroxides. The antioxidant scavenging class is based on endogenous
antioxidant molecules and includes the vitamin E analogues, thiols, lazaroids, and polyphenolic
agents. Numerous studies have shown oxidative stress to be associated with many interstitial lung
diseases and that these agents are effective in attenuating fibroproliferative responses in the lung of
animals and humans.

LUNG FIBROSIS
Classifications

Human lung fibrosis has been described histopathologically as a group of interstitial
pneumonias including usual interstitial pneumonia (UIP), also known as idiopathic lung
fibrosis (IPF), desquamative interstitial pneumonia (DIP), respiratory bronchiolitis interstitial
lung disease (RB), lymphoid interstitial pneumonia (LIP), cryptogenic organizing pneumonia
(OP), diffuse alveolar damage (DAD) or acute interstitial pneumonia (AIP), and nonspecific
interstitial pneumonia (NSIP) (108). A large variation is found between the prognosis of the
different interstitial pneumonias. NSIP, DIP, RB, and LIP have a 5-year mortality of less than
10% and are usually responsive to corticosteroid treatment. IPF and AIP have poor prognosis
with a 5-year mortality >60% and are generally unresponsive to treatment. Some evidence
supports a spectrum of inflammatory and fibrotic mechanisms in interstitial pneumonias (IPs),
in which the IP forms that are most responsive to corticosteroids are more inflammatory and
the unresponsive IP forms are more fibrotic (199).

IPF is one of the most devastating forms of lung fibrosis and is progressive and fatal (173).
IPF occurs most often in people older than 50 years, with a higher occurrence in men than in
women and an overall incidence of 13 to 20/100,000 individuals (47). IPF is generally
nonresponsive to conventional anti-inflammatory and immunomodulatory therapy and
currently is in need of new therapeutic approaches (214). IPF patients are thought to respond
poorly to antiinflammatory therapies because little inflammation exists at advanced stages of
the disease and the fibrosis is driven by a dysregulated repair process with a loss of epithelial
cells and accumulation of mesenchymal cells (199).
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Pathogenesis
The pathogenesis of lung fibrosis is complex and is thought to involve a number of processes
that lead to an altered alveolar environment and to an abnormal repair process with accumulated
fibrosis. Several factors, including age, genetic susceptibility, and environmental agents, are
known to contribute to lung fibrosis (13,127,219,222). An increased interest exists in
mesenchymal cells and, in particular, in the fibroblastic foci that are associated with disease
progression (102). These fibroblastic foci are also associated with increased levels of active
transforming growth factor beta (TGF-β) in the fibrotic lung. This cytokine is an important
mediator of fibroblast differentiation into the myofibroblast phenotype (81). Overex-pression
of active TGF-β produces lung fibrosis in animals (180). TGF-β is a major regulator of wound
repair and a stimulant of reactive oxygen species (ROS) production in fibroblasts (212).
Oxidative stress is often defined as an imbalance between ROS production and antioxidant
defenses. Oxidative stress can dysregulate cell signaling (158) and is a potential target for the
development of therapeutics to treat lung fibrosis (110).

OXIDATIVE STRESS AND LUNG FIBROSIS
Reactive oxygen species and antioxidant defenses

Part of the altered alveolar environment in lung fibrosis involves oxidative stress that is driven
by an imbalance between oxidant production and antioxidant defenses. Reactive oxygen
species (ROS) are normal byproducts of cellular metabolism and are continually produced at
low levels under basal conditions. Biologically, the ROS superoxide (O2

−) is commonly
generated from the uncoupling of the cellular electron-transport systems (131). Electron-
transport systems that account for a large portion of cellular O2

− formation are the
mitochondrial electron-transport system (21) and various oxidases including NADPH oxidases
(35), cytochrome P450 monoxygenases (33), cyclooxygenases (115), lipoxygenases (115),
nitric oxide synthases (114), and xanthine oxidoreductase (130). O2

− can also rapidly react
with nitric oxide (NO) to form the strong oxidizing and nitrating agent, peroxynitrite
(ONOO−). The ROS hydrogen peroxide (H2O2) is generated directly from O2

− through a rapid
dismutation reaction that can occur either enzymatically with superoxide dismutases (SODs,
second-order rate constant of 109 M/sec) or spontaneously (second-order rate constant of
105 M/sec). This means that wherever O2

− is generated, formation of H2O2 also occurs. In
addition, H2O2 is formed enzymatically as a byproduct of lipid metabolism in peroxisomes
(160). H2O2 is stable at biologic pH and easily crosses lipid membranes. H2O2 can participate
in hydroxyl radical (HO·) formation in the presence of metals (78). H2O2 readily reacts with
thiol functional groups, and this type of reaction is proposed to be a key mechanism by which
ROS modulate cell-signaling events (62).

The impact of ROS may be especially important in the lung because of its large surface area
and its exposure to higher oxygen levels than other tissues. The lung counters this with a
formable array of antioxidant defense systems, starting with high levels of antioxidants in the
epithelial lining fluid (ELF). Glutathione (GSH) is a major water-soluble antioxidant thiol in
the lung ELF (27), and its levels are lower in subjects with IPF (26). In addition to GSH, the
lung ELF contains other antioxidants such as ascorbate, urate, albumin, mucins, and metal-
binding proteins, which are all effective at limiting oxidative damage. The lung also has a
number of antioxidant enzyme systems including SODs, catalase, glutathione peroxidases
(GPxs), thioredoxin, glutaredoxin, and peroxiredoxins (155). Overexpression of many of these
antioxidant enzyme systems is protective against lung fibrosis (74,99,150). Many of these
antioxidant systems are upregulated during lung fibrosis via the Nrf2 redox-sensitive
transcription factor (95), that when deficient, enhances lung fibrotic responses (36). It is likely
that inadequate antioxidant adaptive responses play a key role in lung fibrosis.

DAY Page 2

Antioxid Redox Signal. Author manuscript; available in PMC 2009 March 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Oxidative stress and disruption of cell signaling
Several phosphatases contain sensitive thiol residues that are inhibited on oxidation (31). The
inactivation of phosphatases is often associated with a perceived activation of their respective
kinase(s), many of which play prominent roles in inflammatory responses (154). The
phosphorylation state of a protein is a steady-state level set by the relative rates of kinases and
phosphatases. As steady-state levels of oxidants increase, an increase occurs in the inactivation
of phosphatases and a corresponding increase in the levels and duration of phosphorylated
proteins (73,189). An increase in steady-state ROS results in altering the cellular glutathione
(GSH)/glutathione disulfide (GSSG) redox couple, which can in turn alter the relative oxidation
status of protein thiols. In addition, H2O2 can alter cell signaling directly by reacting with
specific thiols on transcription factors, such as reducing factor-1, activator protein-1, and
inhibiting factor-κB (89,103). Many of these types of mechanisms may contribute to the often
observed unregulated repair responses associated with lung fibrosis (Fig. 1).

Evidence of oxidative stress in the pathogenesis of lung fibrosis
When ROS production and antioxidant defenses are mismatched, an increase in ROS steady-
state levels leads to an increase in the oxidation of cellular macromolecules. ROS are difficult
to measure directly and often are assessed by measuring oxidative footprints in fluids and
tissues, such as markers of protein, lipid, and DNA oxidation. Subjects with IPF have increased
levels of oxidized proteins in their ELF that correlate with the percentage of neutrophils in the
ELF (15,121,166). IPF subjects also have lower antioxidant capacity in their ELF than do
healthy subjects (157). IPF subjects have higher levels of exhaled ethane (a marker of lipid
peroxidation) than do normal subjects, and these levels are inversely correlated with PaO2
(100). Breath condensate has been investigated as a noninvasive method to assess lung
oxidative stress, and IPF subjects have higher levels of H2O2 and isoprostanes than do control
subjects (151). Evidence also exists of increased nitrosative stress in IPF subjects (196). These
data support the concept of increased oxidant formation with decreased antioxidant capacity
in IPF, which is the hallmark of oxidative stress and the rationale for antioxidant therapy (Table
1).

ANTIOXIDANTS
Antioxidants have been defined many different ways, and in a very broad sense, they are agents
that decrease steady-state ROS levels and protect cellular macromolecules from oxidative
modification. The mechanisms by which this is achieved are many, and some are even
paradoxic. For instance, some agents can produce a mild oxidative stress that results in a cellular
adaptive response that increases endogenous antioxidant defenses. Some agents may inhibit
cellular sources of ROS. A classic antioxidant is an agent that can rapidly react with ROS,
producing less-reactive species. Catalytic antioxidants are not consumed in the reaction and
are regenerated. Regardless of the mechanisms, antioxidants decrease oxidative stress and
restore redox balance in biologic systems.

Catalytic antioxidant mimetics
Endogenous antioxidant enzymes are examples of catalytic antioxidants and have been used
as models for the development of catalytic antioxidant mimetics. The three most prominent
classes are the SOD, catalase, and GPx mimics. Most of these compounds contain a ligated
transitional metal or selenium. They are generally broad-spectrum antioxidants that can
scavenge O2

−, H2O2, ONOO−, and a variety of lipid peroxides. The SOD and catalase mimic
class include macrocyclics, metallo-porphyrins, salens, and nitroxides. The GPx class includes
selenium- and tellurium-based compounds.
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The potencies of these catalytic antioxidants are often compared by using their rate constants
obtained under tightly defined simple chemical systems, which may or may not be relevant in
more complex biologic systems. Another important note is that many of these agents can obtain
electrons from cellular sources (54). These properties have two important consequences that
affect the in vivo rate constant for the reaction with ROS and can also result in the inhibition
of ROS production. The finding that many of these diverse compounds are effective in similar
oxidative stress models confirms the basic concept that small, efficient, catalytic antioxidants
show promise in the treatment of ROS-mediated conditions associated with injury and tissue
dysfunction.

The pentaazamacrocyclic ligand-based mimetics [M40403 is currently being developed by
ActivBiotics (http://www.activbiotics.com)] are unique in that they are relatively specific
O2

− scavengers, because the manganese atom (Mn) is held by five coordination points in the
macrocyclic structure and is available only for one-electron transfers (Fig. 2). Mn(II)
macrocylics function in the dismutation reaction with O2

− by alternate oxidation and reduction,
changing its valence between Mn(II) and Mn(III) (11). This unique aspect of these compounds
gives them selectivity toward O2

− under highly defined conditions. However, in biologic
systems, it is unclear whether it is only with O2

− that these compounds interact. A number of
endogenous compounds also can partake in one-electron reactions beside O2

−; these include
flavins and ubiquinones. The macrocyclics are effective in many of the same oxidative
paradigms in which nonselective catalytic antioxidant mimetics have been used. The different
classes of catalytic antioxidant mimetics have not been directly compared in experimental
models; therefore, the conditions under which one class holds an advantage over the others are
currently not known.

Metalloporphyrins [AEOL series is currently being developed by Aeolus Pharmaceuticals
(http://www.aeoluspharma.com)] are structurally different from endogenous protoporphyrins
and are classified as synthetic meso-substituted porphyrins (Fig. 3). Metalloporphyrins have
been shown to possess at least four distinct antioxidant properties, which include scavenging
O2

− (149), H2O2 (53), ONOO− (191), and lipid peroxides (51). Most metalloporphyrins contain
either an Fe or Mn that is coordinated by four nitrogen axial ligands. The catalase-like activity
of metalloporphyrins is thought to be due to their extensive conjugated ring system that can
undergo reversible one-electron transfer in addition to the one-electron transfer on the metal
center (70). This mechanism is similar to that proposed for the heme prosthetic groups of
endogenous catalase and peroxidases. The two classes of metalloporphyrins include one group
in which the SOD activities track with their catalase activities, and another group that has very
little SOD activity and high catalase activity. An example of a manganese porphyrin with both
high SOD and catalase-like activities is AEOL 10150 (98), whereas an example of a compound
with low SOD activity and high catalase activity is AEOL 11207 (122). The compounds with
high catalase-like activity still only possess a fraction of the native catalase enzyme activity
under chemically defined conditions, yet they can protect cells from H2O2-mediated toxicity
(53). This may not be a fair comparison because catalase is hard to saturate with H2O2 and has
a relative high km for H2O2. Under biologically relevant steady-state levels of H2O2, the
metalloporphyrins are more comparable to catalase (32). Metalloporphyrins have been shown
to be effective in ameliorating oxidative stress, inflammation, and injury in a large number of
animal models of human disease (50). Metalloporphyrins have plasma half-lives that range
from 4 to 48 hours. Most metalloporphyrins are not extensively metabolized by the body and
are largely excreted unchanged in the urine. A previous limitation of the metalloporphyrin class
of compounds has been poor oral bioavailability, but several compounds in the AEOL 112
series have good oral bioavailability and longer plasma half-lives that should make them better
candidates for treating chronic diseases (122).
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The salen class of catalytic antioxidant mimetics (EUK series) is currently being developed by
Proteome Systems (http://www.proteomesystems.com) (Fig. 4). Generically, salens are
aromatic, substituted ethylenediamine metal complexes. The Mn(III)-containing salen
complexes have both O2

− and H2O2 dismutation activities (63). However, like the
metalloporphyrins, these compounds are not selective and can react with O2

− and other
peroxides, including ONOO− (178). The Mn moiety of the salen is coordinated by four axial
ligands. One of the unique features of these compounds is that the metal center is coordinated
to oxygen and nitrogen atoms, which is in contrast to the porphyrins, in which the metal is
coordinated to nitrogen atoms. The coordination of Mn by four axial ligands results in the
formation of several possible valance states that give these compounds their broad ROS-
scavenging capabilities. The rates at which reported salens scavenge H2O2 are similar to those
reported for metalloporphyrins, but are many orders less than those documented for catalase
under similarly defined conditions (63). Salens have also been shown to protect cells against
oxidative stress and are protective in a large number of animal models of human diseases
(50). One of the current limitations of the salens is the stability of the parent compounds in
biologic matrix, which makes it difficult to determine tissue levels and half-lives.

A number of compounds initially developed as free radical spin traps have been shown to have
antioxidant properties in cell and animal systems (136). These compounds react with free
radicals and form more-stable free radical products. The most frequently used compounds are
the nitroxides and include α-phenyl-tert-butylnitrone (PBN) and 2,2,6,6-tetramethylpiperidine
N-oxyl (TEMPO) (Fig. 5). These compounds have also been described as non–metal-
containing SOD mimics (5). The rate of reaction with O2

− is relatively low and thus requires
large amounts (often millimolar levels) of these compounds to be present in the system to be
effective (190). Fortunately, these compounds are well tolerated in animals and can achieve
high tissue levels (136). These agents have a number of properties other than the reaction with
ROS that could also explain some of their protective properties in models of oxidative stress.
Many of these compounds can be metabolized to release NO and can inhibit enzymes that are
endogenous sources of ROS (34,229).

GPx enzymes are found in every compartment within the cell and tissues and are effective
scavengers of cellular peroxides. The GPx mimetic class includes mono- and diselenium–
containing compounds (Fig. 6). One of the best-studied GPx-like mimics is 2-phenyl-1,2-
benzisoselenazol-3(2H)-one, also known as ebselen or PZ51. Ebselen was one of the first
selenium-based GPx mimics developed and catalytically scavenges peroxides in the presence
of reducing equivalents such as GSH, N-acetylcysteine (NAC), and dihydrolipoate (DHLA)
(179). The mechanism by which this occurs is still debated and may differ under different
conditions. Ebselen has also been shown to stimulate the decomposition of a number of ROS,
including hypochlorous acid (HOCl) (17), singlet oxygen (174), and ONOO− (128). Ebselen
can readily bind cellular thiol groups on proteins, which may complicate the interpretation of
biologic effects, because many cellular proteins have reactive thiols in their catalytic domains.
It has been documented that ebselen can inhibit lipoxygenases (168), NADPH oxidases (46),
and nitric oxide synthases (226). All of these enzymes are also potential sources of endogenous
ROS. Ebselen has been shown to be protective in a number of cell-culture systems (159,194)
and animal models of human disease (179). Ebselen is orally active and appears to be well
tolerated in animals and humans. Newer analogues of ebselen have been developed, including
BXT-51072, which has increased activity and potency in cell systems. These analogues [BXT
series are being developed by Oxis International (http://www.oxis.com)] have been shown to
be protective in a limited number of cell-culture systems and animal models of human disease
(203).

A number of diselenide- and ditelluride-containing compounds have been reported to
catalytically scavenge peroxides with higher GPx-like activity than ebselen (75,86,161,162).
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Sulfur, selenium, and tellurium belong to group IV of the periodic table and have similar
chemical properties. A major difference with these types of compounds is that they usually
contain a diselenide bond. Earlier compounds, such as the diphenyl diselenide (DPDS), were
electrophilic agents that had cytotoxic, genotoxic, and mutagenic issues (4,163). Many
previously reported diselenide compounds release free selenium during the catalytic cycle, and
this may be problematic in their development as therapeutic agents. A unique aspect of a newer
series of these compounds is the cyclodextrin group, which may help in directing hydrophobic
peroxides toward the selenium or tellurium active site. The diselenide, 2,2′-deseleno-bis-β-
cyclodextrin (2-SeCD), can scavenge a variety of peroxides including H2O2, tert-butyl
hydroperoxide, and cumenyl hydroperoxide by using GSH as a cofactor (124). Only a limited
number of cell-culture studies have been reported for these compounds (140,186), and it is still
unclear whether these compounds can be successfully used in animal models of lung fibrosis.

Antioxidant scavengers
The largest categories of antioxidants are those that are reactive toward ROS, and the product
of the reaction results in a less-toxic species. The naturally occurring vitamins E (α-tocopherol)
and C (ascorbate) are such examples. Both the ascorbate and α-tocopherol radicals are less
reactive and can be recycled by cellular reductases. Glutathione is a thiol-containing tripeptide
that readily reacts with peroxides and forms a less-toxic disulfide product that is recycled by
glutathione reductase. A number of synthetic compounds have been models after these
endogenous antioxidants and have been shown to be protective in models of oxidative stress
(Fig. 7).

A number of polyphenolic-based antioxidants are known, such as the water-soluble analogue
of α-tocopherol, known as trolox, hindered phenols that include butylated hydroxytoluene
(BHT), and various plant phenolics such as curcumin and flavonoids. These compounds are
often chain-breaking antioxidants, and some have been used in the food industry as
preservatives (42). In general, they require larger doses or concentrations to produce
antioxidant effects in model systems because of their lower rates of reaction with ROS and
their limited ability to be recycled endogenously.

Another group of compounds use a steroid nucleus substituted with antioxidant side groups
and are known as lazaroids. Lazaroids are very effective at inhibiting iron-dependent lipid
peroxidation (39). Lazaroids have been extensively tested as neuroprotective agents, but it is
still not clear whether their neuroprotective effects are directly related to their antioxidant
properties.

A large class of antioxidants is the thiol-containing compounds. The most extensively studied
thiol compound is N-acetyl cysteine (NAC). NAC is a direct-acting antioxidant and can
scavenge several ROS such as hypochlorous acid, peroxides, ·OH, and ONOO− (45). NAC can
also serve as a cellular source of cysteine for the endogenous synthesis of GSH. NAC can
suppress the activation of transcription factors such as NF-κB as a way to modulate cell-
signaling pathways. A homocysteine derivative, erdosteine, is a prodrug that, when
metabolized, produces an active thiol antioxidant metabolite (56). Erdosteine has beneficial
effects in COPD patients (156). Amifostine is another prodrug that, when metabolized,
produces an active thiol antioxidant used clinically as a radioprotective agent (37). Thiol-
containing agents can also act as metal chelators and decrease oxidative stress by limiting the
ability of transitional metal to participate in ROS formation. Paradoxically, some thiol-
containing agents have the potential to create a more-reactive species when they react with
ROS, which is often dependent on availability of oxygen and transitional metals.
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ANTIOXIDANTS, OXIDATIVE STRESS AND ANIMAL MODELS OF LUNG
FIBROSIS

A large majority of lung fibrosis animal models involve the overproduction of oxidants, and
the fibrotic effects are potentiated in antioxidant-deficient animals (Table 2). A number of
drugs are known to produce lung fibrosis in humans and animals (105,228). Many of these
drugs are chemotherapeutic agents that stimulate oxidative stress. Ionizing radiation is also a
well-characterized method of producing lung fibrosis in animals, as well as a known adverse
effect of cancer radiation treatment (41). A number of environmental exposures produce lung
oxidative stress and fibrosis, including exposure to asbestos and silica (77,220). In addition,
known cytokines, such as TGF-β, when overproduced, result in lung fibrosis. Most of these
models have been shown to stimulate lung-injury responses and oxidative stress. A major
limitation with currently available animal models of lung fibrosis is that they do not closely
mimic human interstitial pneumonias, and many spontaneously resolve over time (38).

Fibrogenic drugs, antioxidants and oxidative stress
A number of chemotherapeutic agents can elevate intracellular ROS levels (141). The best-
studied chemotherapeutic agent associated with oxidative stress and lung fibrosis is bleomycin.
Bleomycin is thought to bind transitional metals and, in the presence of oxygen or H2O2,
generates a strong oxidant (101,225). The lung is thought to be a target organ because of its
low levels of a cysteine protease that degrades bleomycin into an inactive form (117).
Bleomycin increases ROS production in lung macrophages and alveolar type II epithelial cells
in vivo (91). Bleomycin also increases lung epithelial cell apoptosis in a ROS-dependent
manner (213). Bleomycin-induced cytotoxicity and lung fibrosis can be modulated by changing
the intracellular levels of endogenous antioxidants (61,84,107,112,167).

Both catalytic and scavenger antioxidants have been shown to attenuate bleomycin-induced
lung fibrosis in animals (Table 3). Liposomal or lecithinized delivery of SOD with or without
catalase decreases bleomycin-induced lung fibrosis in rats and mice (118,119,193,221). The
catalytic antioxidant porphyrin MnTBAP attenuates bleomycin-induced lung fibrosis in mice
(148). The administration of vitamin E has also been shown to have protective effects, and its
deficiency potentiates bleomycin-induced lung fibrosis in animals (57,58,142,188). Thiol-
containing antioxidants have been extensively studied in the bleomycin model of lung fibrosis.
The best-studied thiol-containing antioxidant is NAC. Both oral and inhaled NAC decrease
lung fibrosis in rats and mice (44,80,129,177). NAC also has been shown to restore lung GSH
redox balance and to suppress bleomycin-induced activation of NF-κB (176). Several prodrugs,
such as erdosteine and amifostine, that produce active thiol-containing metabolites have also
been shown to attenuate bleomycin-induced lung fibrosis in rodents (22,88,144,145,184,
224). In addition, lazaroids are protective against bleomycin-induced lung fibrosis in rats
(49,132). A number of natural products that contain polyphenolic compounds, such as Ginko
biloba extracts and curcumin, have been found to suppress lung oxidative stress and fibrosis
in rats treated with bleomycin (48,67,93,152,207).

Paraquat is a redox-active herbicide that also is known to produce fatal pulmonary fibrosis in
humans (43,202) and animals (181,182). Paraquat is thought to redox cycle with cellular
enzymes to produce the paraquat cation radical that rapidly reacts with oxygen to form O2

−

(3,25,76). Paraquat produces lung oxidative stress in animals (2,23,66,113,218) and humans
(94,135). Both catalytic and scavenger antioxidants have been shown to attenuate paraquat-
induced lung injury and fibrosis in animals (see Table 3). Administration of SOD has been
shown to attenuate paraquat-induced lung injury in vitro (90) and in vivo (147,215). The
manganese-containing porphyrin catalytic antioxidant MnTBAP has been shown to have
protective effects against paraquat-induced injury both in vitro (55,97) and in vivo (52). In
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addition, the spin-trap PBN also has protective effects against paraquat-mediated damage
(170). The administration of vitamin E has protective effects, and its deficiency potentiates
paraquat-induced lung injury and fibrosis in animals (18,187). Thiol-based antioxidants also
have protective effects in the paraquat model, including GSH (79,192), NAC (83,216,223),
and erdosteine (92). In addition, the polyphenolic compound curcumin has been reported to
have protective properties against paraquat-induced lung injury (206).

The antiarrhythmic drug amiodarone produces lung fibrosis in humans (183) and animals
(28). Some data suggest a role for oxidative stress in amiodarone-induced lung fibrosis.
Amiodarone inhibits mitochondrial complex I and II respiration and produces mitochondrial
dysfunction in lung epithelial cells and macrophages (19). In the ventilated perfused rabbit
lung system, amiodarone increases the levels of ROS and oxidized glutathione (GSSG)
(106). Further studies have revealed that amiodarone is metabolized to an aryl radical that may
give rise to other ROS (146,208). Both catalytic and scavenger antioxidants have been shown
to attenuate amiodarone-induced lung injury and fibrosis in animals (see Table 3). PBN has
been shown to directly scavenge the aryl radical produced by amiodarone (146). Vitamin E
supplementation of hamsters attenuated both lung TGF-β levels and fibrosis induced by
amiodarone (29,30). The thiol-based antioxidant NAC is also effective at attenuating
amiodarone-induced lung fibrosis (120). In addition, the phenolic antioxidants BHA and
curcumin were effective in limiting amiodarone-induced ROS and lung injury (120,152).

Radiation, antioxidants, and oxidative stress
Ionizing radiation produces fibrotic responses and generates hydrogen atom radical (H ), OH,
and hydrated electrons (e−aq) from the ionization of water in tissues. All three of these species
are highly reactive and can generate and propagate a cascade of different ROS. Whole-body
radiation decreases the levels of endogenous antioxidants and increases markers of lipid
oxidation in animals and humans (9,40). Increased oxidative stress has been reported in
radiation pneumonitis in humans (96) and in radiation-induced lung injury in rats (72,209). It
is interesting to note that oxidative stress is still present even weeks after the radiation exposure
(59). Several animal hemithoracic irradiation models of lung fibrosis have been developed and
used to screen compounds for antifibrotic effects.

Both catalytic and scavenger antioxidants have been shown to attenuate radiation-induced lung
injury and fibrosis in animals (see Table 3). Radiation-induced lung fibrosis is worsened in
antioxidant-deficient animals (68,197) and attenuated in SOD-overexpression models (68,99,
126). Manganese-containing porphyrins and salen catalytic antioxidant mimetics have also
been shown to have protective effects against radiation-induced lung fibrosis (116,153,210).
The results from studies on the administration of vitamin E and its potential to limit radiation-
induced lung injury and fibrosis in animals have been controversial, with some negative
findings (165,217) and a recent positive result (16). Thiol-based antioxidants also have
protective effects in the radiation-induced lung injury and fibrosis, including NAC (143) and
amifostine (211). A number of flavonoids have also been used successfully to attenuate
radiation-induced lung injury and fibrosis, including curcumin (200) and Ginko biloba extracts
(175).

Fibrogenic cytokines and oxidative stress
A number of cytokines have been shown to stimulate fibrotic events and include TGF-β, tumor
necrosis factor (TNF-α), platelet-derived growth factor (PDGF), connective tissue growth
factor (CTGF), endothelin, granulocyte–macrophage colony-stimulating factor (GM-CSF),
interleukin (IL-1β), IL-6, IL-10, and IL-13 (10). The best studied of these various cytokines in
lung fibrosis is TGF-β. TGF-β isoforms have a number of effects on cellular responses
including modulating cell growth, migration, differentiation, and apoptosis (169). TGF-β
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induces myofibroblast differentiation, extracellular matrix (ECM) synthesis, and inhibits ECM
breakdown (227). TGF-β1 is abundant in BALF and present in fibroblastic foci biopsies from
IPF subjects (24). Overexpression of TGF-β1 in animals induces a progressive lung fibrosis
that is largely independent of inflammation (180). TGF-β1 produces oxidative stress by the
induction of ROS production and a decrease in expression of cellular antioxidants (111). TGF-
β1 induces ROS production by activation of NADPH oxidases (NOXs) and through
mitochondrial dysfunction (185,198). TGF-β1 has been shown to decrease the expression of
both catalase and mitochondrial SOD2 (82). In addition, TGF-β1 has been shown to decrease
cellular GSH levels through the decreased expression and activity of γ-glutamylcysteine ligase
(γ-GCL), the rate-limiting step in GSH synthesis (8). Interestingly, very few studies have been
reported on the effects of antioxidants in this relatively new animal model of lung fibrosis.

Fibrogenic environmental agents and oxidative stress
A number of environmental dust and fiber exposures have been associated with the
development of lung fibrosis (137). Both silica and asbestos exposures produce lung fibrosis
in animals (64,104) and pneumoconiosis in humans (164). Both silica and asbestos produce
injury and oxidative stress in the lungs of animals (1). In humans, a link between oxidative
stress and exposure to dusts is supported by the finding of lower levels of glutathione-dependent
enzymes in coal workers with pneumoconiosis (69). Numerous reports exist in the literature
on the ability of both silica and asbestos exposures to increase ROS production (109,138,
172,204). In addition, beryllium exposure can produce lung granulomatous disease, and
beryllium has recently been shown to stimulate increased production of ROS (171). A number
of studies have reported an increased risk for developing IPF on various occupational and
environmental exposures (13,87,195).

Several asbestos and silica animal models of lung fibrosis have been developed. Silica- and
asbestos-induced lung fibrosis are worsened in antioxidant-deficient animals (71,125) and
attenuated in catalase-overexpression models (139). Catalytic and scavenger antioxidants have
been shown to attenuate asbestos- and silica-induced lung injury and fibrosis in animals (see
Table 3). Catalytic antioxidants have been shown to have protective effects against silica-
induced injury, including the porphyrin MnTBAP (123) and the nitroxide TEMPO (205).
Thiol-based antioxidants also have protective effects in the silica-induced injuries, including
NAC and GSH (12), as well as garlic extracts that are rich in thiol-containing compounds (6).
The lazaroid compounds U-75412E and U-74389G are also effective against silica-induced
injury (7,85).

ANTIOXIDANTS IN HUMAN IPF
Only a few antioxidants have actually been examined in humans with IPF. The thiol class has
received the most attention to date. GSH (600 mg, twice daily for 3 days) has been given by
inhalation to IPF subjects and found to increase ELF GSH levels and decrease ROS production
in airway macrophages (20). NAC is an FDA-approved mucolytic drug that has been
extensively used in cystic fibrosis subjects (65). Early studies examined the ability of oral NAC
therapy (600 mg, 3 times daily for 5 days) to restore ELF GSH levels in IPF subjects (134).
These studies found that this NAC regimen increased ELF GSH levels in IPF subjects 71%
and was well tolerated. NAC has also been given to IPF subjects intravenously at 0.6-, 1.6-,
and 4.8-g doses and found to elevate ELF GSH levels in IPF but not in normal subjects
(133). None of these earlier studies looked at efficacy. NAC has been given to IPF subjects by
inhalation (352 mg daily for 12 months), and some improvements were noted in exercise
desaturation and high-resolution CT imaging; however, other lung-function tests and quality-
of-life scores were not different from those with placebo (201). NAC has been given to a limited
number of subjects with fibrosing alveolitis, in addition to immunosuppressive therapy (14).
Oral NAC treatment (600 mg, 3 times daily for 12 weeks) increased lung ELF GSH levels 48%
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over baseline and was associated with improved pulmonary-function tests. A more recent
multicenter randomized trial further investigated the possible benefits of oral NAC therapy in
combination with azathioprine and high-dose corticosteroids in a larger cohort of IPF subjects
(60). NAC treatment (600 mg, 3 times daily for 12 months) was associated with modestly
improved pulmonary-function tests versus standard therapy alone. Interestingly, this study
found that the NAC-treatment group had a lower rate of myelotoxicity from the
immunosuppressive therapy. Although the initial studies with NAC in IPF showed only modest
beneficial effects, it sets the stage for testing other antioxidants in IPF.

CONCLUSIONS
The evidence of a redox imbalance in lung fibrosis is substantial, and the rationale for testing
antioxidants as potential new therapeutics for lung fibrosis is appealing. All the current animal
models of lung fibrosis have clear involvement of ROS in their pathogenesis, and numerous
examples of a wide array of different antioxidants attenuating fibroproliferative events are
ample in the literature. These factors should continue to drive the investigation and the use of
antioxidants to treat the progression of lung fibrosis and other fibroproliferative disorders in
humans.
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ABBREVIATIONS
AIP  

acute interstitial pneumonia

α-PBN  
α-phenyl-tert-butylnitrone

BALF  
bronchoalveolar lavage fluid

BHA  
butylated hydroxyanisole

BHT  
butylated hydroxytoluene

CTGF  
connective tissue growth factor

COP  
cryptogenic organizing pneumonia

2-SeCD  
deseleno-bis-β-cyclodextran

DIP  
desquamative interstitial pneumonia

DAD  
diffuse alveolar damage
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DHLA  
dihydrolipoate

DPDS  
diphenyl diselenide

ELF  
epithelial lining fluid

γ-GCL  
γ-glutamylcysteine ligase

GSH  
glutathione

GSSG  
glutathione disulfide

GPx  
gluta-thione peroxidase

GM-CSF  
granulocyte–macrophage colony-stimulating factor

H2O2  
hydrogen peroxide

HO·  
hydroxyl radical

HOCl  
hypochlorous acid

IPF  
idiopathic pulmonary fibrosis

IL  
interleukin

IP  
interstitial pneumonia

LIP  
lymphoid interstitial pneumonia

MnTBAP  
manganese (III) tetrakis (4-benzoic acid) porphyrins

NAC  
N-acetylcysteine

PDGF  
platelet-derived growth factor

PMN  
polymorphonuclear leukocyte

ROS  
reactive oxygen species
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RB  
respiratory bronchiolitis interstitial lung disease

O2
−  

superoxide

SOD  
superoxide dismutase

TEMPO  
tetramethylpiperidine N-oxyl

TGF-β  
transforming growth factor beta

TNF-α  
tumor necrosis factor alpha

UIP  
usual interstitial pneumonia
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FIG. 1. Role of ROS in the dysregulation of tissue repair
Several phosphatases contain sensitive thiol residues that are inhibited on oxidation. As steady-
state levels of oxidants increase, an increase in the inactivation of phosphatases and a
corresponding increase in the levels and duration of phosphorylated proteins occur. An increase
in steady-state ROS results in altering the cellular glutathione (GSH)/glutathione disulfide
(GSSG) redox couple, which can in turn alter the relative oxidation status of protein thiols. In
addition, ROS can alter cell signaling directly by reacting with specific thiols on transcription
factors. Many of these types of mechanisms are thought to contribute to the often observed
unregulated tissue-repair responses associated lung fibrosis.
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FIG. 2.
Chemical structures of macrocyclic catalytic antioxidant mimetics with SOD activity.
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FIG. 3.
Chemical structures of metalloporphyrin catalytic antioxidant mimetics with SOD and catalase
activities.
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FIG. 4.
Chemical structures of salen catalytic antioxidant mimetics with SOD and catalase activities.
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FIG. 5.
Chemical structures of nitroxide catalytic antioxidant mimetics with SOD activity.
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FIG. 6.
Chemical structures of selenium-containing catalytic antioxidant mimetics with glutathione
peroxidase activity.

DAY Page 29

Antioxid Redox Signal. Author manuscript; available in PMC 2009 March 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIG. 7.
Chemical structures of antioxidant scavengers.

DAY Page 30

Antioxid Redox Signal. Author manuscript; available in PMC 2009 March 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

DAY Page 31

Table 1
Evidence of Oxidative Stress in IPF

Blood Sputum BALF BAL cells

↓ GSH ↓ GSH ↓ GSH ↑ O2
−

↑ GSSG ↑ PMN ↑ GSSG

↑ O2
− ↑ IL-8 ↑ PMN

↑ MPO

↑ Nitrite/nitrate

↑ Oxidized proteins
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Table 2
Models of Lung Fibrosis

Fibrinogenic agents Species

Bleomycin Mice, rats, hamsters, rabbits, dogs, and primates

Paraquat Mice, rats, hamsters, rabbits, dogs, sheep and primates

Amiodarone Mice, rats, hamsters, rabbits, dogs, and primates

Radiation Mice, rats, rabbits, dogs, hamsters, sheep, and primates

TGF-β Mice, rats

Silica Mice, rats, hamsters, rabbits, and primates

Asbestos Mice, rats, hamsters, sheep, and primates
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Table 3
Protective Antioxidants in Animal Models of Lung Fibrosis

Fibrogenic agent Catalytic antioxidants Antioxidant scavengers

Bleomycin SOD, catalase, MnTBAP Vitamin E, NAC, erdosteine, amifostine, U-74389,
curcumin, ginko biloba

Paraquat SOD, MnTBAP, PBN, TEMPOL Vitamin E, GSH, NAC, erdosteine, curcumin

Amiodarone PBN Vitamin E, NAC, BHA, curcumin

Radiation SOD, catalase, AEOL 10113, AEOL 10150,
EUK 189

Vitamin E, NAC, amifostine, curcumin, ginko biloba

TGF-β Unknown Unknown

Silica Catalase, MnTBAP, TEMPO GSH, NAC, U-75412, U-74389

Asbestos SOD, catalase, TEMPO NAC
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