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Abstract
Whole-cell quantitative proteomic analyses were conducted to investigate the change from an
extracellular to intracellular lifestyle for Porphyromonas gingivalis, a Gram-negative intracellular
pathogen associated with periodontal disease. Global protein abundance data for P. gingivalis strain
ATCC 33277 internalized for 18 hours within human gingival epithelial cells and controls exposed
to gingival cell culture medium were obtained at sufficient coverage to provide strong evidence that
these changes are profound. A total of 385 proteins were over-expressed in internalized P.
gingivalis relative to controls; 240 proteins were shown to be under-expressed. This represented in
total about 28% of the protein encoding ORFs annotated for this organism, and slightly less than half
of the proteins that were observed experimentally. Production of several proteases, including the
classical virulence factors RgpA, RgpB, and Kgp, was decreased. A separate validation study was
carried out in which a 16-fold dilution of the P. gingivalis proteome was compared to the undiluted
sample in order to assess the quantitative false negative rate (all ratios truly alternative). Truly null
(no change) abundance ratios from technical replicates were used to assess the rate of quantitative
false positives over the entire proteome. A global comparison between the direction of abundance
change observed and previously published bioinformatic gene pair predictions for P. gingivalis will
assist with future studies of P. gingivalis gene regulation and operon prediction.

Keywords
Porphyromonas gingivalis; protein expression; invasion; internalization; proteomics

1 Introduction
Periodontal diseases are a group of inflammatory conditions that lead to the destruction of the
supporting tissues of the teeth and are among the most common infections of humans [1].
Furthermore, an association is emerging between periodontal disease and serious systemic
conditions including coronary artery disease and preterm delivery of low birth weight infants
[2]. Foremost among a group of periodontal pathogens is the Gram-negative anaerobe
Porphyromonas gingivalis. P. gingivalis is a highly invasive intracellular oral pathogen [3]
that enters gingival epithelial cells through manipulation of host cell signal transduction and
remains resident in the perinuclear area for extended periods without causing host cell death
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[4]. Indeed, intracellular P. gingivalis cells remain viable and capable of spreading between
host cells [5], and epithelial cells can survive for prolonged periods after infection with P.
gingivalis [6]. Moreover, epithelial cells recovered from the oral cavity show high levels of
intracellular P. gingivalis [7–9], indicating that an intracellular location is an integral
component of the lifestyle of this organism and contributes to persistence in the oral cavity.

The interaction of human gingival epithelial cells (GECs) with P. gingivalis is a valuable model
system for studying host-pathogen interactions in general and bacterial invasion in particular.
The completion of the P. gingivalis strain W83 genome sequence in 2001 [10] allowed the
application of global expression measurements to the study of P. gingivalis invasion, including
proteomic studies [11]. Here we report the observed proteome of P. gingivalis under two
biological conditions: intracellular, consisting of organisms recovered from within gingival
epithelial cells; and an extracellular reference state consisting of organisms in epithelial cell
culture medium that approximates an extracellular milieu in which epithelial cells are
physiologically active.

The experimental approach chosen for these studies was the combination of multiple dimension
capillary HPLC and tandem mass spectrometry using a linear ion trap [12]. Since 2001, this
separation approach has become widely known in the proteomics community as MudPIT
(multidimensional protein identification technology) and has become increasingly popular
because of its power to generate a vast amount of searchable data relative to other methods for
the measurement of protein abundance [13]. Quantitation of abundance changes has been
accomplished using stable isotopes [14] and, more recently, using various non-label approaches
[12,15–17]. The application of these techniques to the study of P. gingivalis invasion and
pathogenicity was recently reviewed [11]. Thus far it has not been possible to measure the
intracellular proteome of P. gingivalis using stable isotope methods for quantitation due to
technical problems with growth media using a well-defined, exclusively 15N nitrogen source.
Although generally regarded as the best approach for mass spectrometry-based quantitative
proteomics, isotope labeling also has shortcomings, such as increased sample complexity and
reduced qualitative proteome coverage [12,18], especially in global studies where under-
sampling is always a major concern. Therefore, an effective system was developed for
measuring protein abundance change in P. gingivalis without the use of stable isotopes. A paper
describing these quantitative methods based on spectral counting [19,20] and signal intensity
measurements in MS1 has been published [12]. We report our data here based on both types
of calculation because it is not clear at present that either approach is better under all conditions.
For proteins under approximately 20 kD and (or) proteins that are expressed at low abundance,
intensity based measurements seem to be more useful. For proteins that are larger and (or)
more abundant, spectral counting methods have shown a high degree of precision [16,20] but
may result in abundance ratios that are more compressed or invariant with relative
concentration change compared to those based on ion intensity, even though the inherent
dynamic range of spectral counting is believed to be wider than what can be achieved using
MudPIT methods with ion intensity-based quantitation [16]. Spectral counting is based on the
concept that the frequency with which peptides associated with a particular protein appear
during the analysis is an indicator of protein abundance [20].

Previous protein- and mRNA- based reports have suggested that the intracellular phenotype
of P. gingivalis differs greatly from the extracellular phenotype observed in the laboratory in
terms of general metabolic pathways, adaptation to stress and expression of classical virulence
factors [21,22], see also supplemental Table S4. The data reported here confirm and extend
these findings. The quantitative proteomics analysis indicates that there are hundreds of
proteins undergoing significant abundance changes during internalization within the model
host cells, a situation that can be quite challenging in terms of multiple hypothesis testing, as
has long been recognized in the transcription microarray field [23]. Therefore, a separate
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control study was required to establish reasonable cut-off values for the q-value statistic that
served as the final metric for determining significant abundance change [12].

Some of these abundance changes have been observed in previous studies of early stages of
the invasion process, prior to internalization [21,24,25]. The importance of other proteins
showing pronounced abundance changes has been validated by invasion studies using knock-
out mutants of P. gingivalis in which the genes in question are not functional. Others have yet
to be validated by orthogonal approaches such as functional studies, real time RT-PCR or
Northern blot analysis. Because P. gingivalis operon and regulon structures are still largely
unknown, we have also compared the directionality of protein abundance change observed
experimentally with the bioinformatic gene pair predictions of Ermolaeva et al. [26], who
examined spatially and genetically conserved gene pairs over 34 sequenced prokaryotic
genomes, including P. gingivalis.

2 Materials and methods
More detailed descriptions of the HPLC fractionation, linear ion trap tandem mass
spectrometry, post-acquisition data processing and especially the statistical analysis can be
found in [12]. The description given here emphasizes certain refinements that have been made
since the previous paper was published, and provides details regarding the biological controls
and internalized P. gingivalis cell culturing that have not been published previously.

2.1 Bacterial and gingival epithelial cell culture
P. gingivalis strain ATCC 33277 was cultured anaerobically to mid log phase at 37°C in
trypticase soy broth supplemented with yeast extract (1 mg ml −1), hemin (5 μg ml −1), and
menadione (1 μg ml −1). HIGK cells (human HPV-immortalized gingival keratinocytes) [27]
were cultured under 5% CO2 in keratinocyte serum-free medium (K-SFM, Gibco/Invitrogen,
Carlsbad, CA) supplemented with 0.05 mM calcium chloride and 200 mM L-glutamine (Gibco/
Invitrogen, Carlsbad, CA).

2.2 Sample preparation
P. gingivalis cells were added to HIGKs at a multiplicity of infection of 50 and incubated for
18h under normal HIGK cell culture conditions. HIGK cells were washed three times with
PBS to remove free and surface bound P. gingivalis [3], then lysed in ice-cold sterile distilled
H2O and internalized bacteria were recovered by centrifugation. The bacteria were washed in
ice-cold sterile distilled H2O and pelleted. These samples will be referred to as biological
replicates PG_PP1 and PG_PP2. For the control reference state, P. gingivalis cells were
suspended in K-SFM, in which the organism remains metabolically active but does not
replicate, and incubated for 18h under normal HIGK cell culture conditions. The bacteria were
washed in ice-cold sterile distilled H2O and pelleted. These samples will be referred to as
biological replicates PG_PPC1 and PG_PPC2. P. gingivalis pellets of ~ 109 cells were
resuspended and lysed. DTT reduction, iodoacetamide alkylation, and trypsin digestion steps
were then performed as described [12]. The supernatants from the digestion step were separated
into five fractions with a 2.0 mm i.d. × 150 mm YMC polymer C18 S-6 HPLC column (Waters,
Milford, MA, USA). Each fraction was concentrated and adjusted to 50 μl with 0.5% acetic
acid and 5% acetonitrile (v/v). The insoluble portions were dissolved in urea and RapiGest
(Waters), reduced with DTT, alkylated with iodoacetamide, and digested with trypsin
(Promega, Madison, WI, USA) then desalted and fractionated as described [12]. Briefly, each
of the five pre-fractions was separated further by 2D capillary HPLC, yielding a total of 35
fractions for each technical replicate. Two technical replicates were acquired for each
biological replicate. This level of separation and data redundancy was adequate to minimize
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the impact of differences in sample complexity for the protein abundance ratios given in
supplementary Table S1.

2.3 Linear ion trap tandem mass spectrometry
Samples were analyzed as described [12] using a Thermo-Finnigan (San Jose, CA, USA) LTQ
linear ion trap and a Michrom Magic 2002 HPLC modified for capillary operation with a 75
μm i.d. biphasic column consisting of an SCX resin (strong cation exchange) and reversed
phase C18 material as originally described by Washburn et al. [13,14] and modified as
described [12,28], except for the 16-fold dilution of PG_PPC2. A threshold of 5,000 counts
for collision-induced-dissociation (CID, MS2) was chosen for this experiment rather than the
20,000 data system count threshold reported previously. The MS1 scan range was 400–2000
m/z units. After each main beam (MS1) scan, the 10 most intense signals above threshold were
selected for CID scans with one CID scan collected for each of the 10 most abundant precursor
ions. Default parameters under the Xcalibur 1.4 data acquisition software (Thermo-Finnigan,
San Jose, CA, USA) were used, with the exception of an isolation width of 3.0 m/z units and
a normalized collision energy of 40%. Dynamic exclusion was activated during all data
acquisition.

2.4 SEQUEST and DTASelect
SEQUEST database matching [29] and DTASelect [30] filtering were performed as described
[12]. Briefly, product ion (MS2) mass spectra were searched using TurboSEQUEST Cluster
Version 3.2 (Thermo-Finnigan) on a 16-CPU computing cluster (Denali Advanced Integration,
Seattle, WA, USA) against a combined fasta database that included bovine, human and P.
gingivalis proteins, and the NIH-NCI MGC (National Cancer Institute Mammalian Gene
Collection). The total database size was 119 Mbytes, the total number of entries was 38,695
proteins. The P. gingivalis ORF sequences consisted of Version 3.1 of the genome annotation
by TIGR described by Nelson et al. [10] and dated June 8, 2001. See also
http://cmr.tigr.org/tigr-scripts/CMR/GenomePage.cgi?org=gpg and
http://www.oralgen.lanl.gov/. Certain gene descriptors for P. gingivalis differ among the
annotations by TIGR, LANL and common usage in the microbiological literature. The present
paper uses the most commonly cited gene names in the literature in the event of a nomenclature
conflict. In the supplemental Table S1, these ORF numbers have been cross-referenced to those
assigned to the same W83 genome sequence by LANL (Los Alamos National Laboratory).
The bovine database consisted of two portions, the bovine nrdb subset contained in Bioworks
release 3.2 (Thermo-Finnigan) and the UCSC (University of California at Santa Cruz) bovine
database, release date February 17, 2005. The human portion consisted of the entire NCBI nrdb
human subset included with Bioworks 3.2. The MGC portion consisted of the entire collection
of full-length clone sequences in the state of curation that existed on August 17, 2004.
DTASelect Version 1.9 filtering criteria: peptides were fully tryptic; ΔCn/Xcorr values for
different peptide charge states were 0.08/1.9 for +1, 0.08/2.0 for + 2, and 0.08/3.3 for +3; all
spectra detected for each sequence were retained (t = 0 in DTASelect). Three peptides unique
to a particular ORF were required for positive identification. This last requirement has its basis
in the definition of uniqueness employed by the DTASelect software, in which the same
sequence, in theory, could be covered by three different charge states and yield three different
unique peptides, yet still fulfill certain definitions of a “one hit” identification. By setting the
“distinct peptides” switch in DTASelect to a value of 3, in practice this “one hit” scenario did
not happen, and it guaranteed that at least two unique peptide sequences, independent of charge
state, were used to identify the protein. Peptides common to two or more ORFs were
disregarded for purposes of both identification and quantitation. A positive qualitative
identification using the above criteria was required prior to further filtering for purposes of
generating abundance ratios. The DTASelect 1.9 filter data for all protein identifications are
contained in supplementary Tables S5–S7. Prior to archiving in PRIDE
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(http://www.ebi.ac.uk/pride/) with the raw mass spectral data, these filter files will be available
on the author’s server (http://depts.washington.edu/mhlab/) rather than on the Proteomics web
site due to their large size. These files include details such as SEQUEST scores, peptide
sequence, percentage of peptide coverage by observed ions in the CID spectrum, spectral
counts, and other information described in the headers accompanying the filter files. More
detail regarding the type of information contained in the filter files can be found in Tabb et
al. [30].

2.5 Estimation of the qualitative random false positive rate
Random false positive assignments at the peptide level were assessed by searching P.
gingivalis raw data against a concatenated database consisting of the elements described above
and the reversed decoy database [31,32] for each. The reversed protein sequences were
generated using either a script in FileMaker 8 or the routine contained in Bioworks 3.3
(Thermo-Finnigan) that performs this function automatically. Search results that passed the
criteria described above and matched an entry in the decoy database were counted as false
positives. The qualitative random false positive rate for this study was thus estimated to be
approximately 3%.

2.6 Data processing for protein abundance ratios
By referring to a Visual Basic 6 program “makems2,” provided by Michael J. MacCoss
(Department of Genome Sciences, University of Washington), a Visual Basic 2005 program
using the Xcalibur Raw File ActiveX Control was developed in-house under the Microsoft
Visual Studio 2005 environment to convert the raw data files into plain text intensity files
containing the file name header, full scan number, CID scan number, precursor m/z, and the
intensities of that precursor ion in the surrounding ± 3 full scans (MS1). The source code
(IntensityMaker Version 2.0, release date October 15, 2006) is available from the authors. A
relational database was constructed in FileMaker Pro 8. The DTASelect-filter file and the
intensity file described above were imported into FileMaker Pro 8 as separate tables. Identical
multiple criteria relationships between each intensity table and the DTASelect-filter table were
established by matching the file name header and the CID scan number. Then, a FileMaker
script application, written in-house (QuantScripts, Version 1.0, March 2006), was used to
update the intensity field in the DTASelect-filter table. Because the DTASelect-filter to
intensity file relationships were defined to always sort the intensity file in descending order of
signal intensity, the updated intensity field in the DTASelect-filter table was the value from
the highest intensity mass peak for the corresponding precursor ion among the surrounding ±
3 full scans (MS1), or alternatively, 30 scans total (MS1 and MS2). It was these values that
were used for the signal intensity based abundance ratio calculations described below, and
constituted what in experiments done on a more conventional scale would be called a “peak
list.”

2.7 Two relative quantitation methods for generating abundance ratios
The protein level spectral counts, defined here as the number of redundant unique peptides
[12] associated with an ORF, were extracted from the DTASelect-filter table for each ORF
(see supplemental Tables S5–S7). A redundant unique peptide is one that is specific for the
ORF in question that may be measured many times in the course of the analysis, as required
by a method that is based on the frequency of occurrence [20]. The ratio of each protein from
two comparisons (PG_PP1/PG_PPC1 or PG_PP1/PG_PPC2) was then calculated from the two
spectral count values after the normalization steps described below. The protein level intensity
method used the intensity values from all unique peptides identified for a given protein, as
described in the previous section, including redundant measurements. The sum of these

Xia et al. Page 5

Proteomics. Author manuscript; available in PMC 2009 March 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.ebi.ac.uk/pride/
http://depts.washington.edu/mhlab/


intensity values in MS1 was used to represent the total signal intensity of each protein in the
sample.

2.8 Data normalization
Following the normalization procedures described previously [12], PG_PP1 spectral counts
were multiplied by 1.68 and 2.73 to normalize the dataset such that the total counts would be
equal for the two samples in each of the two comparisons: PG_PP1/PG_PPC1 and PG_PP1/
PG_PPC2, respectively. This normalization also had the effect of centering the ratio
distributions at approximately zero on a log2 scale. The summed signal intensity over all
peptides assigned to each ORF was multiplied by 1.75 for PG_PP1/PG_PPC1 and 2.96 for
PG_PP1/PG_PPC2 for the same reasons, to insure that differences in absolute signal intensity
due to differences in the amount of sample injected and slight changes in instrumental
conditions did not unduly influence the abundance ratios.

2.9 Statistical significance testing and curve fitting
The G statistics, two sample t-test, p-value, and q-value calculations were performed using R
(http://www.r-project.org/). The LOWESS (locally weighted scatter plot smoothing) curves
[33] were also generated in R. The detailed procedures for use of each of the above statistics
have been described [12]. The G-statistic is a likelihood ratio test for significance in discrete
datasets [35] that has recently been applied to spectral counting in quantitative, mass
spectrometry-based proteomics by several groups [12,15,18,34]. We used a G-statistic as a test
of whether or not a protein abundance ratio based on spectral counting was significantly
different from zero on a log2 scale (one on a linear scale). The t-test was applied to the peptide
signal intensity data for the same purpose.

The q-value as employed here and in our previous methods paper [12] is a correction for
multiple hypothesis testing applied to the better known p-value, which is based on the concept
of false discovery rate [36]. It was originally developed for transcription microarray data but
is also applicable to other types of large-scale gene expression studies. The q-value can be
defined in the present context as the minimum false discovery rate when rejecting the null
hypothesis of no significant change in protein abundance. In other words, the rate of false
positive assignment (abundance is judged to be changing when in truth it is not) expected
among all proteins judged to be significantly changed at a given p-value. For a more technical
description of the q-value and false discovery rate, see Storey and Tibshirani [36]. The q-value
correction was applied to the p-value calculated for each ORF using both the spectral counting
and signal intensity calculations, as both the G-test and the t-test yield a p-value that in turn
was used as an input into the QVALUE R package, see
http://faculty.washington.edu/~jstorey/qvalue/. It is the q-value that is reported in the
supplement (Table S1), along with the abundance ratios for each ORF. Methods for assessing
the cut-off value of q for purposes of defining a subset of proteins showing significant
abundance change are described in the next section. The LOWESS curve fitting procedure
[33] has been used for many years to define boundaries in datasets and was used to define
regions of random experimental error in abundance ratios calculated using spectral counting.
The R source code for the implementation of the LOWESS procedure used here has been
published [12].

2.10 Measurement of quantitative false positive and false negative rates for protein
abundance ratios

To help assess the reliability of protein abundance ratios generated using the methods described
we diluted a sample of the P. gingivalis proteome 16-fold (a convenient power of 2) and
compared the observed and expected ratios for the diluted/undiluted sample of PG_PPC2. This
was done using both spectral counting and intensity-based calculations without normalization.
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This comparison was particularly useful for examining false negatives (Type 2 error), given
that the true ratio was known in each case to be non-zero on a log2 scale, that is truly alternative.
Replicate analyses of the same sample (technical replicates) in which ratios were calculated
for the same sample against itself were used to assess random errors using the LOWESS curve
fitting procedure described above, which was particularly useful for the assessment of false
positive abundance changes (Type 1 error), because the true ratio was zero on a log2 scale in
each case, that is truly null. These approaches were used to set the q-value thresholds for
significance testing in a way that directly reflects our experimental observations rather than
error estimates based primarily on statistical theory, see Table 1. Cut-off values of q were
selected to minimize both Type 1 and Type 2 error. In Table 1, the FPRs (false positive rates)
were calculated by dividing the number of proteins called as alternative by all proteins tested
at a given q-value cutoff, when all proteins were known to be truly null. Similarly, FNRs (false
negative rates) were calculated by dividing the number of proteins called as null by all proteins
tested when all proteins were known to be truly alternative.

2.11 Calculation of codon bias
Codon adaptation index (CAI) and Karlin Index, E(g), were calculated for each P. gingivalis
ORF as previously described. CAI [37] is a general predictor of gene expression levels, as is
the Karlin index [38,39]. This treatment of CAI and E(g) follows that of our previous work
with the Archaeon Methanococcus maripaludis [28]. CAI and E(g) differ mainly in the way
highly expressed genes are chosen for the reference set and the codon relative frequency
calculation. The calculation of CAI involves a defined set of highly expressed genes (HEX),
usually about 24 ORFs. Then, the relative frequency of each codon (rf) is calculated within
this subset: the observed frequency of each codon in the HEX subset divided by the highest
observed frequency within the set of codons for each amino acid. The CAI value for each ORF
is then calculated as CAI = (Πrfi)1/L, where L is the total number of encoding codons for each
ORF and the subscript i is used to designate each encoding codon. In other words, the geometric
mean of rf values for each codon used to encode the entire protein. In Karlin’s E(g) calculation,
the codon bias (B) of the target genes relative to the whole genome (C), and the target genes
relative to three groups of highly expressed genes (usually ribosomal proteins (RPs),
translational elongation factors (TFs) and chaperones (CHs)), are first calculated separately as
B(g|C), B(g|RP), B(g|TF), and B(g|CH) [38,39]. Then E(g) is calculated as E(g) = B(g|C) / (0.5
× B(g|RP) + 0.25 × B(g|TF) + 0.25 × B(g|CH)).

3 Results and discussion
3.1 Qualitative proteome coverage

A total of 1,223 P. gingivalis proteins were qualitatively identified in PG_PP1, PG_PPC1 and
PG_PPC2: 987 proteins were identified in PG_PP1, 1068 proteins in PG_PPC1 and 1074
proteins in PG_PPC2. If we take into consideration the genome sequence differences between
strains ATCC 33277 and W83 noted in the literature [40] and also the existence of several
hundred annotated interposons and other mobile elements [10] that are typically not observed
experimentally as proteins, our actual proteome qualitative coverage was on the order of 60%
of the protein expressing ORFs. This was significantly higher coverage relative to other
literature reports for intracellular pathogens. For example, in a recent study of Salmonella
enterica serovar Typhimurium recovered from macrophages, 315 proteins were detected and
39 were described as differentially regulated [42].

About 7% of the genes in 33277 are reported to be highly divergent relative to the sequence
strain, W83 [40]. As expected, these same highly divergent genes were under-represented in
our dataset as expressed protein. Our ORF database used to search the mass spectral data was
of necessity based on the annotation of the sequence strain, with the addition of the FimA
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sequence from 33277 [41]. Of 64 highly divergent genes noted for 33277 relative to the
sequence strain, 16 were detected as expressed protein. Of the 16 highly divergent ORFs among
four strains of P. gingivalis selected for PCR confirmation by Chen et al. [40], we detected
two: PG0111 and PG0683.

3.2 Overview and functional classes
Overall, 385 over-expressed and 240 under-expressed proteins from internalized P.
gingivalis were observed relative to controls, based on the consensus (CS) assignment for each
ORF presented in the data summary given in Table S1 of the supplement. Two PDF versions
of Table S1 are given, one in which the ORFs are sorted by direction of abundance change,
and an alternative sorting by ORF order without regard to abundance status for all detected
proteins. The color-coding of the CS variable was determined by examining the q-values from
both comparisons and the two calculation methods, giving four inputs into the consensus
calculation (SP1, SP2, IP1, IP2), also shown in Table S1: SP1 = PG_PP1/PG_PPC1 by spectral
counting, SP2 = PG_PP1/PG_PPC2 by spectral counting, IP1 = PG_PP1/PG_PPC1 by
summed signal intensity, IP2 = PG_PP1/PG_PPC2 by summed signal intensity. If at least two
out of four ratios indicated the same direction of significant change, then the consensus was
that direction, green for over-expression and red for under-expression. For the great majority
of the results given in Table S1 the abundance trends were the same for all four ratios, but not
necessarily significantly so according to the statistical analysis. Taking two reds or two greens
to code the CS variable gave the best balance between throwing away too much data
(quantitative false negative error) and retaining too many significant abundance changes (false
positive error). More detail regarding the coding of the consensus assignments can be found
in the supplement, see the notes for Table S1 and Fig. S1. In the five ORFs shown in Table S1
with a split decision, i.e. two reds and two greens, the consensus was coded as yellow: protein
detected qualitatively but ambiguous with respect to abundance change. A whole proteome
color ORF plot of the CS variable is given in Fig. 1. Similar color plots for SP1, SP2, IP1, and
IP2 are given as supplementary Figures S2–S5.

Table 2 describes observed P. gingivalis protein abundance changes during internalization
among TIGR functional role categories. A number of proteins in all functional classes showed
evidence of differential abundance in internalized P. gingivalis, indicating that the phenotype
of intracellular P. gingivalis differs significantly from that of bacteria in laboratory culture.
This represents a paradigm shift in our understanding of the pathobiology of the organism, as
discussed further below. An interesting observation was that while most functional classes
contained approximately equal numbers of under- or over-expressed proteins, the Protein
Synthesis class contained over 6-fold more over-expressed proteins compared to under-
expressed, and the Transcription class contained 3-fold more over-expressed proteins. This is
consistent with epithelial cell culture medium not being permissive to P. gingivalis replication,
and further, shows that the intracellular environment of gingival epithelial cells is conducive
to P. gingivalis growth and replication, in accord with results from intracellular survival assays
[3].

3.3 Setting the q-value threshold and estimating quantitative error
The cut-off values of q were determined using two technical replicate analyses of PG_PPC2
to control for the quantitative false positive rate (all values truly null) and by using an undiluted
quantity of PG_PPC2 and 16-fold diluted PG_PPC2 to control the quantitative false negative
rate (all values truly alternative). The null hypothesis in each case was an abundance ratio of
zero on a log2 scale, indicating the measured spectral counts or signal intensities were
approximately the same in the numerator and the denominator of the ratio calculation. The q-
values were calculated using default parameters. Further details of the hypothesis testing are
given in Materials and Methods and in Xia et al. [12]. The choice of a 16-fold dilution was
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largely arbitrary. Any value centered within the dynamic range of the method that allowed a
broad range of proteins to be detected for both the diluted and undiluted proteome would have
sufficed for our intended purpose of setting reasonable q-value cut-offs. For a broader
discussion of the issues raised by the data shown in Table 1, e.g. statistical power calculations,
sampling issues and their relationship to detection of abundance change, and results from
similar experiments at other dilutions, the reader is referred to a recent review [43]. Table 1
summarizes the dilution results and illustrates why 0.01 was chosen for the spectral count ratios
and 0.001 for the precursor ion signal intensity ratios. These values gave a reasonable balance
between Type 1 and Type 2 error, although for the spectral counting data finding such a balance
was harder and more subjective due to the high number of false negatives indicated in Table
1. This was consistent with previous observations suggesting that spectral counting has a lower
statistical power (1 - FNR) for detecting abundance changes, relative to other approaches based
on signal intensity differences, such as metabolic stable isotope labeling [18] or the non-label
approach used in the present study.

Fig. 2 shows scatter plots of technical replicates from two organisms, P. gingivalis and M.
maripaludis, distributed among nine samples, to further support our previous observation
[12] that this type of scatter plot can be used to define regions of random quantitative error, as
it has been used in the microarray field for similar purposes [43]. The LOWESS curves
illustrated in Fig. 2 for the replicate data can be superimposed on similar plots comparing two
biologically different states for purposes of assessing which abundance ratios fall outside the
boundaries established for random scatter about an abundance change of zero (log2 scale). Fig.
3 shows such LOWESS curves superimposed over the abundance ratio data for PG_PP1/
PG_PPC1 and PG_PP1/PG_PPC2. The LOWESS curves shown in Fig. 3 served as a check
on the q-value calculations [12].

For the intensity calculations, the level of random scatter in the normalized abundance ratios
was generally higher, requiring the stricter cut-off value of 0.001. Table 1 shows the effect of
different q-value cut-offs on the quantitative FPR and FNR. Literature q-value cut-offs for
transcription microarray data have been determined using, among other methods, a plot of q-
values versus the number of significantly changed ORFs associated with each q-value [36].
However, this approach did not work well for the present study (data not shown), suggesting
the data were either too noisy, or too many proteins were changing, for this graphical method
to be useful. Therefore, we chose an alternative approach: measuring the actual false positives
and false negatives in data from experiments where these values were truly known over the
entire proteome. The data from these analytical experiments (Table 1, qFig. 2, Fig. 3) were
then used to generate cut-off values given above that were applied to the biological data
summarized in Fig. 1, Table 2 and Table S1 in the supplement. The choice of -value cut-off
was not sensitive to sample identity or human background contamination differences between
the extracellular and intracellular samples. Indirect evidence that this should be the case is
given by the overall similarity in the technical replicate plots for PG_PP1, PG_PPC1 and
PG_PPC2 shown in Fig. 2, and the biological replicate plots shown in Figs. 4 and 5. However,
as is clear from Table 1, the cut-off value was highly sensitive to the choice of quantitation
method, spectral counting or signal intensity.

3.4 Reproducibility of biological replicates
Fig. 4 shows the correlation of spectral counts for each common protein in PG_PPC1 and
PG_PPC2 on both linear and log2 scales. The Pearson correlations of 0.91 and 0.88 demonstrate
that PG_PPC2 is a reasonably consistent biological replicate of PG_PPC1. There were 963
common proteins out of 1068 identified in PG_PPC1 and 1074 in PG_PPC2, indicating good
qualitative agreement as well. Fig. 5 shows similar results for two biological replicates of
internalized P. gingivalis, PG_PP1 and PG_PP2, with details given in the caption. As shown
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in Fig. 2, the random scatter observed with technical replicates of internalized P. gingivalis
was the same as that observed for the external controls and replicates from another organism,
suggesting that our random errors were constant, well characterized and predictably within
bounds of the LOWESS curves shown. The extensive pre-fractionation employed in these
studies, as described in Materials and Methods, the lack of sequence similarity between the P.
gingivalis and human proteome and the highly reproducible response of P. gingivalis to the
intracellular environment were probably the most important factors that allowed a
straightforward abundance comparison between the intracellular and extracellular state. This
was despite differences in sample complexity due to the presence of human proteins in the
intracellular P. gingivalis proteome extracts that were not present in the extracellular controls.
In a separate study performed to evaluate the pre-fractionation procedure (data not shown) and
sampling issues with the internalized P. gingivalis proteins, we observed that the mass spectral
data sampling was relatively insensitive to human and bovine background composition for all
but the least abundant bacterial proteins so long as the percentage of spectral counts in the
entire sample assigned to P. gingivalis proteins was at least approximately 8%. By way of
comparison, the percentage of P. gingivalis spectral counts in PG_PP1 was about 26%. PG_PP1
was selected from among several biological replicates of internalized P. gingivalis for the
abundance ratio calculations because it was more highly enriched in P. gingivalis proteins than
other preps, leading to slightly more favorable sampling properties. As shown in Fig. 5 for the
649 most abundant proteins common to PG_PP1 and PG_PP2, the two biological replicates
were essentially the same. They differed only in terms of the greater relative probabilities with
which less abundant proteins could be sampled in PG_PP1, thus our choice to base the reported
ratios in supplemental Table S1 on this internalization replicate. This decision was especially
important in light of the fact that all proteomics approaches with which the authors are familiar
tend to be biased in varying degrees towards the detection of proteins that are large and (or)
abundant. For P. gingivalis in particular under these experimental conditions, this bias has been
shown to be minimal at the level of qualitative identification [25]. However, such a bias clearly
applies at the level of quantitation, where many less abundant proteins show too much scatter
in the data and too few proteolytic fragments to be reliably quantified in terms of abundance
ratios, using the non-label methods employed. These same bias relationships seem to also hold
true of the other microbial systems under investigation in the senior author’s laboratory [43].

3.5 Abundance of known P. gingivalis invasins
Entry into and survival within gingival epithelial cells by P. gingivalis is a complex multistep
process [22,44–46]. Surface molecules such as the long fimbriae, FimA, mediate attachment
and initiate a host cell signaling cascade necessary for internalization. A phosphatase, SerB,
also provides necessary input into host cell signaling. Tight control of intracellular production
of bacterial proteolytic enzymes (RgpA, Kgp and PepO) is necessary for intracellular survival.
Clp stress-related proteins and ATPases (YjjK and ZntA) are also required for the process of
entry and survival. The functionality of these proteins has been established through mutation
analyses of the corresponding genes (Table 3). Seven out of eight of these invasins were found
to be differentially expressed, the lone exception being ZntA, a cation transporting ATPase.
This increases confidence that the proteins determined herein to be differentially expressed
can be predicted to play a functional role in the interactions between P. gingivalis and host
epithelial cells. Conversely, the role of proteins where we did not find an abundance change
cannot be predicted. This ambiguity may result in part from sensitivity issues with protein
detection and (or) post-translational control of protein activity in P. gingivalis. For example,
the data in supplemental Table S1 do not distinguish between phosphorylated and de-
phosphorylated forms of the same protein.
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3.6 Insights into the intracellular lifestyle of P. gingivalis
i) Adhesins. The major adhesin for gingival epithelial cells is the long fimbriae comprised of
the FimA subunit protein [41,47]. FimA was under-expressed intracellularly, indicating that
the organism dispenses with production of this molecule after entry has been accomplished.
Loss of a major surface protein such as FimA may also have implications for recognition of
the organism by intracellular microbial detection systems such as the Nod-like receptors [48].
ii) Proteases. P. gingivalis as an asaccharolytic organism produces a variety of proteolytic
enzymes to obtain peptides for growth. P. gingivalis cells in the nutritionally rich environment
of the cytoplasm showed lowered abundance of a number of proteinases including RgpA, RgpB
and Kgp, that are considered major virulence factors [4]. Expression of bacterial proteases
inside host cells will damage host proteins and, in addition, P. gingivalis proteases can induce
apoptotic cell death [49]. Hence, reduced protease expression will contribute to the long-term
survival of the host cells. In support of this concept, epithelial cells infected with P.
gingivalis do not undergo apoptosis [50] and can survive for up to eight days after infection
[6]. Thus, intracellular P. gingivalis appear to be adapted for long-term survival and co-
existence with the host, and may not be overtly pathogenic. iii) Iron acquisition systems.
Lacking siderophores, P. gingivalis employs specific outer membrane receptors, lipoproteins
and proteases to acquire heme and iron [4,55]. Many of these systems were under-expressed,
including: HmuR, a TonB-linked outer membrane receptor required for both hemoglobin and
hemin utilization, and HmuY, a hemin binding protein in the same operon [51,52]; FetB (IhtB),
a hemin binding lipoprotein that is located in an iron transport operon along with a TonB-linked
outer membrane receptor, IhtA, [53] that was also under-expressed; and Kgp, that can degrade
host iron- and heme-containing proteins, and possibly act as a hemophore, shuttling heme back
to outer membrane receptors [55]. FeoB proteins [54] were not detected in these studies. These
results indicate that the HIGK intracellular iron and hemin concentrations are in excess for P.
gingivalis, as is also reflected in the finding that abundance of ferritin, an intracellular iron
storage protein, was increased. iv) Stress. A reduction in free iron within P. gingivalis, as
would result from under-expression of iron acquisition systems and over-expression of ferritin,
could also be indicative of oxidative stress. Lower levels of iron in bacteria will limit the
production of OH− from H2O2 via Fenton chemistry [56]. Consistent with the concept that
intracellular P. gingivalis are under a degree of oxidative stress is the over-expression of two
alkyl hydroperoxide reductases, a thiol peroxidase and rubrerythrin, all of which can be
involved in protection against oxidative stress [57,58]. In addition, there was over-expression
of ClpB and ClpC, two components of the Clp family, a general protection system against
stress, along with heat shock proteins GroEL, GroES, HtpG, HtrA, and DnaK. In any event,
regardless of the nature or extent of the stress, which may be a more natural environment for
P. gingivalis, intracellular P. gingivalis are clearly metabolically active and capable of protein
synthesis. v) Transcription factors. Intracellular P. gingivalis over-expressed two predicted
activators (PG0016 and PG0747) of the alternative sigma factor, sigma-54. A physiological
theme for sigma-54-dependent genes has yet to emerge, as the target genes participate in a
wide range of processes. However, in plant pathogens, sigma-54 controls type III secretion
[59], a major pathway for delivery of bioactive bacterial proteins into host cells that contributes
to bacterial invasion and survival. Over-expression of a TetR family transcriptional regulator
was also observed. In other organisms TetR is involved in the transcriptional control of efflux
pumps and responses to osmotic stress [60], thus TetR may play a role in regulating
physiological homeostasis of intracellular P. gingivalis.

3.7 Transition of P. gingivalis from extracellular to intracellular
Our previous global analysis [21] compared the protein expression of P. gingivalis in
keratinocyte growth medium (KGM) with conditioned keratinocyte growth medium (cKGM)
that had been exposed to GECs. The intention was to examine changes in protein abundance
that occur under conditions simulating the early stages of invasion, prior to internalization of

Xia et al. Page 11

Proteomics. Author manuscript; available in PMC 2009 March 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the bacteria. The results of a comparison between the previous study and the data given in
Table S1 are listed in supplementary Tables S2 and S3. A large number of the proteins were
differentially expressed under both sets of experimental conditions, indicating that P.
gingivalis rapidly senses the host cells and adapts to become “intracellular ready”. There were
also proteins that responded differently to the two environments, which supports the hypothesis
that P. gingivalis can also sense and respond to epithelial cell intracellular cues.

3.8 Codon Adaptation Index (CAI) and Karlin index E(g)
To explore the relationships among our quantitative results in terms of the relative abundance
of proteins within a given sample, as opposed to abundance ratios comparing two samples, we
examined the spectral counts for each ORF in light of two theoretical predictors of gene
expression. Linear regressions of spectral counts versus CAI, [37] and Karlin index, E(g),
[38,39] were generated to demonstrate correlations between our experimental observations and
these bioinformatic predictors of protein abundance (data not shown). The moderate
correlations (r = 0.39 to 0.58) observed with spectral counting were not improved by corrections
for molecular weight, a correction that has improved such correlations in studies of another
prokaryote, Methanococcus maripaludis [28]. Although the use of spectral counting methods
for the determination of abundance ratios rests on a somewhat firmer basis, there is less
evidence to support the validity of using such measurements to make statements about the
relative composition of proteomes within a given sample. This is analogous to the absence of
any absolute interpretation of the laser induced fluorescence signal in a transcription microarray
experiment, in which the normalized signal intensity ratio between two states is the usual
endpoint [23]. We know, for example, that any such “within sample” interpretation will be
compromised by major differences in quantitative detectability among proteins [17], depending
on such factors as their true abundance, molecular weight, stability during the extraction and
analytical procedures, hydrophobicity, isoelectric point and the degree to which the protein is
intrinsic within the cell membrane. While purely qualitative detectability is remarkably
consistent across the proteome for P. gingivalis [25], it has not been possible in the present
studies to demonstrate an unequivocal and straightforward relationship between a protein’s
spectral count and its absolute quantity.

3.9 Comparison of protein abundance ratios with theoretical gene pair predictions
Fig. S1 in the supplement shows the alignment of the consensus protein abundance ratio results
with the directons predicted computationally by TIGR and the University of Maryland [26],
see also www.cbcb.umd.edu/cgi-bin/operons/paris.cgi?taxon_id=20119. The authors of this
study defined a directon as the maximal number of conserved adjacent genes located on the
same DNA strand. A directon may contain one or more operons. From Fig. S1 it can be seen
that many of the ORFs within a directon show the same trend in abundance change. For
example, the ORFs in the directon from PG0775 to PG0785 are either over-expressed (green)
or ambiguous (yellow); the ORFs in the directon from PG1063 to PG1080 are either under-
expressed (red) or ambiguous. We found that the proposed LuxS operon (PG0497 to PG0504)
[61] was consistent with both the directon and our experimental observations at the protein
level. PG1910–1942 was exceptional in that it is the longest directon prediction. From the
experimental results, it is possible that this directon consists of several operons that show
different expression trends. However, it would be difficult to interpret the data presented here
in terms of a common regulatory structure for the entire directon.

4 Concluding remarks
Organisms that colonize human mucosal surface have engaged in a long standing evolutionary
association with the host and many, including opportunistic pathogens such as P. gingivalis,
have become host adapted [62]. Indeed, the ability of P. gingivalis to survive within gingival
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epithelial cells, without causing excessive harm to the host, indicates an extensive degree of
adaptation. Global protein profiling provides insights into the nature of host adaptation by P.
gingivalis. The proteomic methods employed for these studies have reached a level of maturity
such that it is now possible to make reliable quantitative measurements that are truly global in
scope at the cellular level, although the quantitative results were biased towards false negatives
(see Table 1). More genes are probably changing their protein abundance patterns in response
to the host environment than what we have described here. Global transcription studies of
intracellular pathogens isolated from within human target cells have also been problematic in
terms of high noise and low signal due to the high rates of cross-hybridization and non-specific
hybridization that occur in such experiments, most of which have focused on the host response
rather than the internalized pathogen [63]. Making direct comparisons of efficacy is difficult
due to, among other reasons, problems associated with measuring false negative rates in the
absence of easily accessible absolute detection information, a situation common to most
microarray studies. In proteomics, as applied here, absolute and highly specific detection is a
precondition that must be met prior to generation of relative abundance ratios [43].

Our most recent studies of extracellular P. gingivalis interactions with Fusobacterium
nucleatum and Streptococcus gordonii, in which changes to the P. gingivalis proteome are
confined to a few specific ORFs, have provided additional negative controls confirming that
the widespread changes observed during internalization are not sampling artifact (T. Wang, Q.
Xia, et al., manuscript in preparation) due to high background levels of non-P. gingivalis
proteins. As more work is carried out, our best judgment is that the results reported here are
conservative. Nonetheless, despite the quantitative false negative error issue, what emerges
from these measurements is a biologically consistent picture of an organism that down-
regulates production of destructive proteases, coordinates responses to elevated oxygen tension
and iron availability, dispenses with production of energetically costly surface molecules that
have outlived their use, and ramps up protein production to thrive in a nutritionally rich
intracellular environment. Unless P. gingivalis possesses a mechanism to restrain growth and
division, in the long-term the increase in bacterial numbers may tip the ecological balance away
from health and toward cell and tissue destruction.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Abbreviations
ATCC  

American type culture collection

CAI  
codon adaptation index

cKGM  
conditioned keratinocyte growth medium

CS  
consensus ratio of PG_PP1/PG_PPC1 and PG_PP1/PG_PPC2
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E(g)  
Karlin index or general expression measure

FDR  
false discovery rate

FPR  
false positive rate

FNR  
false negative rate

GECs  
human gingival epithelial cells

HIGK  
human immortalized gingival keratinocyte

hmu  
haemin-uptake locus

IP1  
intensity ratio of PG_PP1/PG_PPC1

IP2  
intensity ratio of PG_PP1/PG_PPC2

KGM  
keratinocyte growth medium

LOWESS  
locally weighted scatter plot smoothing

LTQ  
Thermo-Finnigan linear ion trap mass spectrometer

MS1  
first dimension of mass spectrometry

MS2  
second dimension of mass spectrometry

MudPIT  
multidimensional protein identification technology

nrdb  
non-redundant database

PG  
Porphyromonas gingivalis

PP cells  
synonym for HIGK, see definition above

PG_PP1  
PG_PP2, P. gingivalis internalized within PP cells

PG_PPC1  
PG_PPC2, P. gingivalis incubated in media optimized for HIGK
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SFM  
serum free medium

SP1  
spectral count ratio of PG_PP1/PG_PPC1

SP2  
spectral count ratio of PG_PP1/PG_PPC2

TIGR  
The Institute for Genomic Research
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Figure 1.
Genomic representation of the proteome, each circle represents an ORF in the order it is
encoded in the genome. TIGR ORF PG0001 in the upper left, PG2227 second from the left,
end of the bottom row. The last ORF is P13793, the FMA protein specific to strain ATCC
33277 [41]. Colored circles show the consensus result (CS) for the combined proteome analyses
of two biological replicates using two calculation methods, see supplementary Table S1. Green
indicates over-expression in PG_PP1, the internalized phenotype; red, under-expression;
yellow, protein was identified qualitatively, but without statistically significant abundance
level change; white, no protein was detected qualitatively from this locus.
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Figure 2.
Scatter plots of protein abundance ratio versus total counts for technical replicates, log2 of
spectral count ratios versus log2 of the total spectral counts from both technical replicates for
nine biological samples. The two solid curves shown above and below the zero axis in each
plot are the LOWESS smoothing curves [33] fit to the upper and lower boundaries of the
random scatter about an abundance change of zero. The LOWESS curves shown for PG_PPC1
and PG_PPC2 were used to indicate the regions of random error in Fig. 3. PG_PP1 is the
internalized biological replicate used for the abundance ratio calculations along with the two
external controls, PG_PPC1 and PG_PPC2 (see text). The remaining plots are from nutrient
limitation studies of the methanogenic Archaeon Methanococcus maripaludis. These plots
serve as a useful graphical overview of the quantitative reproducibility of protein abundance
ratios determined by spectral counting under the experimental conditions described. The
similarity of these curves for different organisms under different conditions suggests that the
region of random error within the upper and lower boundaries is determined largely by
instrumental conditions.
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Figure 3.
Scatter plots of protein abundance ratio versus total counts, biological replicates; (A), Log2 of
PG_PP1/PG_PPC1 spectral count ratios vs. log2 summed protein level spectral counts; (B),
the second biological replicate, PG_PP1/PG_PPC2. The solid curves shown are the LOWESS
smoothing curves of the upper and lower boundary of the log2 ratios of PG_PPC1 run1/run2
and and PG_PPC2 run1/run2 technical replicates shown in Fig. 2.
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Figure 4.
Reproducibility of biological replicates, extracellular P. gingivalis; proteins found in two
extracellular controls were used to generate the plots of PG_PPC1 total spectral counts versus
PG_PPC2 total spectral counts for each ORF. (A), The Pearson correlation coefficient was
0.91 on a linear scale. (B), The same data as a log2 transformation. A total of 963 proteins are
plotted.
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Figure 5.
Spectral count (A, B) and signal intensity (C, D) correlations for two biological replicates,
PG_PP1 and PG_PP2, of intracellular P. gingivalis. The Pearson correlation coefficient was
0.94 (A) for spectral counts plotted on a linear scale; on a log2 scale (B) it was 0.88. For the
signal intensity measurements the results were about the same, 0.95 on a linear scale (C), and
0.87 on a log10 scale (D). A total of 649 proteins are plotted, representing the most abundant
proteins detected and quantified in both replicates.
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Table 1
Relation of different q-value cut-offs to the quantitative false positive rate (FPR) and false negative rate (FNR). The
numbers in boldface were chosen to select the q-value cut-offs.

q cut-off Spectral Counting Ratio Signal Intensity Ratio

PG_PPC2 run1/run2 PG_PPC2/PG_PPC2_dilute 16 PG_PPC2 run1/run2 PG_PPC2/PG_PPC2_dilute 16

FPR (%)1 FNR (%)2 FPR (%)1 FNR (%)2

0.1 2.8 55 5 1.4

0.08 2.7 56 4.6 1.4

0.06 2.5 58 4.2 1.4

0.04 2.5 61 4.0 1.4

0.02 2.2 65 3.3 1.4

0.01 1.6 69 3.0 1.4

0.005 1.0 71 2.5 1.5

0.002 0.8 74 2.2 2.0

0.001 0.7 76 1.8 2.8

0.0005 0.7 77 1.6 4.1

0.0002 0.7 79 1.1 7.3

0.0001 0.7 81 1.0 9.3

0.00005 0.7 82 0.8 11.5

0.00002 0.6 84 0.7 14.5

0.00001 0.5 84 0.6 17.2

0.000005 0.5 85 0.6 19.7

0.000002 0.5 86 0.6 23.0

0.000001 0.5 87 0.6 25.4
1
Technical replicates of PG_PPC2, one of the two controls, in which all abundance ratios should represent random scatter about a true change of zero.

The q-value cut-offs were not sensitive to sample or replicate identity, but they were highly sensitive to the quantitation approach employed, see text
discussion.

2
PG_PPC2 and a 16-fold dilution of the same sample, in which all abundance ratios should be true non-zeros.
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Table 3
Comparison of protein level abundance and invasion assay results for selected mutant strains of P. gingivalis lacking
in functional genes at the locus shown.

ORF (TIGR) Gene Name Abundance Change1 Mutant Invasion Phenotype2 Reference

PG0159 pepO ↓ ↓ Park et al., 2004 [22]

PG0653 serB ↑ ↓ Tribble et al. 2006 [44]

PG1118 clpB ↑ ↓ Unpublished (Lamont et al.)

PG1642 zntA nd ↓ Park et al., 2004 [22]

PG1844 kgp ↓ ↓ Park and Lamont, 1998 [45]

FMA3 fimA ↓ ↓ Weinberg et al., 1997 [46]

PG2024 rgpA ↓ ↓ Park and Lamont, 1998 [45]

PG2206 yjjK ↑ ↓ Park et al., 2004 [22]
1
Protein abundance in intracellular P. gingivalis (see supplementary Table S1): ↑ represents over-expression (green dot in the supplement Table S1 and

Fig. 1), ↓ represents under-expression (red dot in Table S1), nd represents a qualitative non-detect (white dot in Table S1).

2
Ability of a mutant in the regulated gene to invade and survive in gingival epithelial cells as determined by antibiotic protection assays. ↓ represents a

reduction in intracellular invasion/survival (p < 0.01). For methods used in the antibiotic protection assays, see [3].

3
The ATCC 33277 strain FimA sequence was used in the present studies [41]. The equivalent TIGR ORF for W83 is PG2132.
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