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Abstract
In the analysis of retrospective data or when interpreting results from a single-arm phase II clinical
trial relative to historical data, it is often of interest to show plots summarizing time-to-event
outcomes comparing treatment groups. If the groups being compared are imbalanced with respect to
factors known to influence outcome, these plots can be misleading and seemingly incompatible with
results obtained from a regression model that accounts for these imbalances. We consider ways in
which covariate information can be used to obtain adjusted curves for time-to-event outcomes. We
first review a common model-based method and then suggest another model-based approach that is
not as reliant on model assumptions. Finally, an approach that is partially model free is suggested.
Each method is applied to an example from hematopoietic cell transplantation.
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1. Introduction
In the evaluation of time-to-event data derived from phase II clinical trials or retrospective
studies in hematopoietic cell transplantation (HCT), Cox regression is typically used to
quantify the difference in outcome between two groups. Regression analysis allows one to
adjust for potential imbalances in characteristics associated with outcome that might partially
explain the difference (or lack thereof) between the groups being compared. In addition to an
estimate of the difference in outcome as derived from the regression model, it is often desirable
to provide a graphical illustration of the difference. The most common tool for this purpose is
the Kaplan-Meier estimate for survival endpoints, and cumulative incidence estimate for
endpoints with competing risks; however, neither of these estimates considers information
from covariates that may be imbalanced among the groups, thereby leading to curves that may
not reflect the differences among the groups as measured by the regression model. A method
to generate adjusted curves would therefore be desirable. Section 2 provides an example from
HCT data and motivates the problem. Section 3 describes a relatively standard model-based
approach, which illustrates the fitted model but falls short of achieving what we would consider
to represent ‘adjusted survival’ curves. We then suggest a simple alternative that better
accommodates the notion of adjustment, though still requiring some model assumptions.
Section 4 proposes a method that is less dependent on the model assumptions required of the
methods summarized in Section 3, and is extended to provide adjusted cumulative incidence
estimates in Section 5.
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2. Example from HCT
As an illustration of the problem we present an example from a retrospective data analysis that
sought to compare outcomes after HCT following the use of nonmyeloablative conditioning
to outcomes following conventional myeloablative conditioning in 220 patients with B-cell
malignancies [non-Hodgkin lymphoma (NHL), chronic lymphocytic leukemia (CLL), and
Hodgkin lymphoma (HL)], as reported previously (Sorror et al. 2008). This comparison is
complicated by a number of factors, chief among them the fact that nonmyeloablative
conditioning is generally offered only to older patients and to patients with pre-existing
comorbidity, who are generally considered to be unsuitable for transplant with myeloablative
conditioning regimens. There are also differences between these patient populations with
respect to other factors that could influence outcome, including the diagnosis being treated,
the use of mobilized peripheral blood (PBSC) versus bone marrow (BM) as a source of stem
cells, and the use of matched sibling versus mismatched or unrelated donor grafts. Shown in
Figure 1 are (unadjusted) Kaplan-Meier estimates of overall survival for the two conditioning
groups.

Table 1 summarizes the characteristics of the two conditioning groups plus the results from
proportional hazards models relating these factors to overall mortality and non-relapse
mortality (NRM), which is defined as any death occurring in the absence of recurrence or
progression of malignancy. As can be seen from this table, patients receiving nonmyeloablative
conditioning are more likely to possess some factors that are associated with increased
mortality when compared to patients receiving myeloablative conditioning. Although not all
factors were associated with outcome in univariate analysis, they were considered as possible
adjustment factors based on prior considerations and the possibility that an association was
obscured by confounding factors.

The results from an unadjusted Cox regression model show a modestly reduced hazard of
mortality associated with nonmyeloablative conditioning relative to myeloablative
conditioning [HR=0.77, 95% CI 0.5–1.4, p=0.20], as also evidenced by the curves in Figure
1. However, the HR for overall mortality adjusted for the factors in Table 1 suggests a much
larger difference between the conditioning groups than is visually apparent [HR=0.50, 95%
CI 0.3–0.8), p=0.008]. Given this, there is a need for some type of adjustment to the curves
shown in Figure 1 so that the adjusted curves better reflect the association measured by the
regression model. In the next two sections, we discuss several approaches to adjustment.

3. Model-based Approaches
We first introduce some notation that will be used throughout. Suppose we have K groups of
interest, with sample size in each group denoted nk, and sets of labels of the individuals within
each group, denoted Mk k = 1,…,K. Each individual i has a vector of additional covariates, zi,
that may be related to overall survival or to some cause-specific hazard of interest.

The Cox proportional hazards model assumes that the hazard of failure associated with a set
of covariates z is defined by

(1)

where λ0 (t) is an arbitrary and unspecified baseline hazard function, and β is a vector of
unknown regression parameters. Based on this model, the estimated survival for a particular
set of covariates z is given by
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(2)

where Ŝ0(t) = exp[−Λ̂0(t)] is derived from any standard estimate of the cumulative baseline
hazard function (Kalbfleisch and Prentice 1980; Breslow 1974), and β̂ is the vector of estimated
coefficients from the Cox model.

Under this model, one can use equation (2) to generate an estimate of survival for any specified
set of covariates. For the current example, a standard approach to illustrating the effect of the
conditioning regimen “adjusted” for the other covariates, would be to fit a proportional hazards
model incorporating all of the covariates in Table 1 plus an indicator of conditioning group.
Then (2) would be plotted for two z vectors differing only by the presence or absence of the
indicator for conditioning, for example by using the “covariates=” option in the SAS “baseline”
statement within the “phreg” procedure. For the factors listed in Table 1, one could assign the
average value for patients in the myeloablative group, yielding the survival estimates in Figure
2.

In our view, the adjusted curves that result from this model-based approach have some
shortcomings. First, the overall shape of the unadjusted Kaplan-Meier curves is not maintained.
This is due to the fact that the adjusted curves from (2) are derived from a pooled estimate of
the common baseline hazard function, with the separation between curves dictated by the
model-based hazard ratio estimate. Even if the proportional hazards model is completely
correct, the jump points of the adjusted curves will not match those of the unadjusted curves,
because the jump points reflect deaths within either group. While these curves accurately
illustrate the fitted model, we believe they are too far removed from the unadjusted Kaplan-
Meier curves to conform to the conventional notion of adjustment.

We propose a relatively simple adjustment method which results in jump points for the adjusted
curve only when a death occurs within that group, so that the adjusted curve maintains its
overall shape, although there is still dependence on a model-based hazard ratio comparing the
two groups. To implement the method one first chooses one of the K groups as the reference
group, and then selects a time point tA as a point of reference for adjustment. Ideally this point
is well along the time axis to the right, but before the point where excessively large jumps may
occur due to small numbers of patients at risk. In a setting with two groups, suppose we choose
M1 as the reference group, Ŝ1(t) and Ŝ2(t) denote the unadjusted Kaplan-Meier curves for M1
and M2, respectively, and π̂ is the estimated adjusted hazard ratio comparing M2 to M1. If S̃
(t) denotes the adjusted curve for M2, then we require this curve to satisfy

(3)

that is, at time tA we want the survival estimate for the adjusted curve for group 2 and the
survival estimate for the reference group 1 to be in accordance with the adjusted hazard ratio
π̂.

One way to modify Ŝ2(t) to achieve this condition is to make a proportionate adjustment to the
failure probability that yields the desired relationship at tA and then apply that to the entire
curve, so that

(4)
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where m̃2 = (1−[Ŝ1(tA)]π̃ and m2 = (1 − Ŝ(tA)). Although this adjustment method is based on
the survival estimates at a single point in time, it produces reasonable results in many cases,
although it is of course somewhat dependent on the choice of tA. Also, if Ŝ2(t) becomes small
and the adjustment ratio m̃2/m2 is large, then S̃2(t) can be < 0. In this case the proportionate
adjustment could be based on the survival probability at tA, rather than the failure probability.

Another alternative to (4) that avoids this possibility is to solve for π̃ to satisfy the relation
[Ŝ2(tA)]π̃ = [Ŝ1(tA)]π̂. That is, π̃ is the “effective hazard ratio” that would need to be applied to
Ŝ2(t) in order to achieve the desired survival probability at tA, and is easily solved as π̃ = π̂ ·
log[Ŝ1(tA)]/log[Ŝ2(tA)], with then S̃2(t)= [Ŝ2(t)]π̃.

In the example at hand we take tA to be 6 years, since it represents a point relatively far along
in time yet short of where the curves become obviously unstable due to small numbers at risk,
and again wish to use the myeloablative group as the reference group. We have Ŝ1(6) = 0.399
and since π̂ = 0.5 we want S̃2 6) = 0.3990.5 = 0.632, so that the adjusted failure probability
m̃2 = 0.368. Since Ŝ2 (6) = 0.473, the unadjusted failure probability at tA is m2 = 0.527, and
S̃2(t) is constructed by mutiplying the failure probability in group 2 by a factor of 0.368/0.527
= 0.698 at all points in time. The adjusted curve according to (4) is shown in Figure 3. The
alternate adjusted curve is obtained by using an effective hazard ratio π̃ = 0.5 · log(0.399)/log
(0.473) = 0.614 applied to Ŝ2(t). The resulting curve is very similar to (4) except in the tail.

As noted above, a drawback to this simple approach is the need to choose the timepoint tA. If
the survival curves are based on groups with large sample sizes, and the risk sets do not get
too small (< 10 patients per group, say), then the method is not particularly sensitive to the
choice of time. When the sample sizes are small, or there is clear non-proportionality of hazards,
then the choice of tA becomes problematic and one should consider the method described
below.

4. Partially Model-free Approach
Although the methods described above produce adjusted curves that retain the same appearance
as the unadjusted curves, they rely on a model-based estimate of the hazard ratio, including
the assumption of proportional hazards between the groups of interest. They are also subject
to some arbitrariness in the choice of the adjustment time tA. The method described below
makes no modeling assumptions about the factor of interest, though it depends on modeling
the hazards associated with the covariates to be adjusted for.

Using the notation above, a stratified proportional hazards model for this setting is defined by
allowing the baseline hazard function to vary for each group, with other covariates modulating
this hazard in a way that is common to all strata, as defined by

(5)

Although in principle one or more components of β can be allowed to vary across strata, in the
present context it makes little sense to talk about ‘adjustment’ unless it is presumed that the
observed survival differences among the K groups are attributable to imbalances in covariates,
not to differences in covariate effects.

Given estimates of the λ0k and β, a standard estimate of the survival function for a member of
group k, with arbitrary covariate vector z, is given by

(6)

Storer et al. Page 4

Lifetime Data Anal. Author manuscript; available in PMC 2009 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where Λ0k(t) is any standard estimator of the cumulative baseline hazard function for group k
in the context of a stratified proportional hazards model (Kalbfleisch and Prentice 1980). Now
define a reference group of nA individuals with a specified set of covariates that will constitute
a common point of adjustment; the set of labels for the individuals in this group is denoted
MA. In general we expect that MA would in fact be the same as one of the existing groups
Mk, and mostly likely the reference group used in Cox regression analysis, but this is not
essential and MA could instead represent some other defined population. The adjusted survival
function estimate for the kth group is simply the average of the estimated survival functions
that would be obtained by applying (6) to each of the covariate vectors of the individuals in
MA

(7)

This approach to adjustment is somewhat similar to adjustment procedures described by
Makuch (1982) and Chang et al. (1982); however, their methods used an unstratified
proportional hazards model incorporating the group variable as a covariate. Thus, like the
standard approach described in Section 3, the adjusted curves are constrained to have the same
shape (which matches none of the unadjusted curves) and have a constant relationship
determined by the fitted model. Gail and Byar (1986) considered use of the stratified
proportional hazards model for what they called “direct adjustment” of survival curves, due to
the similarity to the concept of direct standardization in epidemiology. The use of the stratified
proportional hazards model frees the adjustment process of an unnecessary proportional
hazards assumption for the groups of interest. The shape and jump points of the adjusted
survival curves will match those of the corresponding unadjusted Kaplan-Meier survival
curves, and are free to cross. Zhang et al. (2007) also discuss the stratified approach. In fact,
if MA = ∪Mk, k = 1,…,K (i.e., the adjustment set comprises the entire dataset) then (7) is
equivalent to their estimator (3).

We apply this approach to the data associated with the above example, with the resulting curves
shown in Figure 4, with MA corresponding to the group receiving myeloablative conditioning.
The adjusted curves now yield the hypothetical survival curves that would result if the patient
characteristics of both groups had been that of the group receiving myeloablative conditioning.
The adjusted curve for the latter group, as should be expected, is very close to the original
curve. In fact, the visible separation observed here is larger than that typically seen when a
group is adjusted to itself. The method is easily implemented in SAS and we provide the
requisite code in the Appendix. A SAS macro that computes both estimates and standard errors
when MA comprises the entire dataset can be found in Zhang et al. (2007).

5. Adjusted Cumulative Incidence Estimates
In the transplant setting, it is also common to make comparisons of cause-specific hazards (for
example, relapse and non-relapse mortality) and to graphically illustrate differences among
groups with the use of cumulative incidence curves. The same issues of adjustment arise when
groups are imbalanced with respect to factors which may influence the cause-specific hazards
of interest, as would be true for the situation in Table 1.

Suppose that j indexes the J types of events, let ti denote the event or censoring times for each
individual, and let δi = j indicate that the event that occurred at ti was of type j, with δi = 0
indicating that ti is a censoring time. Then, the estimated cumulative incidence function for the
jth type of event in the kth group may be written as
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(8)

(Kalbfleisch and Prentice 1980) where the  are the Kaplan-Meier estimates of “event-free”

overall survival within the kth group, and the  are the Kaplan-Meier estimates
of “cause-specific” survival, i.e., the estimates obtained by censoring for other event types
except j. In general the latter are not interpretable, and are used here only as a device for
computing the adjusted curves. The expression in brackets in (8) is an empirical estimate within
group k of the conditional probability of a failure of type j at ti, more commonly written as an
expression like dj(ti)/n(ti) (that is, the number of events of type j at ti divided by the number of
subjects still at risk at ti); however, we have re-expressed this quantity by the equivalent
representation using the cause-specific survivor functions. The adjusted estimator of the
cumulative incidence function follows immediately by substituting the comparable adjusted

estimator (7) for each of the  in (8), yielding

(9)

For example,  is the adjusted version of event-free overall survival, computed using (7).
We assume that each of the adjusted components of (9) is adjusted for the same set of covariates,
although of course the covariates may have different associations with each of the cause-
specific hazards and with event-free survival. The choice of the covariates to adjust for will
depend on the particular cumulative incidence estimates that are of interest. An alternative
formulation of (9), more in the spirit of (7), would first calculate individual estimates of
cumulative incidence associated with each covariate vector zi in MA and then average these
estimates, as defined by

(10)

and the  are derived from stratified overall and cause-specific proportional hazards
models, as in (6). The adjusted estimators (9) and (10) are generally very close, but the
computational algorithm for (9) is more straightforward and the one which we recommend.

Although we find the procedures give sensible results, neither strictly satisfies the relation

 which would be true of the unadjusted estimates (8). In most cases,
however, the difference is negligible except possibly in the far right tail of the curves.

Figure 5 illustrates the same data as used above, except that now we show curves for the
cumulative incidence of non-relapse mortality, which accounts for 62 of the 114 total deaths.
The adjustment factors are the same as for overall mortality, and again MA represents the group
receiving myeloablative conditioning. The adjusted curve for the myeloablative group closely
tracks the unadjusted curve, as should be expected. Although the unadjusted curves are
consistent with a lower rate of non-relapse mortality for the nonmyeloablative group [HR=0.65,
95% CI 0.4–1.1, p=0.10], the cumulative incidence adjusted to the covariate characteristics of
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the myeloablative group is notably lower than the unadjusted curve and better reflects the
adjusted analysis [HR=0.28, 95% CI 0.1–0.6, p=0.0003].

6. Discussion
We have described several methods to obtain adjusted curves that summarize the probability
of failure for time-to-event endpoints that commonly occur in HCT. Other than the first of
these methods (based directly on the Cox proportional hazards model), each has the desirable
feature that the adjusted curves change only with failures within the relevant group, and the
adjusted curves also maintain the shape that is seen in the appropriate unadjusted curve.
Regardless of the method used, it should be emphasized repeatedly that the adjusted curve is
not “real”, is dependent on model assumptions, and is not in any way a surrogate for a properly
designed prospective comparison. We recommend that the unadjusted estimates always be
shown for comparison, either in the same or a separate figure. We argue, however, that the
adjusted curves do make sense and visually provide a better reflection of the estimated
differences among groups compared to use of the unadjusted curves. There are likely other
reasonable methods that would yield results that intuitively make sense as well.

The methods in Section 3 provide similar results, at least for the example considered. The
method in Section 4 makes fewer model assumptions, and is not dependent on the choice of a
time point to anchor the adjustment. We also show how it can be extended to provide adjusted
estimates of cumulative incidence curves. Because of the general relationship between
cumulative incidence and cause-specific survival functions seen in (8), the methods in Section
3 could also be adapted to provide adjusted cumulative incidence estimates. We have not
evaluated the properties of such a procedure, however.

While the model-based estimates differ a bit from the partially model-free estimates (and from
each other), it is difficult to say that one is ‘correct’ and another ‘incorrect’ since, as emphasized
above, the adjusted estimates are not real. For the particular example considered, however, all
methods resulted in adjusted curves that seem reasonable representations of the group
differences as measured by the regression model. In our experience, this has held true for other
data sets as well, although in certain situations the estimates can differ by a fair amount in the
tails, which is not unexpected. Given that the partially model-free approach requires the fewest
assumptions, we prefer its use over the other methods. The model-based approach that is
derived from S̃2(t)= [Ŝ2(t)]π̃ is very easy to implement, however, and would appear to be a
reasonable approach as well.
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Appendix
SAS code for calculating adjusted Kaplan-Meier estimate according to (7).

* generic data setup;

data a;

*   grp      stratification variable (eg 1=reference, 2=current);

*   daysur   survival time;

*   delsur   failure indicator;

*   z1–z5    covariates to adjust for;

* define reference covariate set as group 1;

data ref; set a; if grp eq 1;

* fit stratified Cox model, with covariate adjustment;

* ‘estsurv’ is estimated survival for each member of reference set;

proc phreg noprint data=a;

 strata grp;

 model daysur*delsur(0)=z1 z2 z3 z4 z5;

 baseline out=b covariates=ref survival=estsurv/method=emp nomean;

* average across the individuals in reference set at each time;

* ‘adjkm’ is the adjusted Kaplan-Meier estimate;

proc sort data=b; by grp daysur;

proc univariate noprint data=b; by grp daysur;

 var estsurv;

 output out=c mean=adjkm;
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Fig 1.
Kaplan-Meier estimates of overall survival from aretrospective study in HCT. The gray curve
represents the probability of survival for patients who received a nonmyeloablative
conditioning regimen, and the black curve represents the same for patients who received a
myeloablative regimen. Tick marks represent censored observations.
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Fig 2.
Kaplan-Meier estimates and adjusted estimates of overall survival from a retrospective study
in HCT. Solid curves represent the unadjusted (Kaplan-Meier) survival estimates for the two
groups, dashed lines represent the adjusted estimates as determined from the appropriate Cox
regression model. Tick marks on the Kaplan-Meier curves represent censored observations.
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Fig 3.
Kaplan-Meier estimates and adjusted estimates of overall survival from a retrospective study
in HCT. Solid curves represent the unadjusted (Kaplan-Meier) estimates for the two groups,
dashed lines represent the adjusted estimates from two different methods for the
nonmyeloablative group. The first dashed curve is obtained by proportionately changing the
failure probability at each time; the second dashed curve is obtained by exponentiating the
unadjusted curve to the appropriate power as detailed in Section 3. Tick marks on the Kaplan-
Meier curves represent censored observations.
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Fig 4.
Kaplan-Meier estimates and adjusted estimates of overall survival from a retrospective study
in HCT. Solid curves represent the unadjusted (Kaplan-Meier) survival estimates for the two
groups; dashed lines represent the adjusted estimates obtained from the partially model-free
approach detailed in Section 4.
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Fig 5.
Cumulative incidence estimates and adjusted estimates of non-relapse mortality from a
retrospective study in HCT. Solid curves represent the unadjusted (cumulative incidence) non-
relapse mortality estimates for the two groups, dashed lines represent the adjusted estimates
obtained from the partially model-free approach detailed in Section 5.
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