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ABSTRACT

Motivation: The rapid expansion of whole-genome copy number
(CN) studies brings a demand for increased precision and resolution
of CN estimates. Recent studies have obtained CN estimates from
more than one platform for the same set of samples, and it is natural
to want to combine the different estimates in order to meet this
demand. Estimates from different platforms show different degrees
of attenuation of the true CN changes. Similar differences can be
observed in CNs from the same platform run in different labs, or in
the same lab, with different analytical methods. This is the reason
why it is not straightforward to combine CN estimates from different
sources (platforms, labs and analysis methods).
Results: We propose a single-sample multi source normalization that
brings full-resolution CN estimates to the same scale across sources.
The normalized CNs are such that for any underlying CN level,
their mean level is the same regardless of the source, which make
them better suited for being combined across sources, e.g. existing
segmentation methods may be used to identify aberrant regions. We
use microarray-based CN estimates from ‘The Cancer Genome Atlas’
(TCGA) project to illustrate and validate the method. We show that
the normalized and combined data better separate two CN states at a
given resolution. We conclude that it is possible to combine CNs from
multiple sources such that the resolution becomes effectively larger,
and when multiple platforms are combined, they also enhance the
genome coverage by complementing each other in different regions.
Availability: A bounded-memory implementation is available in
aroma.cn.
Contact: hb@stat.berkeley.edu

1 INTRODUCTION
The Cancer Genome Atlas (TCGA) project (Collins and Barker,
2007; TCGA Network, 2008) is a collaborative initiative to
better understand cancer using existing large-scale whole-genome
technologies. One of the tumor types studied is brain cancer, more
precisely glioblastoma multiforma (GBM). GBM is a fast growing
tumor, where the survival rate is low and the life expectancy after
diagnosis is on average 14 months. One objective of TCGA is
to identify copy number (CN) aberrations and polymorphisms in
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Table 1. Summary of CN datasets (sources) listing the name of the
participating institute (TCGA center), the platform used, the number of CN
estimates produced and additional comments.

(A)

(B)

(C)

(D)

Institute: the Broad Institute. Platform: Affymetrix Genome 
WideSNP_6, approx.1 800 000 loci; avg. 1.59 kb between loci,
25mer probes.

Institute: the Stanford University & HudsonAlpha Institute. 
Platform: Illumina HumanHap550, approx. 550 000 loci (30%
of Affymetrix), avg. 5.53 kb between loci, 50mer probes.

Institute: Memorial Sloan-Kettering Cancer Center (MSKCC).
Platform: Agilent HG-CGH-244A, approx.236 000 loci (13%),
avg. 12.7 kb between loci, 60mer probes. Comments: some  
direct hybridization of tumor/normal pairs.

Institute: Harvard Medical School & Dana Farber Cancer 
Institute. Platform: Agilent HG-CGH-244A, approx. 236 000
loci (13%), avg.12.7 kb between loci, 60mer probes.

GBM samples. Within TCGA, there is a set of Tissue Collection
Centers (TCCs) that collects and stores tissues from GBM patients.
To date, tumor and normal tissues (or blood) from more than 200
individuals have been collected. Each TCC sends tissues and clinical
metadata to the TCGA Biological Collection Resource (BCR),
which in turn provides the different TCGA centers with prepared
biospecimen analytes (DNA and RNA) for further analysis. In
Table 1, the four TCGA centers that conduct CN analysis on GBM
samples are listed. They are all using different DNA microarray
technologies. The CN results generated by these centers are sent to
the TCGA Data Coordinating Center (DCC) and published online.
A large number of samples are analyzed at more than one site, but
not all. More details on the TCGA organization and work flow can
be found in the Supplementary Materials of TCGA Network (2008).

Thus far the different TCGA centers have identified CN regions
independently of each other. It has been suggested that more accurate
and precise results at a higher resolution and with greater coverage
could be obtained if the CN estimates from the different sites are
combined. The data can be combined at various levels, e.g. at the
level of full-resolution CNs (Bengtsson et al., 2008b) and at the
level of segmented CN regions. It can be argued that combining
the data at the full resolution will leave more options for choosing
downstream methods.

© 2009 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/


H.Bengtsson et al.

Fig. 1. Full resolution and smoothed tumor/normal CNs in a 60 Mb region
on Chr 3 of TCGA sample TCGA-02-0104 as measured by four different
labs based on three different types of microarray SNP and CN platforms
(Table 1). The full-resolution estimates are displayed as light points and the
smoothed estimates, which are available at every 100 kb, are displayed as
dark colored curves. For set A there are 88000 full-resolution CNs on Chr 3,
for set B there are 38000 CNs, and for sets C and D there are 15000 CNs
(approximately).

The main differences observed when comparing CN estimates
originating from different labs, platforms and preprocessing methods
are that: (i) the mean levels of CN aberrations differ, and (ii) the noise
levels differ at the full resolution. This is illustrated in Figure 1,
which shows CN estimates for one sample in a particular region.
Although the different CNs from the four sources show very similar
CN profiles, it is clear that the attenuation and the noise levels
differ (cf. Ylstra et al., 2006). See also Figure 2A. Other notable
differences are that the platforms have (iii) different numbers of
loci, and (iv) varying coverages in different parts of the genome.
We will later also see that (v) the relationships between platforms
are often non-linear.

In this article, we present a normalization for full-resolution CN
estimates from multiple sources (abbreviated MSCN) which ensures
that the observed mean estimates for any true CN level agree across
sources such that there is a linear relationship between sources.
The method is applied to each sample independently, and requires
only raw CN ratios or log-ratios. Calibration toward known CN
levels can be applied afterward and is not considered here. For
CN signals based on SNP probes, it is only total CN estimates
that are normalized; relative allele signals (‘raw genotypes’) are left
unchanged.

The realization of a single-sample method has several
implications: (i) Each sample can be processed as soon as CN
estimates from the different sources are available. (ii) Samples
can be processed in parallel on different hosts/processors making
it possible to decrease the processing time of any dataset linearly
with the number of processors. (iii) There is no need to reprocess a
sample when new samples are produced, which further saves time

A

B

Fig. 2. Smoothed tumor/normal CNs before (A) and after (B) multisource
normalization. The same region as in Figure 1 is depicted (with a different
vertical scale).

and computational resources. Furthermore, (iv) the decision to filter
out poor samples can be made later, because a poor sample will not
affect the processing of other samples. More importantly, a single-
sample method is (v) more practical for applied medical diagnostics,
because individual patients can be analyzed at once, even when they
come singly rather than in batches. This may otherwise be a limiting
factor in projects with a larger number of samples.

Although it might appear possible, the data and results presented
here cannot and should not be used to compare platforms,
labs or algorithms. Such comparisons require precisely defined
objectives, which will vary with the underlying biological question
or hypothesis. With appropriately defined objectives, an evaluation
method could be designed, and then such comparisons could be
made. At the moment, we are taking the CN estimates from the
different platforms as they are given to us; we do not even know
at this point whether they are all optimized to achieve the same
objective. As a result, comparisons of the kinds mentioned are
beyond the scope of this article, although they are definitely of
interest to us, and we hope to carry them out in the future.

The outline of this article is as follows. In Section 2, we give
our definitions of the terms calibration and normalization, and
describe the model and algorithm for the normalization method.
In Section 3, we show that the normalized CNs across sources are
proportional to each other, which is a necessary property. At the end,
we illustrate how the combined normalized CN estimates increase
the power to detect change points, in comparison with the separate
sources, and combined, un-normalized CN estimates. In Section 4,
we conclude the study, discuss potential limitations, call for extended
segmentation methods and give future research directions.

2 METHODS

2.1 Dataset
For this study, we used data from the TCGA project. From the DCC data
portal, we downloaded (May and June 2008) Level 2 CN estimates for
GBM tumors and normal blood/normal tissues for 60 individuals that have
estimates from all four sources. For the purpose of illustrating our method, we
will focus mainly on sample TCGA-02-0104 (vials 01Aversus 10A), because
it has a large number of CN aberrations on Chr 3 at different mean levels. For
the evaluation, we will use samples TCGA-06-0178 (01A versus 10B) and
TCGA-02-0026 (01B versus 10A). We have found that the normalization
method works equally well in other regions as well as with other samples
(data not shown).
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2.1.1 Copy numbers Although not restricted to such, all CN estimates
used here are log-ratio CNs calculated as:

Mi,j = log2
θi,j

θR,j
, (1)

where θi,j is the non-polymorphic signal at locus j=1, ... ,J for sample i=
1, ... , I and θR,j is the corresponding reference (R) signal. Where allele-
specific estimates (θi,j,A,θi,j,B) are provided, the non-polymorphic signals are
calculated as θi,j =θi,j,A +θi,j,B. In this study the reference signals are from
the normal target DNA in the tumor/normal pair. In non-paired studies, the
reference is often calculated as the robust average across a pool of samples,
(cf. Bengtsson et al., 2008b). We note that the proposed method could also
be applied to CN ratios before taking logarithms.

2.1.2 Direct and indirect CN ratios Due to the nature of the platforms,
the Affymetrix and Illumina tumor/normal CNs are indirect in silico ratios
of signals originating from two hybridizations. The Agilent platform is a
two-color assay where two DNA targets are co-hybridized to the same
microarray. Some of the tumor/normal pairs from Source C come from direct
co-hybridizations of tumor and normal samples, while the majority from
Source C and all from Source D come from two hybridizations: one in which
the tumor sample is co-hybridized with a common DNA reference (Promega
Reference DNA). Ideally the common reference channels (approximately)
cancel out when calculating the ratios (of ratios). The two TCGA-02 samples
were hybridized directly at Source C.

2.2 Proposed model
The proposed MSCN was designed to: (i) be applicable to CN estimates from
a wide range of technologies including, but not exclusively, microarrays, (ii)
provide full-resolution normalized estimates and (iii) normalize each sample
independent of the others. As explained in the Section 1, there are several
advantages of a method that can be applied to one sample at a time compared
with one that requires multiple samples.

2.3 Normalization model
Sources s=1, ... ,S provide CN estimates at different (possibly non-
overlapping) sets of loci. Dropping sample index i in what follows, let ys,j

denote the CN estimate from source s at genomic position xj , where these
will be specific to the source, though possibly overlapping. Let µj denote
the underlying true but unknown CN at the corresponding locus. For ys,j , we
will here use the CN log-ratio Mj from source s. In Figure 1 four different
sets of (un-normalized) CN estimates for the same sample are shown for a
common region on Chr 3.

2.3.1 Non-linear measurement functions We model the observed
(estimated) CNs {ys,j} as:

ys,j = fs(µj)+εs,j, (2)

where fs(·) is a source-specific function and εs,j is source-specific noise.
This measurement function (Bengtsson and Hössjer, 2006) for source s
encapsulates how the signals of interest are transformed by the platform and
the data processing. We assume that fs(·) is smooth and strictly increasing.

An important and necessary assumption made in Equation (2) is that
the measurement function is independent of the true CN level. Previous
studies indicate that this may not be true when an inappropriate preprocessing
method is used for estimating CN ratios (Bengtsson and Hössjer, 2006). If this
is the case, we assume the effect is approximately the same across sources,
and if it is not, we assume the effects are small enough to be ignored.

2.3.2 Calibration Consider the case where the true CN is known for a set
of loci, and that the CNs for these loci are reasonable spread out (have wide
support). Regression techniques can then be used to estimate fs(·) based on

the subset of {(µj,ys,j)} for which the truth is known. Backtransformation
gives an estimate of the true CN as:

µ̂j = f̂ −1
s (ys,j), (3)

where f −1
s (·) is referred to as the calibration function. One of the properties

of a calibration function is that the calibrated signals (here denoted {µ̂j}) are
proportional to the true signals.

2.3.3 Normalization However, here we will consider the much more
common case where the truth is not available, especially not at a range of
CN levels. Instead of calibration functions, we will estimate normalization
functions {h−1

s (·)}, which, when used in place of {f̂ −1
s (·)} in Equation (3),

backtransform signals such that the signals effectively get the same
measurement function afterwards, i.e. the normalized signals are on the
same scale. To be more precise, we will estimate {h−1

s (·)} such that when
full-resolution CNs are transformed as:

ỹs,j = ĥ−1
s (ys,j), (4)

we obtain
ỹs,j = f̃ (µj)+ ε̃s,j, (5)

where f̃ (·) is a measurement function common to all sources. Although this
measurement function is still unknown, we know that it is the same for all
sources. This means that, after normalization there will be an approximately
proportional (linear) relationship between the sources. In other words, with
zero-mean noise, the means of the normalized CNs {ỹs,j}s are the same when
the true CN µj =µ. This is a property required by most segmentation methods
and other downstream methods. For a further discussion on calibration and
normalization, see Bengtsson (2004) and Bengtsson and Hössjer (2006).

2.3.4 Estimating normalization functions In Bengtsson and Hössjer
(2006) and Bengtsson et al. (2004) the authors proposed affine
(‘linear’) models for normalizing and calibrating multidimensional signals,
respectively. In both cases, principal component analysis (PCA) techniques
were used to estimate linear subspaces of data to infer the normalization
(calibration) functions. We will generalize those models and algorithms in
two ways. First, in order to account for the fact that the sources estimate
CNs at different loci, we generate CN estimates at a common set of loci
using kernel estimators. Second, in order to model non-linear relationships
between sources we utilize principal curves (Hastie and Stuetzle, 1989).

2.3.5 Constructing CN estimates at a common set of loci In order to
estimate the normalization functions, we need a complete set of CN estimates
at a large number of loci. Because different sources produce CNs at different
loci, we estimate CNs at a predefined set of target loci from CNs available in
the proximity of each target locus. Here, the set of target loci will consist of
every 100 kb locus throughout the genome. Note that the choice of locations
is not critical. More precisely, for target locus j with position xj we construct
CN estimates {zs,j} for all sources by utilizing kernel estimators as follows.
For each source s and target locus j, calculate:

zs,j =
∑

j′
wj,j′ ys,j′ , (6)

where {wj,j′ ≥0} are weights with constraint
∑

j′ wj,j′ =1;

wj,j′ =w(|xj′ −xj|)∝�((xj′ −xj)/σ ), (7)

with �(·) being the Gaussian density function and σ a bandwidth parameter.
Mainly for computational efficiency, but also for robustness, we choose to
truncate the kernel at |xj′ −xj|>3σ (excluding 0.27% of the density) by
giving such data points zero weight. We ignore potential bias problems at the
extreme locations. Moreover, if there are no data points within the truncated
window for one of the sources, we treat that as a missing value and ignore
that target locus. Note, by inserting Equation (2) in Equation (6), we obtain

zs,j =
∑

j′
wj,j′ fs(µj′ )+ε′

s,j, (8)

where ε′
s,j =

∑
j′ wj,j′εs,j′ . Next, by assuming that (i) the underlying true CN

is locally constant, which is reasonable to believe except for positions close
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Fig. 3. Smoothed CNs for the six different pairs of sources. Data from all
autosomal chromosomes in one individual is displayed. Each curve depicts
the overall pairwise relationship between the two datasets plotted. These
curves, which are used only to illustrate the relationships, are fitted using
smooth splines with five degrees of freedom.

to change points, and that (ii) the function fs(·) is approximately linear in
this range, we can approximate the above with:

zs,j ≈ fs
(∑

j′
wj,j′µj′

)
+ε′

s,j ≈ fs(µj)+ε′
s,j . (9)

In the latter step we used the fact that if the true CN is locally constant,
then

∑
j′ wj,j′µj′ =µj , with the equality being replaced by an approximation

when change points are taken into account. Bias due to change points
can to some extent be controlled for by replacing Equations (6) and (7)
with a robust kernel estimator, and partly by using a truncated kernel (as
above). Finally, comparing Equation (2) with Equation (9), we see that the
smoothed estimates {zs,j} and the original estimates {ys,j} have undergone
(approximately) the same transformation via fs(·). Thus, we can use {zs,j}
as a proxy for the incomplete {ys,j} to estimate normalization functions. We
want to emphasize that the above smoothed estimate of CN are only used for
estimating the normalization functions; it is the original full-resolution data
that will be normalized.

2.3.6 Relationship between sources From Equation (9), we expect
{(z1,j, ... ,zS,j)} to scatter around the one-dimensional curve f(µ)=
(f1(µ), ... , fS(µ)) in S dimensions, where µ is the true CN. This is confirmed
by the different pairs {(zs,j,zt,j)} plotted in Figure 3. It is clear that the
‘sensitivity’ (amplitude of the estimates) differ between sources, e.g. the
absolute values from Source C are greater than Source A. Although these
relationships are similar across samples, we find that they are not similar
enough in order to reuse their estimates across sources. There are even
cases where they are reversed (data not shown). These plots also show
that the relationship between two sources is not linear but slightly non-
linear, especially at ‘extreme’ CN levels. This indicates that at least one of
the underlying measurement functions are non-linear. There exist various
reasons for this non-linearity, where offset (Bengtsson and Hössjer, 2006)
and saturation (Ramdas et al., 2001) in probe signals are two.

2.3.7 Potential problems with Chr X and Chr Y estimates From looking
at 60 tumor/normal pairs, we have concluded that there exists a common
across-locus relationship between any two sources. However, for estimates

on sex chromosomes we have observed that the estimated CNs do not
necessarily follow the same trend, at least for some of the data sources (data
not shown). We believe this is because some preprocessing methods post-
curate CN estimates from Chr X and Chr Y in order to control for differences
in males and females, and the corrections differ with methods. For this
reason, we fit the normalization functions using signals only from autosomal
chromosomes. For the practical purpose of normalizing and combining Chr X
and Chr Y data, we suggest that one studies the pairwise relations for these
chromosomes carefully. If it is clear from looking at multiple samples that
one source is curating the data in such a way that the relationship cannot
be estimated and backtransformed, then one may want to exclude its Chr X
and Chr Y CNs from the combined dataset, or if possible, use an alternative
preprocessing method for estimating CNs.

2.3.8 Estimating normalization functions When the measurement
functions are linear, we can use techniques from principal component
analysis to estimate a one-dimensional line h(λ)= (h1(λ), ... ,hS(λ))∈R

S

from {(z1,j, ... ,zS,j)}. However, since the measurement functions here
are non-linear, we instead use a related technique based on principal
curves (Hastie and Stuetzle, 1989). This allows us to estimate a one-
dimensional curve h(λ)= (h1(λ), ... ,hS(λ))∈R

S based on {(z1,j, ... ,zS,j)}.
As argued above, we cannot regress on the true CNs {µj}, because they
are unknown. For this reason, we can only parameterize h(·) modulo the
unknown relationship λ= f̃ (µ). A natural constraint is to parameterize such
that f̃ (·) is strictly monotone. This will avoid sign swaps, which is a common
problem whenever using PCA-based techniques. We use the algorithm
suggested by Hastie and Stuetzle (1989), which is implemented in the
princurve package (Weingessel and Hastie, 2007), for estimating principal
curves. This method can be robustified by using iterative re-eighted least
squares (IRWLS) methods, (cf. Bengtsson et al., 2004). We define the
normalization functions to be the inverse of the individual components
of the estimated principal curve, that is, (ĥ−1

1 (·), ... , ĥ−1
S (·)), such that

λ̂s,j = ĥ−1
s (ys,j) is an estimate of λj = f̃ (µj) by source s.

2.3.9 Normalizing toward a target source In addition, or as an alternative
to the above constraint, one option is to constrain the principal curve, or
alternatively the normalization function, such that the normalized data will
be on the same scale as one of the sources, which is then referred to as
the target source. This is done by forcing the corresponding normalization
function to equal the identity function. For instance, h1(λ)=λ keeps CNs
for the first source unchanged. This is a natural way to parametrize the curve
uniquely. This strategy is also useful in the case where CNs from one source
are known to be more consistent across samples than CNs from other sources.
This more stable target source will then be used to control for across-sample
variations. For similar reasons, in the case where there is only one source that
produces estimates for all samples, then that source can used as the target
source. Moreover, if the target source produces calibrated CNs, that is, CNs
that are proportional to the true CNs, then the normalized CNs for all other
sources will become calibrated as well.

2.3.10 Applying normalization functions Finally, with estimates of
{h−1

s (·)}, we normalize the observed full-resolution CNs as:

ỹs,j = ĥ−1
s (ys,j), (10)

with {ỹs,j} being referred to as the (full-resolution) multisource normalized
CNs. Coupled with each normalized dataset is an overall variance σ 2

s , which
can be estimated from {ỹs,j} using for instance a robust first-order difference
variance estimator (Korn et al., 2008; von Neumann et al., 1941).

2.3.11 Combining full-resolution normalized CNs The normalized CNs
may be combined by merging (interweaving) them across sources generating
a new set denoted by {(xM,j,ỹM,j)}, which is the joint set of CNs from
all sources. The normalized and merged CN estimates are likely to be
heteroscedastic, because the noise levels (σ 2

s ) differ between sources. Other
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sources of variation, such as locus-specific error terms, may add to the
heteroscedasticity as well. In the following section, we will give one example
on how the heteroscedasticity can be modeled using locus-specific weights
that are proportional to 1/σ 2

s .

2.4 Evaluation
Although different CN studies have different objectives, an important one
is to segment the genome into regions that reflect the underlying piecewise
constant nature of the true CNs. The main strategy of many segmentation
methods is to identify the change points, and then estimate the mean CN
levels between change points. Consider the case where there exist only
one change point in a specific region and that the location of it is known.
This region may be defined by two flanking change points and/or the
chromosome ends. Then, under the above assumptions, the ability to detect
this change point is determined mainly by: (i) the magnitude of change in the
(observed) CNs, (ii) the noise level of the CNs and (iii) the distance (and/or
the number of data points) to the left and the right of the change point.
Depending on model, for instance the t-test can be used to test whether there
exist a change point or not at the given locus (Page, 1955). Given such a
test for a fixed locus, when the location of the change point is unknown, one
can scan the region for the locus that gives the highest score above some
required significance threshold. To test for multiple change points, several
strategies have been suggested, e.g. using a recursive divide-and-conquer
approach to identify a new change point in the region defined by two existing
change points (Venkatraman and Olshen, 2007). Since a large number of loci
are scanned and many change points are identified, correction for multiple
testing is needed.

The evaluation method used here is inspired by the fundamentals of the
above test without having to rely on a specific segmentation method. First,
we pick a region in one sample for which there is strong evidence that there
exist only one change point (which is in the center of the region). For each
dataset s, we then identify the sets of loci in this region that are to the left and
to the right of the change point. We exclude loci that are within 500 kb of the
change point for robustness against errors in the location of the change point.

Since the comparison of datasets has to be done on the same ‘resolution’,
we construct a new set of common estimates by binning the CNs in non-
overlapping windows of equal (physical) lengths h and averaging within
each window. This corresponds to using a uniform kernel of width h in
Equation (6) and apply it to every h position. Note that this approach
is guaranteed to use all available data points. Here, we use a weighted
median estimator with weights wj ∝1/σ̂ 2

s such that data points from more

noisy sources have less impact on the smoothed estimate. Let {z̃(h)
s,j,L} and

{z̃(h)
s,j,R} denote the resulting smoothed CNs for the left and the right set

of loci in dataset s. Next, we use receiver operating characteristic (ROC)
analysis (Bengtsson et al., 2008b) to assess how well these two subsets
of smoothed CNs separate the CN states defined by the two sides of the
change point. We argue that this is related to how a segmentation method
tests for a change point.

2.5 Algorithm and implementation
The MSCN method is available in R (R Development Core Team, 2008)
package aroma.cn part of the aroma.affymetrix framework (Bengtsson et al.,
2008a). The method is designed and implemented to have bounded-memory
usage, regardless of the number of samples/arrays processed. Furthermore,
the complexity of the algorithm is linear in the number of loci (J), and linear
or near linear in the number sources (S). Since it is a single-sample method,
the samples can be preprocessed in parallel on multiple hosts/processors.
The method applies to any type of technology.

3 RESULTS
The result from applying MSCN to observed TCGA-02-0104
tumor/normal CNs is shown in Figure 4. After normalization, the

Fig. 4. Normalized full-resolution tumor/normal CNs in the same sample
and region as in Figure 1. Source D was used as the target source, which is
why the estimates from that source does not change.

Fig. 5. Smoothed normalized CNs for the six different pairs of sources. After
normalization the relationship between sources is approximately linear. The
sample and loci shown are as in Figure 3.

full-resolution data are such that the mean levels of the different CN
regions are the same for all sources. This can be seen if comparing
the smoothed CNs (i) along the genome (Fig. 2B), and (ii) between
pairs of sources (Fig. 5). This shows that the normalized estimates
of CNs have the property defined by Equation (5).

3.1 Better CN separation at a given resolution
Here, we assess how well various CN estimates in the same region
can differentiate between two (unknown) CN states using the method
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(A) (B)

Fig. 6. The ROC performances for detecting a CN change based on the
individual (dashed gray) CNs along, the combined un-normalized CNs (dash-
dotted red) and the combined normalized (solid red) CNs. (A) the results for a
change point on Chr 10 in TCGA-06-0178, (B) the results for a change point
on Chr 12 in TCGA-02-0026.

described in Section 2.4. For this purpose, we use two regions
in two different samples. The first is a 43.2 Mb region around a
change point at Chr10:114.77 Mb in sample TCGA-06-0178, and the
second is a 13.0 Mb region around a change point at Chr12:28.0 Mb
in sample TCGA-02-0026. The CN change is greater for the latter
change point. As the MSCN is a single-sample method, these two
samples were normalized (MSCN) and evaluated independently of
each other.

In Figure 6, the ROC performances of the combined normalized
and un-normalized CNs as well as each of the individual sources are
depicted for these regions. For the two regions we smoothed the CNs
in bins of size h=25kb and h=15kb, respectively. First, we note that
when combining sources, the normalized CNs separate the two CN
state better than the un-normalized data. This is because the inter-
locus variability due to differences in mean levels, which in turn
is due to the non-linear relationships between sources, is removed.
From the pairwise relationships in Figure 3, we observe that the
discrepancy between mean levels is larger for the more extreme CN
levels. For this reason, we also expect the inter-locus variability
to be greater at these levels, making the normalization even more
important. We also note that the combined normalized CNs perform
better than any of the individual sources. This is because there are
more data points available within each window providing more
precise estimates of the underlying true CN. For similar reasons,
and because of differences in noise levels (of the smoothed data),
we observe different performances across sources. Since there is a
risk that false conclusions are drawn on their relative performances
based on these limited illustrations, we choose not to annotate the
individual sources.

3.2 Segmentation on separate and combined datasets
To further illustrate the effect of multisource normalization, we
zoom in on a small part of the already studied 60 Mb region on
Chr 3. In Figure 7, normalized CN estimates from the four sources
as well as the combined normalized CNs are depicted for the 400 kb
region at 35.2–35.6 Mb. It is clear that the different platforms have
different densities overall, and also that their densities differ along
the genome, i.e. the relative number of data points for Platform C
(D) compared with Platform A, is much lower than the genome-
wide average of 13% (Table 1). Note also that there exist regions

Fig. 7. Segmentation of a 400 kb region on Chr 3 using CN estimates from
the individual sources (upper four panels) and the combined estimates (lower
panel). In addition to increase density and effective resolution, the different
sources also complement each other by covering different regions. All data
are normalized across sources.

where there are no observations available for some sources, e.g.
around 35.3 Mb there are no CNs available from Source B, but
several from Source A. This shows that integrating estimates from
different platforms not only enhances the resolution, but increases
the coverage, i.e. the platforms complement each other at different
regions of the genome. Moreover, the fact that there are no data
points for one of the platforms in certain regions is an argument for
avoiding integrating CN data at the segmentation level, because it is
often not clear from the results why a segmentation method identifies
a CN aberration based on one platform but not based on another. It
can either be because the aberration is false, or because the other
platform has no data in that region. When integrating the data at the
level of full-resolution CNs, this is less of a problem. The piecewise
constant lines in Figure 7 show the CN regions as identified by
the Circular-Binary Segmentation (CBS) method (Venkatraman and
Olshen, 2007). We note that for this particular region, no aberrations
are identified by the data from Source D. We believe that this is less
likely to happen with with full-resolution normalized and combined
CNs, and that there is more power to detect true CN regions. We
also note that the precision of an estimated change point is greater
when the density is greater, simply because the distance between
any two loci is smaller.

4 DISCUSSION
The proposed method controls for differences in mean levels
between sources. It does not control for differences in noise levels.
This implies that the variance of a normalized CN estimate in the
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combined dataset depends on the source of that CN estimate. In order
for segmentation methods to perform optimally, this heteroscedacity
needs to be taken into account. Segmentation methods, such as
GLAD (Hupé et al., 2004) and CBS (Venkatraman and Olshen,
2007), which are most commonly used and well tested, do often not
model heteroscedasticity of CNs, although they could be extended to
do so. To the best of our knowledge, the only segmentation method
readily available for doing this is the recently published HaarSeg
method (Ben-Yaacov and Eldar, 2008). In the hidden Markov Model
domain, there is the BioHMM method (Marioni et al., 2006).
The performance of these methods is not known or not known
as well as the aforementioned ones. Regardless, it is still possible
to use ordinary segmentation methods, but their performance will
be sub-optimal. The main difference is that by not controlling for
heteroscedasticity, the CN estimates from the more noisy sources
will have a relatively greater impact on the segmentation than if
their greater variance would be accounted for.

It has recently come to our attention that one research group
is developing a multitrack segmentation method for estimating
segments common across sources, while taking heteroscedasticity
and different mean levels into account. Their method assumes linear
relationships between sources. When this is not true, as observed
here, our method can normalize the data such that this assumption
is met. We look forward to this new method.

Here, we have focused on CN estimates from different labs
and technologies, but the proposed model and method may also
be applied for normalizing estimates from different chip types
of the same technology, e.g. when combining data from the two
chip types part of the Affymetrix 500K chip set. Furthermore, the
proposed normalization method makes it possible to combine data
from different generations of arrays such as the Affymetrix 100K
and the Affymetrix 6.0 chip types. This provides an alternative to
existing methods for combining data across different generations of
arrays (Kong et al., 2005). Similarly, the more recent chip types have
markers for non-polymorphic loci in addition to markers for single-
nucleotide polymorphism (SNP). If the assay or the preprocessing
method produces CNs such that these two types of markers are not
on the same scale, then our method may be used to normalize for
differences in the SNP and non-polymorphic subsets.

Note that calibration and normalization functions may be
estimated on a subset of existing loci. Hence, it is still possible
to normalize data where one source completely lacks observations
in parts of the genome. This also means that by using technologies
complementing each other, including not only microarrays but also
PCR and next-generation sequencing, an increased coverage in
addition to an increased density can be obtained.

We further note that it is possible to normalize for differences
between sources using quantile normalization (Bolstad et al., 2003).
However, methods that normalize for differences in quantiles do not
incorporate the genomic locations by coupling estimates from the
same region across sources, cf. Equation (6). For a further discussion
on relationships between normalization functions as defined here and
quantile normalization, see Bengtsson and Hössjer (2006).

The MSCN method requires that for each sample there exists a few
CN aberrations and other discrepancies from the copy neutral state in
the genome. If not, the normalization functions are not identifiable.
We do not know to what extent this could be a problem, especially in
normal samples. The existence of CN polymorphic regions (CNVs)
in normal individuals (Komura et al., 2006; Redon et al., 2006)

should provide some protection against this. If not, Bayesian
techniques where prior distributions of {hs(·)} are obtained from
other samples may be used. We look forward to further studies and
reports on this.
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