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Evolution of cooperation has been a major issue in evolutionary biology. Cooperation is observed not only

in dyadic interactions, but also in social interactions involving more than two individuals. It has been

argued that direct reciprocity cannot explain the emergence of cooperation in large groups because the

basin of attraction for the ‘cooperative’ equilibrium state shrinks rapidly as the group size increases.

However, this argument is based on the analysis of models that consider the deterministic process. More

recently, stochastic models of two-player games have been developed and the conditions for natural

selection to favour the emergence of cooperation in finite populations have been specified. These

conditions have been given as a mathematically simple expression, which is called the one-third law. In this

paper, we investigate a stochastic model of n-player games and show that natural selection can favour a

reciprocator replacing a population of defectors in the n-player repeated Prisoner’s Dilemma game. We

also derive a generalized version of the one-third law (the {2/[n(nC1)]}1/(nK1) law). Additionally, contrary

to previous studies, the model suggests that the evolution of cooperation in public goods game can be

facilitated by larger group size under certain conditions.

Keywords: one-third law; finite populations; cooperation; evolutionary stability; fixation probability;

public goods game
1. INTRODUCTION

Understanding the evolution of cooperation in terms of

natural selection has been a major challenge in evolution-

ary biology (Hamilton 1964; Trivers 1971; Axelrod &

Hamilton 1981; Axelrod 1984; Nowak 2006). Animals

sometimes behave cooperatively even towards unrelated

individuals and direct reciprocity has been a key concept

to explain this phenomenon (Trivers 1971; Axelrod &

Hamilton 1981; Axelrod 1984).

In humans, cooperation is observed not only in dyadic

interactions, but also in social interactions involving more

than two individuals (Joshi 1987; Boyd & Richerson 1988).

Humans often cooperate in public goods games and in

situations ranging from family issues to global warming

(Kollock 1998; Milinski et al. 2006). It has been argued

that direct reciprocity cannot explain the emergence of

cooperation in large groups because the basin of attraction

for the ‘cooperative’ equilibrium state shrinks rapidly as the

group size increases (Boyd & Richerson 1988). However,

this argument is based on the analysis of conventional

deterministic models, which do not consider the stochastic

process in finite populations. Natural populations are

always finite and important biological phenomena such as

random genetic drift can be studied only in stochastic

settings. In the present context, how likely it is that a

reciprocator invades and eventually replaces a population of

defectors cannot be examined without taking the stochastic

process into account.

Nowak et al. (2004) developed a stochastic model of two-

player games and specified the conditions required for

natural selection to favour the emergence of cooperation in
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finite populations. Assuming a discrete-time population of

fixed size N with one individual replaced at a time, in

accordance with the Moran (1958) model, Nowak et al.

(2004) showed that the fixation probability of a single ‘tit for

tat’ reciprocator (TFT) ina populationof defectors (ALLD)

can be greater than 1/N, the fixation probability expected in

the absence of natural selection. Furthermore, when both

TFT and ALLD are evolutionarily stable in the traditional

sense, they demonstrated for sufficiently large population

and for sufficiently weak selection that the fixation

probability of TFT is larger than 1/N if p*!1/3, where p*

is the frequency of TFT at the unstable equilibrium in the

conventional deterministic model (i.e. the ‘one-third’ law).

The one-third law has been shown to hold also for a

population with discrete non-overlapping generations that

follows the Wright–Fisher model (Fisher 1930; Wright

1931) under the same assumptions on population size and

selection intensity (Lessard 2005; Imhof & Nowak 2006).

In this paper, we consider a stochastic model of

n-player games by extending the model of Nowak et al.

(2004). Using this model, we obtain the condition under

which a single reciprocator replacing a population of

defectors is favoured by natural selection in the n-player

repeated Prisoner’s Dilemma game. We also examine the

relationship between the fixation probabilities and the

basins of attraction of equilibrium states; in other words,

we derive a generalized version of the one-third law. In

addition, we investigate the effects of the group size on the

emergence and maintenance of cooperation in the n-player

repeated Prisoner’s Dilemma game in finite populations.
2. THE GENERAL n -PLAYER GAME
Let us consider the situation where groups of n individuals

are formed by randomly choosing individuals from a

population of size N and a game is played within each of

these groups. There are two strategies, A and B, and pay-off
This journal is q 2009 The Royal Society
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Table 1. The pay-off matrix of the general n-player game.

number of A individuals among
the nK1 opponents

strategy of the
focal individual nK1 nK2 nK3 . 1 0

A a1 a2 a3 . anK1 an
B b1 b2 b3 . bnK1 bn
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gained by each individual depends on its own strategy and

the strategies of the other nK1 individuals in the group:

denote by aj pay-off to an A individual when there are nKj

other A individuals in the group and by bj pay-off to a

B individual with nKj A individuals in the group (table 1).

The expected pay-offs of A and B individuals are given by

Fi Z
Xn
kZ1

iK1

nKk

 !
NKi

kK1

 !

NK1

nK1

 ! ak; ð2:1Þ

Gi Z
Xn
kZ1

i

nKk

 !
NKiK1

kK1

 !

NK1

nK1

 ! bk; ð2:2Þ

respectively, where i represents the number of A individuals

in the population (0%i%N ). Note that
� s
t
�

represents a

binomial coefficient when sRt and is defined as zero when

s!t. The fitness of A and B individuals when there are i

A individuals in the population are, respectively, given by

fiZ1KwCwFi and giZ1KwCwGi , where w specifies the

contributionof thegametofitness.Mostof the results shown

in this paper are under the assumption of weak selection

(0!w/1). Population dynamics are formulated as a

Moran process with frequency-dependent fitness. At each

time step, an individual is chosen for reproduction with the

probability proportional to itsfitness. One identical offspring

is produced to replace another individual chosen for death

with the uniform probability 1/N (Moran 1958). The

process has two absorbing states, iZ0 and iZN. It has

been shown (Nowak et al. 2004) that the fixation probability

of A, rA, with which a population at state iZ1 eventually

reaches state iZN, is given by

rA Z 1= 1C
XNK1

kZ1

Yk
iZ1

gi
fi

 !
: ð2:3Þ

The fixation probability of B, rB, that a population at state

iZnK1 reaches iZ0 can be similarly obtained.

We find that for the general n-player game with weak

selection, the fixation probability of A is given approxi-

mately by

rAz
1

N

1

1KðaNKbÞw=nðnC1Þ
; ð2:4Þ

where

aZ
Xn
kZ1

kðakK bkÞ;

bZKn2bn C
XnK1

kZ1

kbk C
Xn
kZ1

ðnC1KkÞak:
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Hence, rAO1/N holds and thus selection favours A

replacing B if aNOb. In the limit of large population

size, rA!1/N if

Xn
kZ1

kak!
Xn
kZ1

kbk: ð2:5Þ

The fixation probability of B can be calculated similarly.

It is of interest to ask whether A is more likely to replace

B than vice versa. The ratio of the fixation probabilities can

be calculated as follows:

rA

rB

z1C
w

n
½gNKnða1K bnÞ�; ð2:6Þ

where

gZ
Xn
kZ1

ðakK bkÞ:

Hence, rAOrB is equivalent to gNOn(a1Kbn). In the limit

of large N, rAOrB if

Xn
kZ1

akO
Xn
kZ1

bk: ð2:7Þ

Note that both rA and rB can be less than 1/N, in which

case selection opposes replacement in either direction. It is

also possible to find conditions where both rA and rB are

greater than 1/N and thus selection favours replacement in

either direction. As a special case, conditions (2.5) and

(2.7) include the corresponding conditions that have been

obtained (Nowak et al. 2004) for the case of nZ2.

Following Nowak et al. (2004), we call strategy B ESSN

(evolutionarily stable strategy) if the following two

conditions are met: (i) selection opposes A invading B,

which means that a single mutant A in a population of B

has a lower fitness, and (ii) selection opposes A replacing

B, or rA!1/N. For the general n-player game, the first and

second conditions are equivalent to

ðNK1Þan! ðNKnÞbn C ðnK1ÞbnK1 ð2:8Þ

and

aN!b; ð2:9Þ

respectively.

Let us compare the ESSN conditions (2.8) and (2.9) with

the traditional ESS condition in the conventional determi-

nistic model (e.g. Maynard Smith 1982; Hofbauer &

Sigmund 1998). In our notation, the traditional ESS

condition for B is an!bn. Consider two special cases.

First, for largeN, (2.8) and (2.9) reduce to an!bn and (2.5),

respectively. In this case, therefore, ESSN requires the

traditional condition as well as an additional condition

(2.5). That is, the traditional ESS condition is necessary

but not sufficient for ESSN. Second, for the smallest

possible population size, NZn, the ESSN conditions for

B are an!bnK1 and

XnK1

kZ1

kakC1!
XnK1

kZ1

kbk: ð2:10Þ

Hence, the traditional condition is neither necessary nor

sufficient for B to be ESSN. Note that when nZ2, conditions

an!bnK1 and (2.10) are equivalent (Nowak et al. 2004), but

not so when nO2.
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3. THE n-PLAYER REPEATED PRISONER’S
DILEMMA GAME
Among n-player games of particular interest are public

goods games, which have been frequently used to deal with

the evolution of cooperation in groups of individuals. Here,

we apply the general framework developed above to the

n-player repeated Prisoner’s Dilemma game as a version of

public goods games. A game consists of m round(s) (mR1),

in each of which individuals either cooperate or defect.

When some individuals cooperate, all the individuals in the

group gain a benefit from it while only the cooperating

individuals have to pay a cost. Following earlier works (Joshi

1987; Boyd & Richerson 1988), we consider two strategies:

ALLD and TFTa. ALLD always defects no matter what

other individuals do. TFTa cooperates in the first round and

then cooperates in each subsequent round if a or most of the

nK1 opponents cooperated in the previous round. It can be

shown that no strategies other than ALLD can be ESSN

when NZn (see the electronic supplementary material).

Thus, we assume NOn in the following.

Let us assume that the pay-offs to cooperating (C) and

defecting (D) individuals for a particular round in which

there are k cooperating individuals (0%k%n) are

V(C jk)Zbk/nKc and V(Djk)Zbk/n, respectively, where

b and c represent the benefit and cost of cooperation. From

the definition of the n-player Prisoner’s Dilemma game, it

must be that bOcOb/nO0. Let strategies A and B in

table 1 represent TFTa and ALLD, respectively. Accord-

ingly, let aj and bj represent the total pay-offs of a game

(after the mth round) to a TFTa and an ALLD,

respectively, when there are nKj TFTas among the

opponents. The total pay-offs are given as follows: when

j%nKaK1, aj Zm[b(nC1Kj )/nKc] and bjZmb(nKj )/n;

when jZnKa, ajZm[b(aC1)/nKc] and bjZba/n; and when

jRnKaC1, ajZb(nC1Kj )/nKc and bjZb(nKj )/n.

In the conventional model, TFTa is ESS if a1Ob1, i.e.

aZnK1 and mOb(nK1)/[(bKc)n]. Hence, TFTnK1 can

be traditional ESS when the number of rounds is

sufficiently large (Joshi 1987; Boyd & Richerson 1988).

However, since ALLD is always traditional ESS (an!bn),

the emergence of cooperation cannot be explained by the

conventional approach.

We examine the fixation probabilities of TFTa and

ALLD in the stochastic model. Since it turns out that

selection opposes ALLD invading TFTa only if aZnK1,

in this paper, we focus on the case of aZnK1. Assuming

weak selection, the following results are obtained. First,

selection opposes ALLD invading TFTnK1 if

mO
ðnK1Þ½Nb=cKnðb=cK1Þ�

nðb=cK1ÞðNKnÞ
; ð3:1Þ

and opposes ALLD replacing TFTnK1 if

mO
ðnK1Þ½Nðb=cCnÞKnðb=cK1Þ�

2nðb=cK1ÞðNKnÞ
: ð3:2Þ

Condition (3.2) is sufficient for (3.1). Hence, TFTnK1 is

ESSN when (3.2) is satisfied. The right-hand side of

(3.2) gives the critical number of rounds above which

TFTnK1 is ESSN. In the limit of large N, (3.2) becomes

mO(nK1)(b/cCn)/[2n(b/cK1)].
Proc. R. Soc. B (2009)
Second, selection always opposes TFTnK1 invading

ALLD while it opposes TFTnK1 replacing ALLD if

m!
ðnK1Þ½ðnC1ÞNKðb=cK1ÞðNKnÞ�

2ðb=cK1ÞðNKnÞ
: ð3:3Þ

Hence, ALLD is ESSN when (3.3) is satisfied. Note that

(3.2) and (3.3) can hold simultaneously. Condition (3.3)

deserves emphasis: when this condition is violated,

rTFTnK1
O1=N is satisfied, which means that natural

selection favours a single mutant reciprocator to even-

tually replace a population of defectors. In the limit of

large N, (3.3) becomes m!(nK1)(nC2Kb/c)/[2(b/cK1)].

Third, rTFTnK1
OrALLD is equivalent to

mO
ðnK1ÞN

ðb=cK1ÞðNKnÞ
: ð3:4Þ

The probability that a single mutant TFTnK1 replaces a

population of ALLD is, if small, always non-zero. In the

long run, TFTnK1 may be more likely to replace ALLD

than vice versa. This is exactly what is expected if

rTFTnK1
OrALLD. Note that (3.4) is sufficient for (3.2),

suggesting that TFTnK1 is ESSN whenever

rTFTnK1
OrALLD. On the other hand, the right-hand side

of inequality (3.3) is always larger than the right-hand side

of inequality (3.4). Hence, rTFTnK1
OrALLD can actually

hold even when ALLD is ESSN. For large N, (3.4) reduces

to mO(nK1)/(b/cK1) (figure 1).

Figure 1 illustrates the dependence of the critical

numbers of rounds on the group size for large N.

Considering b/c as constant (figure 1a), the critical

number of rounds above which TFTnK1 is ESSN increases

monotonically with the group size; thus the maintenance

of cooperation is less likely in larger groups. Furthermore,

the critical number of rounds required to destabilize

ALLD increases quadratically and that required for

rTFTnK1
OrALLD increases linearly with the group size.

These relationships seem to suggest that larger group size

generally has a negative impact on the evolution of

cooperation. It should be mentioned, however, that the

possible range of values for b/c increases with the group

size, i.e. 1!b/c!n must always be satisfied. Consequently,

sometimes it may be more reasonable to consider b/(nc),

instead of b/c, as constant. Intuitively, b/c can be regarded

as the efficiency of cooperation for an individual when

all of the nK1 opponents cooperate. On the other hand,

b/(nc) can be regarded as the efficiency of cooperation

when none of the opponents cooperates.

Let us illustrate what the situation with constant b/(nc)

is like. For the sake of explanation, imagine n unrelated

individuals living in the same nest and jointly defending

the nest from intruders. Each individual decides whether

to watch intruders outside the nest for a time 1/n of a day.

While the benefit of avoiding intruders per day, b, is

constant, the cost of watching per day, c, is inversely

proportional to n. Hence, in this case, b/(nc) can be

regarded as constant.

Considering b/(nc) as constant, a substantially different

picture emerges (figure 1b): as is clear when setting b/(nc)

constant in (3.2) in the limit of large N, the critical number

of rounds above which TFTnK1 is ESSN now decreases

monotonically with the group size. Similarly, from (3.4),

the critical number of rounds required for rTFTnK1
OrALLD

decreases monotonically with the group size. Interestingly,
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Figure 1. Effects of the group size (n) and number of rounds
(m) on the evolutionary stability of TFTnK1 and ALLD when
N is large. The parameter space is divided into the following
four regions: (i) TFTnK1 is ESSN and ALLD is not ESSN;
(ii) both TFTnK1 and ALLD are ESSN and rTFTnK1

OrALLD;
(iii) both TFTnK1 and ALLD are ESSN and rTFTnK1

!rALLD;
and (iv) TFTnK1 is not ESSN and ALLD is ESSN. (a) The
situation when b/cZconst. Evolution of cooperation becomes
more difficult as the group size increases. The parameter value
used is b/cZ1.5. (b) The situation when b/(nc) Zconst.
Maintenance of cooperation becomes easier with increasing
group size. The parameter value used is b/(nc) Z0.51.

Figure 2. The relationship between the fixation probabilities
ðrTFTnK1

; rALLDÞ and the frequency of TFTnK1 at the
unstable equilibrium ( p*). If (3.5) holds, then NrTFTnK1

O
1ONrALLD, i.e. selection favours TFTnK1 replacing ALLD
and opposes ALLD replacing TFTnK1. If (3.6) holds, then
NrALLDO1ONrTFTnK1

, i.e. selection favours ALLD and
opposes TFTnK1. If neither (3.5) nor (3.6) is satisfied, then
both NrTFTnK1

and NrALLD are less than 1, i.e. selection
opposes the fixation of either strategy. We also find that (3.7)
is equivalent to rTFTnK1

OrALLD. All these relationships hold
for large population size. Although ALLD is evolutionarily
stable against invasion by TFTnK1 in the deterministic
model, in our stochastic model, the probability that a single
mutant of TFTnK1 takes over an ALLD population can
exceed 1/N.
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(3.3) suggests that the dependence of the critical number

of rounds required to destabilize ALLD on the group size

is not monotonic: the required number of rounds is

smallest with an intermediate group size.

The latter findings suggest that the evolution, or at least

maintenance, of cooperation is more likely when the group

size is larger, given thatb/(nc) is constant. This is of particular

interest; previous studies on the n-player Prisoner’s

Dilemma game incorporating direct (Boyd & Richerson

1988) or indirect (Suzuki & Akiyama 2007, 2008)

reciprocity have agreed that the evolution of cooperation

becomes more difficult as the group size increases.

In the deterministic model ( Joshi 1987; Boyd &

Richerson 1988), the possible outcomes are that either

only ALLD is ESS or both TFTnK1 and ALLD are ESS.

In the former case, no polymorphic equilibria exist and

rTFTnK1
!1=N!rALLD always holds. In the latter case, on

the other hand, there is an unstable polymorphic

equilibrium. Let us argue this case further below.

The frequency of TFTnK1 at this equilibrium, p*,

is given by p*Z{(nKb/c)/[n(b/cK1)(mK1)]}1/(nK1).

TFTnK1 will be lost even when it is ESS unless its initial

frequency exceeds p*. Since p* increases rapidly with n, it

has been argued that evolution of cooperation is unlikely

with sizable group (Boyd & Richerson 1988). In our

stochastic model, for large N, rTFTnK1
O1=N and rALLDO

1/N are equivalent to
p�!
2

nðnC1Þ

� �1=ðnK1Þ

; ð3:5Þ
Proc. R. Soc. B (2009)
and

p�O
2

nC1

� �1=ðnK1Þ

; ð3:6Þ

respectively. Note that these inequalities give the one-third

law (Nowak et al. 2004; Ohtsuki et al. 2007) when nZ2.

Similarly, for large N, rTFTnK1
OrALLD is equivalent to

p�!
1

n

� �1=ðnK1Þ

; ð3:7Þ

which reduces to p*!1/2 when nZ2. This argument does

not necessarily apply to general n-player games (figure 2).

Figure 3 compares the values of p* across varying n

with the thresholds of p* above which rALLDO1/N,

rTFTnK1
!rALLD or rTFTnK1

!1=N holds. Considering b/c

as constant (figure 3a), the basin of attraction for the

cooperative equilibrium state shrinks (i.e. p* becomes

larger) as the group size increases in the deterministic

model. In accordance with this observation, rTFTnK1
O

rALLD does not hold true (i.e. the solid line is above the

dashed line in figure 3a) when the group size is larger than

a critical value in the stochastic model. Hence, both the

deterministic and stochastic models suggest that larger

group size has a negative impact on the evolution of

cooperation. Considering b/(nc) as constant (figure 3b),

however, even though the basin of attraction for the

cooperative equilibrium state shrinks as the group size

increases in the deterministic model (except when n is

small), rTFTnK1
OrALLD does hold true in the stochastic

model when the group size exceeds a critical value. Hence,

our stochastic model reveals what cannot be found by

analysing the deterministic model: large group size

can facilitate the evolution of cooperation, given that

b/(nc) is constant.
4. DISCUSSION
Our model specifies the fixation probability of a strategy in

n-player games and reveals that a TFTnK1 replacing a
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Figure 3. Comparison of the frequency of TFTnK1 at the
unstable polymorphic equilibrium in the deterministic model
( p*) with the conditions rALLDO1/N, rTFTnK1

!rALLD and
rTFTnK1

!1=N when N is large. The solid line represents the
frequency of TFTnK1 at the unstable polymorphic equili-
brium, p*, in the deterministic model. The other three lines
represent the thresholds of p* above which rALLDO1/N
(dotted line), rTFTnK1

!rALLD (dashed line) or rTFTnK1
!1=N

(dot-dashed line). (a) The situation when b/c and m are
constant (b/cZ1.5 and mZ30). The solid line is below the
dot-dashed line, which means that p* is smaller than the
threshold above which rTFTnK1

!1=N, if and only if n%5.
Hence, rTFTnK1

O1=N is satisfied if and only if n%5. Similarly,
rTFTnK1

OrALLD holds if and only if n%14, while rALLD!1/N
holds if and only if n%29. In this case, the evolution of
cooperation becomes more difficult with increasing group
size. (b) The situation when b/(nc) and m are constant
(b/(nc)Z0.51 and mZ30). The condition rTFTnK1

O1=N is
satisfied if and only if 3%n%57, while rTFTnK1

OrALLD and
rTFTnK1

!1=N are always satisfied unless nZ2. In this case,
the situation under which TFTnK1 more readily replaces
ALLD than vice versa and the situation under which
cooperation is maintained are both more likely to be realized
when the group size is larger.

AA AB BB AAA AAB ABB BBB

A 10 7 2 A 20 60 2 15
B 5 3 7 B 21 61 3 16

AA AB BB AAA AAB ABB BBB

A 12 13 4 A 7 2 14 6
B 8 7 16 B 4 14 4 8

(a) (c)

(b) (d)

Figure 4. Examples of the pay-off matrices in the general
n-player game. (a) Although the Malthusian fitness of A is
positive when pZ1/3, rA!1/N. (b) The Malthusian fitness of
A is positive when pZ1/2, but rAOrB does not hold. (c) A is
ESSN and B is not ESSN when 4%N%9. For 9!N!41,
neither A nor B is ESSN and for NR41, only B is ESSN.
(d ) Both A and B are traditional ESS, but neither A nor B is
ESSN for large population size.
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population of ALLD can be favoured by natural selection

in the n-player repeated Prisoner’s Dilemma game given

that the number of rounds is sufficiently large. We also

derive the {2/[n(nC1)]}1/(nK1) law, which reduces to the

one-third law when nZ2. Furthermore, the model

suggests that larger group size can facilitate the evolution

of cooperation under certain conditions.

Alencar et al. (2008) conducted an experiment in which

school children decide whether to cooperate with their

classmates in a public goods game and found that group

size affects the level of cooperation, with children in large

groups cooperating significantly less than those in small

groups. In their experiment, candy bars donated by

cooperative children were tripled and equally shared

among all the children. While this experimental design

assumes that b/c does not change with n, the present study

suggests an interesting possibility that people may behave

differently according to the relationship between b/c and n.

Empirical study on this issue is needed.

The pay-off matrix given in table 1 could produce

multiple polymorphic equilibria when analysed with the

conventional deterministic model. For nZ2, Ohtsuki et al.

(2007) showed that the fixation probability of strategy A

exceeds 1/N if and only if its Malthusian fitness, which is

defined in the deterministic model as a function of the

frequency of A, p, is positive when pZ1/3. The one-third

law holds for the Moran process and the Wright–Fisher
Proc. R. Soc. B (2009)
process (Nowak et al. 2004; Imhof & Nowak 2006). In the

general n-player game, however, the one-third law does

not hold (figure 4a). Similarly, for nZ2, rAOrB holds

if and only if the Malthusian fitness of A is positive when

pZ1/2. However, in general n-player games, this relation-

ship does not necessarily hold true (figure 4b).

Let us conclude with two more examples of n-player

games. First, for the pay-off matrix in figure 4c, choosing

strategy B will bring a higher pay-off, no matter what the

opponents do. Obviously, B is traditional ESS while A is

not. This is a dilemma (but not the Prisoner’s Dilemma),

because it tends to be that everyone chooses B though one

can gain more if everyone chooses A. By contrast, our

analysis reveals that A can be ESSN and B cannot be ESSN

for small N. Second, it can be shown that for nZ2 or 3, no

pay-off matrix exists for which both A and B are traditional

ESS but neither A nor B is ESSN (see the electronic

supplementary material). For nR4, however, a pay-off

matrix exists for which both A and B are traditional ESS

but neither A nor B is ESSN. This discussion holds for

weak selection and large population size (figure 4d ).

We thank M. Seki and J. Y. Wakano for their comments. This
research is supported by the Japan Ministry of Education,
Culture, Sports, Science and Technology, Grant-in-Aid for
Young Scientists (B), 18770217.
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