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Abstract
Rationale and Objectives—Our previous scan regularized reconstruction (PSRR) method is
proposed to reduce radiation dose and applied for lung perfusion studies. The normal and ultra-low
dose lung CT perfusion studies are compared in terms of estimation accuracy of pulmonary functional
parameters.

Materials and Methods—A sequences of sheep lung scans were performed in three prone,
anesthetized sheep at normal and ultra-low doses. A scan protocol was developed for the ultra-low
dose studies with ECG gating - time point one for a normal x-ray dose scan (100kV/150mAs) and
time points 2–21 for low dose scans (80kV/17mAs). A nonlinear diffusion-based post-filtering
(NDPF) method was applied to the difference images between the low-dose images and the high-
quality reference image. The final images at 20 time points were generated by fusing the reference
image with the filtered difference images.

Results—The power spectra of perfusion images and coherences with the normal scans show a
great improvement in image quality of the ultra-low dose scans with PSRR relative to that without
RSRR. The Gamma variate-fitting and the repeatability of the measurements of the mean transit time
demonstrate that the key parameters of lung functions can be reliably accessed using PSRR. The
variability of the ultra-low dose scan results obtained using PSRR is not substantially different from
that between two normal dose scans.

Conclusions—Our studies have shown that a ~90% reduction in radiation dose is achievable using
PSRR without compromising the quantitative CT measurements of regional lung functions.
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I. Introduction
Worldwide there are growing concerns on radiation induced genetic, cancerous and other
diseases [1–3]. CT is considered as a radiation-intensive procedure, yet becoming more and
more common. In the mid-1990s, CT scans only accounted for 4% of the total x-ray procedures
but they contributed 40% of the collective dose [4]. The introduction of helical, multi-slice and
cone-beam technologies have increased and continue increasing the usage of CT. In US, the
number of CT examinations performed has been estimated to be as high as nearly 60 million,
and account for 15% of imaging procedures and 75% of the radiation exposure in 2002 [4]. As
much as 30% of individuals undergoing one CT will have a total of at least 3 examinations,
and over 90% of abdominal/pelvic CT studies use 2 or more CT scans [5]. A British study has
quantified the cancer risk from diagnostic x-rays, in which radiation from medical and dental
scans is thought to cause about 700 cases of cancer per year in Britain and more than 5,600
cases in US [2]. On June 19, 2007, the New York Times reported that “the per-capita dose of
ionizing radiation from clinical imaging exams in the U.S. increased almost 600% from 1980
to 2006”. More recently, in a high-profile article on the rapid growth in CT use and its associated
radiation risks [3], Brenner et al. estimated that “on the basis of such risk estimates and data
on CT use from 1991 through 1996, it was estimated that about 0.4% of all cancers in the
United States may be attributable to the radiation from CT studies. By adjusting this estimate
for current CT use, this estimate might now be in the range of 1.5 to 2.0%.”

Facing the increasing radiation risk, the well-known ALARA (As Low As Reasonably
Achievable) principle is widely accepted in the medical community. While eliminating
unnecessary CT examinations and optimizing CT protocols are important steps in minimizing
radiation exposure, a number of dose reduction techniques have been developed. These include
mAs reduction methods, tube current modulation schemes [6,7], and a highly constrained
backprojection (HYPR) reconstruction method [8,9]. Operator-specified mAs reduction for
small patients is prone to errors, which could conceivably increase patient dose if a study is
repeated. More importantly, radiologists dislike CT images with increased noise due to reduced
mAs. The tube current modulation approach uses information from either a scout view or a
current scan view to change the tube current dynamically during the scan, reducing the mAs
for thin body sections and increasing mAs for thick sections. This strategy allows dose
reduction up to 30–40% for typical elliptical body sections. However, the gain diminishes for
circular body sections. The HYPR method is a new technique for reconstruction of sparse,
highly-undersampled time-resolved image data. This method originally was developed for
magnetic resonance imaging and now is adapted for CT [8,9]. To our best knowledge, all the
current low dose algorithms were developed to extract as much information as possible only
from a low dose dataset of a patient/animal [10,11], without utilization of detailed prior
knowledge in a previous scan of the same patient/animal.

As the number of CT applications is exponentially growing, there are several major scenarios
for ultra-low dose scans: mass screening of diseases with high mortality (such as coronary
artery disease, lung and colon cancers), pathology analysis and treatment monitoring over long
time, as well as functional imaging (blood flow, ventilation and regional mechanics). The CT
screening results usually lead to follow-up exams to assess features in detail and changes in
suspicious lesions. In a cancer screening program, up to 70% of the individuals will have
nodules found which must be followed since 1–5% of them will suffer from malignant nodules.
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Also, CT is used for comprehensive assessment of the cardiac and lung functions using a
combination of scanning protocols. For example, retrospective cardiac CT methods [12,13]
require reduction of pitch down to as low as 0.1 from a typical 1.0–2.0 range. In the case of
micro-CT, in addition to the low-dose reasons for medical CT, low dose micro-CT datasets are
necessarily generated for in-vivo studies because of the flux limitation. Up to now, the
performances of image reconstruction algorithms for low-dose CT have been fundamentally
restricted by the inherent limitations of low-dose data themselves.

Here we propose an innovative approach for CT/micro-CT of a patient/animal to improve
image quality dramatically at ultra-low dose by utilizing a previously acquired CT/micro-CT
scan of the same patient/animal, which is called the previous scan regularized reconstruction
(PSRR) method in this paper. The major idea of PSRR is to identify and keep any substantial
changes in an ultra-low dose dataset as well as extract and use unchanged features in the
previously acquired normal dose dataset. This method can reduce radiation dose significantly
for CT studies which require repeated scans such as in the aforementioned scenarios. Different
from the existing methods, our approach allows regularization with individualized knowledge
at a detailed level.

II. Methods
2.1. Algorithm Description

Our PSRR approach is a universally applicable strategy. Generally speaking, an ultra-low dose
scan can be acquired by reducing mAs, decreasing kVp, and even lowering the number of
projections as compared to a previous normal dose scan. Here we will describe a PSRR
procedure in the context of a Siemens SOMATOM Sensation 16 scanner in the circular
scanning mode. After the acquisition of an ultra-low dose circular scan by reducing mAs, we
apply a cosine correction to convert the narrow cone-angle multi-slice dataset to a stack of fan-
beam sinograms, each of which is associated with one horizontal z-slice. Once the fan-beam
sinograms from the ultra-low dose scan are generated, our PSRR is performed for each z-slice
in the 2D fan-beam geometry as illustrated in Figure 1. The equi-angular fan-beam sinogram
can be represented as P(β, γ), where β is an angle for the source position, and γ the fan-angle
for the detector location. For a full scan dataset from the Siemens SOMATOM Sensation 16
scanner, β is discretized as βi with i = 1, 2, ···1160, and γ as γj with j = 1, 2,···672. Note that the
number of projections 1160 for β may be decreased for dose reduction, such as into a quarter-
scan scheme in our experiment design in the next section. As shown in Figure 2, our PSRR
method is performed in the image domain, and it consists of the three major components: image
reconstruction, image registration and nonlinear filtering. In the following, we will describe
each step in detail.

Image Reconstruction—Let the current ultra-low dose and previous normal dose
projection datasets of the same image slice be P(β,γ) and PP (β,γ), where the subscript “P”
indicates the previous scan. Once P(β,γ) or PP (β, γ) are available, image reconstruction can
be performed in the equi-angular fan-beam geometry as shown in Figure 1. This can be done
by either the conventional filtered backprojection (FBP) algorithm or the recently developed
backprojection filtration (BPF) formula [14,15]. The reconstructed images are respectively
denoted as I (x) and IP (x), where x represents an arbitrary pixel in 2D coordinates. In practice,
x is sampled at grid points (xm, yn), m = 1, 2,···M and n = 1, 2, ···N. Note that the previous
normal dose projection data PP(β, γ) may be scanned by a scanner different from that used to
collect the current ultra-low dose data, although in this paper they are scanned by the same
Siemens scanner.
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Image Registration—Because the previous normal dose scan and ultra-low dose scan are
not acquired simultaneously or even not scanned by the same scanner, the reconstructed images
I (x) and IP (x) generally are not the same because of rigid or non-rigid object motion and other
differences between the two scans. Hence, we need to register the two reconstructed images
before further processing. With the ultra-low dose image I (x) as the reference, we can register
the reconstructed IP (x) from the previous normal dose scan to obtain ĪP (x) (see Subsection
2.2 for detail), where the bar indicates the registration procedure. After IP (x) is transformed
to ĪP (x) with I (x) as the reference, ĪP (x) and I (x) can be compared directly.

Nonlinear Filtering—The key idea behind our PSRR method is to recognize substantially
changed parts in the reconstruction from the ultra-low dose scan, and replace the other parts
with the corresponding features in the reconstruction from the previous normal dose scan. After
the registration step, for example, we can compute the difference image ID (x) = I (x)−ĪP (x).
Then, an appropriate nonlinear filtering operation is performed on ID (x) to remove image noise
and identify any substantial changes (see Subsection 2.3 for detail). Assuming that the filtered
difference image is ÎD(x), the final PSRR reconstruction IF (x) can be synthesized as IF (x) =
ÎD (x) + ĪP (x).

Figure 3 illustrates the basic elements of our PSRR mechanism. Three simulated projection
datasets were generated from a modified Shepp-Logan phantom. The corresponding images
were reconstructed to show representative intermediate results in Figure 3. Figure 3(a) is the
reconstruction of a previous object status from a previous normal dose scan (1160 views and
672 lines per views), while (b) presents the reconstruction from a low-dose scan (29 views
only), (c) the reconstruction of the current object status from a current normal dose scan serving
as the gold standard, (d) the difference between (a) and (b), (e) the filtered difference image,
and finally (f) the image reconstructed using PSRR from the current ultra-low dose scan
regularized by (a). It can be observed that the PSRR image (f) (using only 1/40 normal dose)
is very close to the normal dose reconstruction (c). This comparison reveals a major advantage
of our proposed PSRR approach. Note that the registration component is not included in this
illustrative example.

2.2. Image Registration
Image registration is to establish a geometrical correspondence between two images of the
same object acquired at different times and possibly not under the same conditions. In our
study, while one image is the reconstructed image IP (x) from the previous normal dose scan,
the other image is the reconstructed image I (x) from the current ultra-low dose scan. The
relationship between IP (x) and I (x) can be formulated as ĪP (x) = ηIP (TΘ(x)) = I (x) + ε, where
TΘ is a spatial transformation depending on a set of parameters Θ, η an intensity mapping, and
ε a noise term. That is, after a spatial transform TΘ and an intensity mapping η, IP (x) will arrive
at ĪP (x) that is in the same geometry of I (x) subject to noise ε. It should be pointed out that
TΘ is a general spatial transform model to represent any rigid or non-rigid spatial transform.

There is a large volume of literature on image registration [16,17]. Given the background of
lung perfusion applications, we propose to use a multi-scale adaptive transformation [18] in

the form of  with Θ = [V0, V1, ···, VK]. On the lowest scale, V0 (x) = Rω x +
b is a global linear transformation describing the overall pose of IP (x) with respect to I (x),
where Rω representing the rotation ω and b the translation. Once Vk (x) is computed on a scale
level k, a local measure of mismatch (for instance, the gradient of the normalized mutual
information [18]) can be applied to minimize any mismatch on the next scale level k + 1. A
mismatch region is then decomposed into disjoint sub-regions. A deformation field Vk+1 (x)
is computed for each sub-region. By an appropriate registration procedure, we will finally
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obtain the registered image ĪP (x). At the same time, a global similarity measure is assigned to
each mismatch region for further analysis.

2.3. Nonlinear Filtering
The partial differential equation (PDE) based non-linear diffusion technique is an effective
way for image denoising [19]. One of the important merits of this technique is that it is capable
of extracting all the substantial changes in the difference image ID (x) between the current
ultra-low dose reconstruction I (x) and registered previous normal dose reconstruction ĪP (x).
In this approach, the filtering parameters can be estimated as a function of the filtered image
itself, and the object image is iteratively filtered until the mean energy rate satisfies certain
convergence criteria.

Let u(x, t) be an 2D/3D image u(x) at time t with the initial condition u(x,0) = ID (x), where
ID (x) is the difference image to be denoised. The general form of the PDE-based diffusion
equation can be written as:

(1)

where cd (x,t) is the diffusion conductance or diffusivity of the equation, ∇ and ∇ · are
respectively the gradient and divergence operators with respect to x [19,20]. The solution of
the above PDE equation leads to a filtered image. A key step of the PDE-based denoising is to
choose an appropriate function cd. There are various choices for cd in different applications
[19]. If cd is a constant, Eq. (1) becomes a linear diffusion equation. In this case, all the pixels
including the edges are smoothed equally. If cd is image-dependent, it becomes a non-linear
diffusion equation. Using a function cd constructed based on the derivative of the image at the
time t, Perona and Malik were able to control the diffusion near the edges in the image [21].
Note that in the difference image ID (x) we need to keep the features of high absolute grey-
levels and suppress interferences of low absolute grey-levels. Hence, we should construct a
general cd based on the image grey-level and derivative at time t.

In light of the comparison analysis results of Weeratunga and Kamath [19], here diffusivity
cd (x,t) is constructed as the follows:

(2)

where the contrast parameter λ defines diffusivity strength, constant parameter q > 1 defines
the diffusivity change, and uσ (x,t) is the convolution of the current image u(x,t) with a Gaussian
kernel of standard deviation σ. Letting g = ∇uσ (x,t), we can calculate the dependent constant

Cq to make the flux  ascending for g < λ and descending for g > λ. That
is, Cq is the solution of a nonlinear equation 1 − e−x − qxe−x = 0. Once the diffusivity cd (x,t)
is determined, u(x,t) can be iteratively computed to arrive at a stable solution.

2.4 Algorithm Implementation
We implemented the PSRR method in MatLab and C++. While the basic platform was
constructed in MatLab, all the computationally intensive parts were coded in C++, which was
linked via a MEX interface. In this software, we implemented both the FBP and BPF formulas
in an equi-angular fan-beam geometry. Because either the FBP or BPF algorithm can
reconstruct images exactly, only the FBP algorithm was employed in the following sheep lung
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perfusion experiments. For the image registration, the implementation details were similar on
different scales. Base on extensive experiments, we set the maximum level of registration as
K = 0 for the sheep lung perfusion application in this paper, since the sheep were anaesthetized
and the scan interval was relatively short between the previous scan and ultra-low dose scans.
In the nonlinear filtering procedure, the time t was discretised as tp with an interval T, p = 0,1,
2, ···. Accordingly, the diffusion equation Eq. (1) was discretised as

(3)

The grid indexes were used as the image coordinates. The time interval was set to T = 1.0.
Because the parameters q and λ define the diffusivity change and diffusivity strength
respectively, a larger q a sharper diffusivity change while a larger λ a strong perfusion.
Meanwhile, a larger Gaussian deviation σ and a larger iteration number p imply greater blurring.
In our application, we would like to keep more structural information and reduce noise as much
as possible. Hence, based on our extensive experiments we set q = 20 and the maximum
iteration number p to be 5. In the first several steps we used larger Gaussian deviations to
suppress noise, while in the last several steps we used larger λ for a strong perfusion effect.
Therefore, λ and σ were varied as a function of p, as shown in Table 1. Because there is a
Gaussian smoothing procedure in the iteration process, subtle intensity changes will be
preserved if the areas of the changes are not too small, which was demonstrated in Figure 4.

III. Results
3.1 Sheep Lung Perfusion Experiments

To demonstrate the feasibility of the proposed PSRR approach, we performed several sheep
lung perfusion experiments in the Iowa-Comprehensive Lung Imaging Center (iClick),
Department of Radiology, University of Iowa. Although one ultra-low dose study would be
needed in practical applications, in each of our experiments four studies were performed with
a ~40 kg sheep in the order listed in Table 2. Two normal dose studies with 20 scans were
designed for testing the repeatability of measurements and serving as the gold standard for our
ultra-low dose PSRR reconstruction. Two ultra-low dose studies were done for validating our
PSRR technique and evaluating the effects of kVp. Within the ultra-low dose studies, 5 normal
dose previous scans were first acquired to serve as prior information, and then a sequence of
20 ultra-low dose scans was taken at the time instants the normal dose studies would otherwise
be performed. All the scans were acquired in the axial scanning mode with 1.2×20 mm
collimation. The contrast media of Omnipaque™ 350 mg/ML, 15cc/s over 2s, were injected
at the beginning of third among 20 scans in each sequence (see Figure 5). Although only one
normal dose previous scan was required for the PSRR method, 5 scans at the normal dose were
taken for verification that the animal motion was negligible (the animal was anaesthetized with
breath being control). The image noise generated by the ultra-low dose scans at 80 kVp was
about 45% stronger than that at 100 kVp. In our experiment design, although the previous
normal dose data was scanned right before the ultra-low dose scan, it is not necessary so for
our general PSRR method to work, and there are many other schemes to utilize much earlier
datasets.

Two sets of CT images in each study were reconstructed using our in-house CT reconstruction
and image processing software. The first set was reconstructed from a full dataset to produce
each of 20 slices from 1160 views and 672 channels per view, while the second set from the
simulated quarter-scan (sparse-scan) with 290 views by taking one from every four contiguous
views in the full dataset. Because a quarter-scan was extracted from a full scan, our simulated
quarter-scan was equivalent to a real quarter-scan (additional experimental steps were
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avoided). Additional 3% uniformly distributed Gaussian noise was added to the simulated
quarter-scan extracted from the normal dose full-scan dataset to challenge our PSRR method.
In each experiment, the nonlinear PDE-based diffusion was applied to the difference images
between the degraded current noisy image (obtained from the ultra-low dose or simulated
quarter-scan) and the high-quality previous scan image (obtained from the normal dose scan).
Finally, the images for 20 phases, corresponding to the 20 scans in the protocol, were generated
by combining the images from normal dose previous scan dataset and the filtered difference
images. Our PSRR results show that there were no substantial differences between Normal-
Dose I and II, as well as that between Low-Dose I and II. Hence, the repeatability of
measurements was excellent. As what we have expected, substantial changes, which were
obscured in either simulated noise images or ultra-low dose images, have been extracted well
by the proposed PSRR method. Specifically, the image quality of the PSRR results from the
ultra-low dose studies was comparable with that from the normal dose studies. Figure 6 shows
typical PSRR images at slice 11 and phase 6 from the Normal-Dose II and Low-Dose II scans.

3.2 PSRR Performance Analysis
To further demonstrate the merits of our PSRR method, the sheep lung perfusion images were
analyzed according to a bolus injection, residue detection model. As shown in the first column
of Figure 6, a 5×5 area marked as “R” inside a larger blood cross-section in slice 11 was selected
as a reference area, and two 5×5 areas marked as “A” and “B” in the background were selected
as ROIs. The CT number was computed by averaging all the voxels in the ROI. Since there
were 20 scans (phases), we obtained 20 averaged CT numbers correspondingly. Using our in-
house blood flow analysis software, these numbers were fitted to the Gamma Variate function
as

(4)

where t is the independent time variable, t0 delay time, h0 reference CT number, and A,α, β are
free parameters [22,23]. As shown in Figure 7, the Gamma Variate function fitted from the CT
numbers of the reconstructed PSRR images were better than the counterparts without PSRR.

In the lung perfusion application, the mean transit time (MTT) is a key parameter to be
measured [24]. To validate the repeatability of MTT, we randomly selected 34 ROIs in the
slice 11, each covering a 5×5 area. A MTT was estimated for each ROI from the fitted Gamma
variate curve using our in-house software. For the images reconstructed from different scan
datasets and/or methods, we measured the repeatability of MTT by compared the correlation
among all the MTTs of 34 ROIs. As shown in Figure 8, the correlation coefficient between the
PSRR images in the ultra-low dose studies and Normal-Dose II results were larger than that
with the ultra-low dose studies without PSRR. This demonstrates that our PSRR method can
reduce radiation dose significantly while maintaining the accuracy of the quantitative CT
measurements for evaluating regional lung functions.

Moreover, we analyzed the power spectra and their coherence (see Appendix). As shown in
Figure 9(a), all the images reconstructed using the different methods had similar power spectra
at low frequencies while the Low-Dose II and quarter-scan Low-Dose II images were stronger
than the Normal-Dose II and our PSRR results at high frequencies. The reason is that the noise
in the Low-Dose II and its quarter-scan version had contributed more at the high-frequencies.
Note that the nonlinear PDE filtering can depress the noise, our PSRR results gave almost the
same power spectrum as the Normal-Dose II images. Also, it is reasonable that the power
spectrum of PSRR from the quarter-scan Low-Dose II was slightly larger than that from Low-
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Dose II, and the power spectrum of PSRR from the Low-Dose II was slightly larger than that
from the Normal-Dose II. The coherences between all the reconstructed ultra-low dose images
and that of the Normal-Dose II are plotted in Figure 9(b). It is shown that the coherences of
the images reconstructed by our PSRR methods were higher than that of the classical
reconstruction method without PSRR. This also verifies that our PSRR method can
significantly reduce radiation dose without compromising the image quality.

IV. Discussions and Conclusion
Currently, the PSRR image reconstruction is performed in an analytic framework and
regularized by typical image post-processing methods (image registration and nonlinear
filtering). However, it does not mean that the image post-processing is necessary or the low-
dose reconstruction can not be regularized directly. In fact, our PSRR idea can be implemented
in an iterative framework. In that case, we can formulate an optimal object function
incorporating the previous normal dose dataset and current ultra-low dose dataset, as well as
the image segmentation and registration components. Meanwhile, the image registration will
be performed in the projection domain, instead of the image domain. More work is needed to
compare these two different reconstruction schemes.

The current image registration and nonlinear filtering components need to have appropriate
parameters values, such as the number of multiple-scale levels, diffusion coefficient and
standard deviation of the Gaussian convolution kernel. In this preliminary study, these values
were manually selected. Undoubtedly, optimal parameters must be selected for different
applications. An attractive possibility is that the optimal parameters be determined via
analyzing filtered images using image processing techniques. Simultaneously, the image
registration accuracy affects the overall performance of the proposed method. This is an
important issue to be systematically addressed for the optimal performance of our PSRR
approach. Since the major purpose of this paper is to demonstrate the feasibility of our PSRR
approach, we will not discuss the effect of registration accuracy in detail. More efforts should
be made in this direction.

In conclusion, we have proposed an innovative PSRR approach and showcased its application
in lung CT perfusion studies. Different from the existing methods, our method seeks to use
much more a priori knowledge in the terms of a previous scan of the same patient/animal. The
image registration and nonlinear filtering techniques have been used to identify substantial
changes between the images reconstructed from the current ultra-low dose and previous normal
dose datasets. Our sheep lung perfusion studies have shown that ~90% reduction in radiation
dose can be achieved while maintaining the accuracy of the quantitative CT evaluation of
regional lung functions in a sheep model.
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Appendix: Power Spectrum and Coherence
Assume that the reconstructed images of a certain slice at a normal dose are expressed as IN
(xm, yn, tk), the corresponding ultra-low dose images are IL(xm, yn, tk), where tk represent the
time series throughout the perfusion procedure. For every image slice, using the Fast Fourier
Transform (FFT) method we first compute the Fourier Transforms FN(um, vn, tk), and FL(um,
vn, tk) from the normal and ultra-low dose scans respectively. The corresponding power spectra
are PN(um, vn, tk) = |FN(um, vn, tk)|2 and PL(um, vn, tk) = |FL(um, vn, tk)|2, and their cross-spectrum
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is PNL(um, vn, tk) = |FN(um, vn, tk)FL(um, vn, tk). If we omit the phase information, the power
spectra can be expressed as

The final power spectra P̄N(wl), P̄L(wl) and P̄NL(wl) are respectively the corresponding averages
of PN(wl, tk), PL(wl, tk) and PNL(wl, tk) over time. Finally, the coherence is determined as

which is a normalized coefficient.
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Figure 1.
Fan-beam geometry of the Siemens SOMATOM Sensation 16 scanner associated with the
rotational angle β.
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Figure 2.
Flowcharts for the proposed PSRR performed in the image domain.
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Figure 3.
Demonstration of the PSRR mechanism, (a) A reconstruction from a previous normal dose
scan, (b) a counterpart from a current ultra-low dose scan, (c) a normal dose reconstruction of
the current object, (d) and (e) differences between the previous normal dose and current ultra-
low dose scans in the image domain before and after filtering, and (f) the final PSRR
reconstruction.
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Figure 4.
Demonstration of the capability for the nonlinear filtering technique, (a) an original difference
image in a sheep lung perfusion study; (b) the difference image after nonlinear filtering and
(c) the difference between (a) and (b) which is the noise image suppressed by the nonlinear
filtering technique.
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Figure 5.
Sheep lung perfusion protocols for the normal and ultra-low dose scans.
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Figure 6.
Typical PSRR recontruction results in the sheep lung perfusion studies at slice 11 and phase
6 of Normal-Dose II and Low-Dose II. The first row reconstructed from the quater-scan
Normal-Dose II with simulated noise, the second row from Low-Dose II with 89.1% dose
reduction, and the third row from the quater-scan Low-Dose II 93.5% dose reduction. The first
column lists normal dose previous scan images as prior informatin, the second column
reconstructed low dose images, and the third column images reconstructed by our PSRR
method. For comparison, the fourth column was reconstructed from the full Normal-Dose II
Scan.
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Figure 7.
Fitted Gamma variate curves from the PSRR reconstruction in the sheep lung perfusion study.
The left column is for point A while the right column is for point B in Figure 5. The first row
shows the result of quarter-scan Normal Dose II with simulated noise, the second row is for
Low-Dose II, and the third row for quarter-scan Low-dose II.
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Figure 8.
MTT repeatability analysis (Unit: second (s)). The left column is the repeatability of the
reconstruction without the regulation of a previous scan data, while the right column is with
our PSRR method. The first row plots the results of quarter-scan Normal-Dose II with simulated
noise, the second row is for Low-Dose II, and the third row for quarter-scan Low-Dose II.
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Figure 9.
Spectral and coherence analyses. (a) Power spectra and (b) coherence coefficient of the
reconstructed images from the sheep lung perfusion study.

Yu et al. Page 19

Acad Radiol. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Yu et al. Page 20
Ta

bl
e 

1
Th

e 
va

lu
es

 o
f λ

 a
nd

 σ
 fo

r t
he

 it
er

at
iv

e 
pr

oc
ed

ur
e.

p
0

1
2

3
4

5

λ
0.

17
0.

21
0.

26
0.

30
0.

30
0.

30

σ
2.

00
1.

50
1.

00
0.

50
0.

50
0.

50

Acad Radiol. Author manuscript; available in PMC 2010 March 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Yu et al. Page 21
Ta

bl
e 

2
K

ey
 p

ar
am

et
er

s f
or

 th
e 

sh
ee

p 
pe

rf
us

io
n 

ex
pe

rim
en

ts
. (

*C
TD

I v
ol

 w
as

 c
al

cu
la

te
d 

ba
se

d 
on

 1
 n

or
m

al
 a

nd
 2

0 
lo

w
-d

os
e 

sc
an

s a
nd

 it
s u

ni
t i

s
m

G
y)

St
ud

y
kV

p
m

A
s

#S
ca

ns
C

T
D

I v
ol

R
el

at
iv

e 
D

os
e

N
or

m
al

-D
os

e 
I

10
0

15
0

20
10

8.
77

10
0%

Lo
w

-D
os

e 
I

10
0

17
5+

20
17

.9
0*

16
.5

%

Lo
w

-D
os

e 
II

80
17

5+
20

11
.8

9*
10

.9
%

N
or

m
al

-D
os

e 
II

10
0

15
0

20
10

8.
77

10
0%

Acad Radiol. Author manuscript; available in PMC 2010 March 1.


