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Abstract

Sequence data arising from an increasing number of partial and complete genome projects is revealing the presence of the
polyketide synthase (PKS) family of genes not only in microbes and fungi but also in plants and other eukaryotes. PKSs are
huge multifunctional megasynthases that use a variety of biosynthetic paradigms to generate enormously diverse arrays of
polyketide products that posses several pharmaceutically important properties. The remarkable conservation of these gene
clusters across organisms offers abundant scope for obtaining novel insights into PKS biosynthetic code by computational
analysis. We have carried out a comprehensive in silico analysis of modular and iterative gene clusters to test whether chemical
structures of the secondary metabolites can be predicted from PKS protein sequences. Here, we report the success of our
method and demonstrate the feasibility of deciphering the putative metabolic products of uncharacterized PKS clusters found
in newly sequenced genomes. Profile Hidden Markov Model analysis has revealed distinct sequence features that can
distinguish modular PKS proteins from their iterative counterparts. For iterative PKS proteins, structural models of iterative
ketosynthase (KS) domains have revealed novel correlations between the size of the polyketide products and volume of the
active site pocket. Furthermore, we have identified key residues in the substrate binding pocket that control the number of
chain extensions in iterative PKSs. For modular PKS proteins, we describe for the first time an automated method based on
crucial intermolecular contacts that can distinguish the correct biosynthetic order of substrate channeling from a large number
of non-cognate combinatorial possibilities. Taken together, our in silico analysis provides valuable clues for formulating rules
for predicting polyketide products of iterative as well as modular PKS clusters. These results have promising potential for
discovery of novel natural products by genome mining and rational design of novel natural products.
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Introduction

It is well known that polyketide synthase (PKS) gene clusters can

generate enormously diverse array of polyketide products by

making use of various biosynthetic paradigms like, modular

organization of sets of catalytic domains or iterative catalysis of

condensation steps using single set of catalytic domains [1]. In view

of the pharmaceutical importance of polyketides, there is

tremendous interest in identifying PKS gene clusters capable of

producing novel polyketides by genome mining. However, the

relating the sequence of the various catalytic domains present in a

PKS biosynthetic cluster to the chemical structure of the final

metabolic product is a major challenge. The availability of the

sequences of a large number of experimentally characterized PKS

clusters and 3D structural information on homologous protein

domains presents a unique opportunity to carry out in silico analysis

for addressing structural and mechanistic issues concerning

polyketide biosynthesis. A number of recent theoretical studies

have demonstrated the utility of in silico analysis in providing novel

insights into the mechanistic details of polyketide biosynthesis as

well as in identifying novel natural products by genome mining.

Computational analysis of polyketide synthase (PKS) and

nonribosomal peptide synthetase (NRPS) proteins have provided

valuable clues for development of knowledge-based methods for

identification of catalytic domains in PKS [2,3] and NRPS [4]

proteins, prediction of the substrate specificity for AT domains

[2,3,5] and adenylation domains [4,6,7]. Such predictions have

also been experimentally validated by the recent successful

reprogramming of the phthiocerol dimycocerosate (PDIM)

biosynthetic pathway in Mycobacterium tuberculosis [8] and experi-

mental characterization of a novel exogenous standalone enoyl

reductase (ER) involved in PDIM biosynthesis [9]. Bioinformatics

analysis of secondary metabolite biosynthetic pathways have also

played a crucial role in discovery of novel natural products by

genome mining [10–14]. Very recently it has also been

demonstrated that, computational analysis of KS domains from

trans-AT PKS clusters can give novel clues about the chemical

structures of the final polyketide product [15]. Similarly,

bioinformatics analysis of docking domain sequences (the original

term applied to these regions was ‘‘interpolypeptide linker’’, but

the term docking domain is being increasingly used in recent

literature) have given novel insight into the evolution of specificity

in inter polypeptide interactions in modular PKSs [16]. Pioneering

work at Ecopia BioScience using data mining approaches has also
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led to development of proprietary databases which can aid in

genomics driven discovery of cryptic biosynthetic pathways [17]

and utility of these databases have been demonstrated by

identification of novel secondary metabolites [18].

Thus, these studies have established that knowledge based

computational approaches can play a powerful role in elucidation

of novel secondary metabolite biosynthetic pathways. However,

for in silico identification of polyketide products of uncharacterized

PKS clusters, the computational method should also take into

consideration various different paradigms employed by PKS

biosynthetic machinery [19]. Several excellent reviews [20,21]

describe the type I, type II and type III biosynthetic paradigms.

Type I modular PKSs harbor distinct sets of catalytic domains,

each set termed as a ‘‘module’’. Each module is responsible for one

condensation step and the number of modules in a modular PKS

correlate directly with the number of ketide units in its biosynthetic

product. In contrast, type I iterative PKSs are characterized by a

single set of catalytic active sites which are used iteratively for

several rounds of successive condensations till the final product is

released. It was initially believed that bacterial PKSs are modular

while fungal PKSs function in an iterative manner. However,

discovery of mixed PKS clusters involving programmed iterative

modules and several other deviations [22,23] from conventional

textbook PKS biosynthetic paradigms in various microbes indicate

that PKS proteins are not amenable to simple classification based

on species of their origin. Therefore, in silico methods should be

capable of predicting from sequence information, whether a given

PKS cluster is iterative, the number of iterative chain condensa-

tion steps catalyzed by it and crucial amino acids which control the

number of iterations.

In contrast to type I iterative PKSs where a single multifunc-

tional enzyme is involved in biosynthesis of the polyketide product,

biosynthesis in type I modular PKS clusters often involve multiple

ORFs, each containing several modules. Therefore, predicting the

correct order of substrate channeling between various ORFs is

crucial for deciphering the final metabolic product of a modular

PKS cluster. Several lines of experimental evidence reveal that

inter subunit interactions between C-terminal docking domain

region of the upstream ORF and N-terminal docking domain

region of the downstream ORF, play a crucial role in channeling

of substrates from upstream domains to downstream domains [24–

27]. Moreover, these interactions involving C-terminus and N-

terminus amino acid stretches have been reported to increase the

maximum velocity (kcat) of chain transfer of otherwise disfavored

substrates by as much as 100-fold [28]. Structural studies using

NMR suggest that, these terminal docking domain regions of PKS

proteins adopt a specific 3-dimensional fold consisting of a four

helix bundle structure [29]. In fact, after the elucidation of this

NMR structure, the term ‘docking domain’ is being increasingly

used in the recent literature to describe these terminal amino acid

stretches, which were earlier called ‘inter polypeptide linkers’.

Based on this structure, it has been proposed that recognition

between upstream and downstream ORFs in a modular cluster is

governed by formation of specific contacts in the docking domain.

Several recent experimental studies [30,31] have further validated

the role of specific inter polypeptide contacts in controlling inter

subunit communication in modular PKS clusters. Very recently

NMR studies [32] have also elucidated the role of similar docking

domains in governing protein-protein interactions in hybrid

megasynthases. Even though these experimental studies have

identified specific residue pairs involved in inter subunit recogni-

tion, no systematic analysis of experimentally characterized

modular PKS clusters have been characterized to investigate

whether correct order of substrate channeling in type I modular

PKS clusters can be predicted based on these specific inter

polypeptide contacts. It may be noted that, even though recent

study by Thattai et al [16] has attempted to address this question,

their algorithm for prediction of PKS multiprotein chain order has

been tested on a hypothetical five ORF cluster with only six

combinatorial possibilities.

In this work, we have carried out a detailed comparative

analysis of the experimentally characterized modular and iterative

PKS clusters with known polyketide products to address following

major questions relating to in silico prediction of polyketide

products. Is it possible to distinguish between modular and

iterative PKS from their sequence alone? Can we predict the

number of iterations a given iterative PKS protein would catalyze

and identify crucial amino acid residues that control the number of

iterations? Is it possible to predict the correct order of substrate

channeling between various ORFs in a modular PKS cluster? We

have carried out profile Hidden Markov Model (HMM) analysis of

KS domains to identify signature profiles which can decipher

whether a PKS protein is modular or iterative. Structural

modeling of KS domains of iterative PKS proteins and analysis

of their active site pockets have given novel insight into the

structural features that dictate the number of iterations catalyzed

by a PKS protein and crucial amino acids which control them.

Similarly, comparative analysis of crucial inter polypeptide

contacts between cognate and non-cognate pairs of ORFs based

on the three dimensional structure of the docking domains have

given novel clues for prediction of the correct order of substrate

channeling.

Results

Distinguishing between modular and iterative PKSs
KS domains are the most conserved among various catalytic

PKS domains and are responsible of catalysis of the chain

condensation step. We have analyzed them in detail to identify

class specific conserved patterns which distinguish modular and

iterative PKS systems. For KS domains, the total dataset

comprised of 217 pure modular KS domains, 82 pure iterative

Author Summary

Polyketide synthases (PKSs) form a large family of
multifunctional proteins involved in the biosynthesis of
diverse classes of therapeutically important natural prod-
ucts. These enzymes biosynthesize natural products with
enormous diversity in chemical structures by combinato-
rial use of a limited number of catalytic domains.
Therefore, deciphering the rules for relating the amino
acid sequence of these domains to the chemical structure
of the polyketide product remains a major challenge. We
have carried out bioinformatics analysis of a large number
of PKS clusters with known metabolic products to correlate
the chemical structures of these metabolites to the
sequence and structural features of the PKS proteins. The
remarkable conservation observed in the PKS sequences
across organisms, combined with unique structural fea-
tures in their active sites and contact surfaces, allowed us
to formulate a comprehensive set of predictive rules for
deciphering metabolic products of uncharacterized PKS
clusters. Our work thus represents a major milestone in
natural product research, demonstrating the feasibility of
discovering novel metabolites by in silico genome mining.
These results also have interesting implications for rational
design of novel natural products using a biosynthetic
engineering approach.

Prediction of Metabolic Products of PKSs
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domains, 19 enediyne, 43 trans-type and 34 KS domains from

hybrid NRPS-PKS clusters. Apart from the sequences of 20

experimentally characterized bacterial type I modular clusters

included in our earlier analysis [2], an additional set of 18 modular

PKS clusters was used as described in Methods. Despite sharing a

significant degree of homology ranging from 24% to 40%

sequence identity, KS domain counterparts from modular and

iterative PKSs and other PKS subfamilies, segregate into distinct

clusters in a phylogenetic dendrogram (Figure S1). We have used

profile Hidden Markov Models (HMMs) to quantify subtle

position specific differences in the probability of occurrence of

amino acids in various subfamilies of KS domains (See methods
for description of various subfamilies). The available KS data set

was divided into training and test set, and sequences belonging to

the training set were used for building profile Hidden Markov

Models by the HMMER package [33]. Benchmarking on the test

set indicated that, these HMM profiles were highly sensitive, with

a prediction accuracy of 100% for both enediyne and trans-AT

sub families, 97% for pure iterative PKSs, 92% for modular KS

domains and 88% for hybrid clusters. Therefore, using HMM

profiles it is not only possible to distinguish between modular and

iterative PKS with a very high accuracy, these profiles can also be

used to classify an uncharacterized sequence of a KS domain into

various subfamilies within modular and iterative systems. This

result has interesting implications for genome sequencing efforts

towards identification of novel PKS clusters, because from KS

sequence alone, one can get clues about PKS family and decide

whether to sequence the entire cluster or not.

Identification of sequence and structural features that
control number of iterations

The polyketide products of various iterative PKS proteins are

biosynthesized by different number of iterative condensation steps

and undergo varying degrees of reductions. Phylogenetic analyses

of iterative KS domains revealed that the clustering of iterative

PKS sequences is highly correlated with the number of iterations

they perform and degree of reductions undergone by the

metabolite during biosynthesis (Figure 1). The biosynthesis of

polyketides, lovastatin and bikaverin involve eight condensation

steps, but their final structures are different because of the different

cyclization patterns. Our analysis suggests that, the sequence of

KS domain encodes information about chemical structure of the

polyketide product. Hence, KS sequences of lovastatin and

bikaverin form two different clusters. Based on similar phyloge-

netic analysis, earlier reports have proposed that KS domains

cluster into groups depending on whether the corresponding type I

iterative PKS contains additional reductive domains [34–36]. We

attribute this feature to a complex programming within the KS

domains which enables specific molecular recognition of the

products. The observed clustering in Figure 1 could thus be arising

from sequence features, that control recognition of specific

substrates which have undergone different degrees of chemical

and structural modifications due to the presence of reductive

domains. Therefore, we wanted to analyze the structural models of

various iterative KS domains for identification of specific amino

acids or sequence stretches that can potentially control substrate

size and extent of unsaturation. The various iterative KS domains

were modeled using comparative modeling approach (see Methods

for details). The structural templates for various iterative KS

domains were identified by BLAST search against PDB or by

using threading approach. The E. coli KAS-II protein (pdbids

1KAS, 1B3N) were used as the templates for modeling these

iterative KS domains. Since 1B3N was a ligand bound structure

(Figure 2A), the putative active site pockets (Figure 2B) of various

iterative KS structural models could be identified based on amino

acids which were in contact with the bound ligand in 1B3N. The

structural features of the active site pockets of different iterative KS

domains were analyzed further to identify the cavity lining residues

(CLRs) and cavity volumes following protocols described in the

methods section. Active site residue patterns (Figure 2B) in these

structural models allowed us to correlate the cavity volume and

hydrophobicity of the active site pockets to the number of

iterations and the degree of unsaturation of the polyketide

products they synthesize.

The substrate binding cavity in the 1KAS is highly hydrophobic

owing to its completely saturated substrate. Polyketides, on the

other hand, may contain several hydroxyl groups and unsaturated

double bonds. Accordingly, the catalytic pockets in the structural

models of polyketide KS domains were found to be less

hydrophobic compared to the FAS cavities. Table 1 compares

PKS product characteristics with a variety of cavity features. We

observed a distinct difference in pocket hydrophobicity within

polyketides and it correlated negatively with the extent of

unsaturation seen in the product (Figure 3A). For example, the

T-toxin PKS model cavity is more hydrophobic than the

methylsalicylic acid synthase (MSAS) model cavity and this

correlates with the fact that T-toxin is a reducing PKS having a

greater proportion of saturated carbons in its final product than

the partially reducing MSAS polyketide. Interestingly, cavity

volumes correlate positively with the number of iterations (or

corresponding product size). We found that polyketide KS cavity

volumes fall into three distinct groups; small, large and

intermediate (Figure 3B and 3C). The smallest cavities (,300Å3)

belong to the MSAS type PKSs that perform three iterations.

Intermediate sized cavities (,800Å3) belong to the napthopyrone

(NAP) like PKSs that iterate from five to eight times. The largest

cavities, 1780Å3, were observed for the T-Toxin models that

perform 20 iterations. Figure 2B depicts the residues that line the

hydrophobic cavity of the template KAS-II protein (volume 934

Å3) and surround the ligand analogue cerulenin. A comparison of

the modeled structures with the template FAS KS structure

revealed that in case of MSAS and NAP, the backbones of the

models had not altered significantly during modeling (Figure S2),

and thus, their functional difference could be traced to specific

cavity lining residues (CLRs) (Figure 4). Figure 5A and 5B show

the surface topology of the small and intermediate sized cavities.

Figure 5A depicts the modeled MSAS KS domain with two

tyrosines protruding into the KS cavity from opposite walls and

thus blocking the downward flow of the cavity along the dimer

interface. These two cavity blocking residues correspond to

positions 229 and 400 (1KAS numbering). Interestingly, the

conservation profiles of the CLRs shown in Figure 4 revealed that

these two Tyr residues are highly conserved in all PKSs which

carry out three iterations. This further substantiates the important

role attributed to these residues based on our structural modeling

of the active site pocket. Remarkably, NAP type KS domains have

an Ala at position 400, that allows the cavity to extend further

down thus making their cavities similar to the FAS catalytic cavity,

shown for reference in Figure 5C.

Structural analysis thus revealed how substrate binding sites of

varying size and hydrophobicity can be generated in type I iterative

KS domains by subtle variations of residues on similar backbone

folds. The crystal structure of KS-CLF also highlights how specific

residues can regulate chain length in type-II PKSs [37]. Our results

on role of cavity volume in controlling number of iterative

condensations or chain length of type I iterative PKS products is

also supported by recent experimental studies involving swapping of

KS domains in fungal iterative PKSs, where replacement of

Prediction of Metabolic Products of PKSs
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Figure 1. Dendrogram of KS domains from type-I iterative PKS clusters. The branches of the dendrogram have been colored according to
the number of iterations catalyzed by the corresponding KS domain. The corresponding polyketide structures have been depicted in the same color.
doi:10.1371/journal.pcbi.1000351.g001

Prediction of Metabolic Products of PKSs
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fumonisin KS domain by KS from lovastatin LDKS resulted in

polyketides having short chain length [38]. Very recent experiments

involving generation of altered fatty acid-polyketide hybrid products

by rational manipulation of benastatin biosynthetic pathway [39]

also suggest that number of chain elongations is dependent on the

size of the PKS enzyme cavity. The in silico analysis of the sequence

and structural features of iterative KS domains reported here

provides a structural rationale for these experimentally observed

variations in substrate specificities and further helps in identification

of residues that can be specifically mutated to control the number of

iterations in type-I PKSs. No experimental studies have as yet been

reported on altering the number of iterations in type-I PKSs by site

directed mutagenesis. The present in silico analysis gives crucial leads

for such experiments.

Figure 2. Structural template for modeling of iterative KS domains. (A) The E. coli KAS-II homo-dimer with ligand. (B) The backbones
(secondary structural rendering) and side chains (ball and stick) of different stretches of amino acids that constitute the ligand binding cavity of E.coli
KAS-II have been depicted in different colors.
doi:10.1371/journal.pcbi.1000351.g002

Table 1. Comparison of the cavity volumes and hydrophobicities of various KS structural models with the number of iterations
and product size.

Product Size (No. of
backbone carbons )

Number of
iterations

Cavity
Volume (Å3)

Number of
hydrophobic residues Hydrophobicity

Number
of CLRs

FAS Reducing Variable Variable 934 18 47.7 47

MSAS Partial 8 3 180 9 14.4 24

AVILA Partial 8 3 291 8 25.2 20

THN Non-reducing 10 5 819 12 24.1 32

WA-NAP Non-reducing 14 6 895 16 38 44

T-TOXIN Reducing 40 20 1781 16 25.7 56

CLR: Cavity Lining Residues.
doi:10.1371/journal.pcbi.1000351.t001

Prediction of Metabolic Products of PKSs
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Predicting the order of substrate channeling in modular
PKS clusters

In modular PKS clusters, the chemical structure of the product

is governed by the order in which substrates are channeled

between various ORFs. It has often been observed that the order

of PKS ORFs during biosynthesis of a polyketide is not the same

as the order of the corresponding ORFs in the genome. This

complexity of module succession has been depicted in Figure S3

using schematic representation of a type I modular PKS cluster.

This biosynthetic cluster has four polyketide synthase ORFs and

their order in the genome is Orf1, Orf2, Orf3 and Orf4. But

during the biosynthesis, Orf4 is the first to function and the

product of Orf4 is transferred to Orf1. Orf2 functions at a later

stage and its product is condensed with the rest of the polyketide.

This inconsistency between ordering of ORFs in the genome and

the order of substrate channeling is a commonly observed

phenomenon, as is evident from the simocyclinone [40],

nanchangmycin [41], microcystin [42], pimaricin, rapamycin

and nystatin biosynthetic clusters. The prediction of the correct

order of substrate channeling is essential for in silico identification

of polyketide products of uncharacterized modular PKS clusters.

Therefore, deciphering the cognate combination of ORFs in a

modular PKS cluster from the large number of theoretically

possible non-cognate combinations has been the major bottleneck

in formulating predictive rules for in silico identification of

polyketide products. Hence, we attempted to investigate whether

predictive rules based on specificity of interaction between ORFs

can be formulated for deciphering the correct order of substrate

channeling in an uncharacterized PKS cluster.

Several experimental studies have suggested that inter protein

interactions in modular PKSs are mediated by specific recognition

between docking domains or the so called ‘interpolypeptide linker’

regions [24,25,29]. The amino acid stretches N-terminus to the

first KS domain and C-terminus to the last ACP domain are

referred as inter polypeptide linkers or docking domains. These

have been extensively studied and it has been proposed that, the

C-terminal (Cter) docking domains specifically pair with the N-

terminal (Nter) docking domains of the succeeding ORF to

facilitate cross-talk between the consecutive ORFs. Structural

elucidation [29] of the cognate docking domains from erythro-

mycin PKS (DEBS) has revealed that, unlike conventional linker

sequences which join protein domains covalently within polypep-

tides, these docking domain regions are not non-structured, but

adopt a relatively compact four helix bundle structure. It has been

Figure 3. Variation in hydrophobicity and size of the active site cavities of various iterative KS domains. The KS domains carrying out
different number of iterations have been depicted in separate colors. Points corresponding to different homology models of the same KS domain
have a common color. Hydrophobicity of CLRs correlates negatively with the extent of unsaturation in the final product (A). Cavity volumes (Å3)
correlate positively with the number of iterations (B). Cavity volumes (Å3) of iterative KS domain pockets show a positive correlation with final product
size (number of backbone carbon atoms in the polyketide) (C).
doi:10.1371/journal.pcbi.1000351.g003

Prediction of Metabolic Products of PKSs
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proposed that, this four helix bundle structure is the core fold of

cross-talk [29] between ORFs of modular PKS clusters. These

structures have been termed inter protein ‘docking domains’ to

emphasize that they are responsible for the recognition and

subsequent docking between successive protein modules. The C-

terminal docking domain is reported to contain three helices

(hereafter named helix 1, 2 and 3) whereas the N-terminal docking

domain contains a single longer helix (hereafter named helix 4).

This docking domain complex is a symmetrical dimer, consisting

of two independent structural units called domain A and domain

B. Domain A is an unusual intertwined a-helical bundle

comprising helices 1 and 2. Domain B is also an a-helical bundle

but with an entirely different topology and it comprises helix 3

(from Cter) and helix 4 (from Nter). Thus the actual docking

interaction occurs in domain B, via several pairs of charged

residues and a conserved set of hydrophobic residues. However, it

has been proposed that, out of these various interacting residues,

two pairs of appropriately placed charged residues at critical

positions on the docking interface, form a kind of ‘docking code’

for DEBS [29] (Figure S4). When DEBS1 docks against DEBS2,

the charges at these positions give rise to favorable interactions.

However, in case of non-cognate combinations between DEBS1

and DEBS3, the resulting charge interactions are repulsive. The

availability of DEBS docking domain structure provided us the

opportunity to test, whether such a code exists in other PKS

systems as well. We have carried out a structure based analysis of

docking domain sequences to investigate if rules for identification

of cognate ORF combination can be formulated based on key

interactions found in DEBS docking domain structure.

It may be noted that, based on bioinformatics analysis of

docking domains in type I modular PKS proteins, Broadhurst et al

[29] had also proposed that DEBS-like docking domain structures

would be present in other type I modular PKS clusters and they

govern the cross-talk between ORFs. Since secondary structure

analysis by Broadhurst et al [29] had clearly demonstrated

propensity of docking domain sequences for four helix bundle

structure similar to DEBS docking domain, inter polypeptide

contacts were extracted for both cognate and non-cognate pairs of

Figure 4. List of residues lining the active site pockets of KS domains in various iterative PKS clusters. For clarity, positions that have
completely invariant residues (for e.g. the catalytic triad) or positions with a high number of gaps have been removed from this table. The highlighted
positions have been discussed in detail in the text, and are likely to govern the carbon chain length in different iterative PKSs. The two crucial
positions, 229 and 400 have been circled.
doi:10.1371/journal.pcbi.1000351.g004

Prediction of Metabolic Products of PKSs
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ORFs in various modular PKSs using the DEBS docking domain

structure as a template. Since recent studies [16,29,43] suggest that

PKS docking domains fall into at least three different phylogenetic

classes, our assumption regarding docking domains from various

phylogenetic groups adopting similar structural folds requires

further justifications. It is well known that for a given protein

family, structure is conserved to a much larger extent than

sequence [44,45]. There are many examples of proteins adopting

similar three dimensional structural fold even in absence of

detectable sequence similarity [44,45]. Recently available struc-

tures [46] of mammalian type I FAS proteins also show

remarkably high similarity to structures PKS protein domains

even if they share only a limited sequence homology. Therefore,

our assumption regarding myxobacterial PKS ‘docking domains’

adopting structural folds similar to docking domains from

actinomycetes is not unreasonable. Hence, we extracted crucial

interacting residues for various docking domain pairs based on

alignment with DEBS docking domain structure. Figure 6 shows

the alignment of cognate pairs of various PKS docking domain

sequences with DEBS docking domain structure. The interacting

residue pairs obtained from this alignment were ranked as

favorable, unfavorable or neutral as per a simple scoring scheme

(Table S1). The interactions between a pair of oppositely charged

amino acids or between a pair of hydrophobic amino acids were

ranked as favourable, while electrostatic repulsions between a pair

of charged amino acids was called unfavourable. On the other

hand, interactions between any other amino acid pairs, specifically

the interactions between charged and hydrophobic amino acids

was ranked as neutral. It may be noted that, this simplistic scoring

scheme has been defined based on types of amino acid contacts

found in interfaces of protein-protein complexes [47]. A total of 66

cognate pairs of docking domain sequences were checked for the

two pairs of positions which give rise to favorable electrostatic

interactions in the docking domain structure. Out of these, 54

pairs of ORFs were found to have at least one residue pair with

favorable interaction. Moreover, there was no cognate pair where

both of these interactions were unfavorable. Thus it can be

concluded that cognate pairing of ORFs does generate energet-

ically favorable contacts.

Since a good docking code interaction was observed in more than

80% cases, we investigated if these crucial inter polypeptide contact

pairs could be used to predict the correct order of module succession

in a given modular PKS. If all possible combinations of ORFs in a

PKS cluster are considered together, there would be only one

biosynthetically correct order of ORFs. This correct combination

would in turn have a set of all cognate interfaces and therefore, the

highest number of favorable interactions. The remaining combina-

tions of ORFs would be incorrect and accordingly, they would have

varying numbers of non-cognate interfaces, thus resulting in

unfavorable interactions. It may be added here that, the identity

of the first and last ORFs can usually be established by the presence

of an initiating loading module and the terminal TE domain

respectively. The presence of a very short C-terminal sequence

beyond the conserved TE domain can also be used as a criterion for

identification of the last module. Figure 7 shows the example of the

Spinosad biosynthetic cluster which has ten modules arranged in

five ORFs. These five ORFs can be combined in six different ways if

the first and last ORFs are fixed. Each of the six combinations

would have four interfaces. All the interfaces were scanned for

favorable, unfavorable or neutral interactions at the positions

corresponding to the DEBS docking code. As can be seen in

Figure 7, the correct order of ORFs has the highest number of

favorable interactions and no repulsive interaction at any of its

interfaces. In contrast, each of the remaining five combinations has

at least two repulsive interactions, and thus can be rejected in

comparison with the correct combination.

Figure 5. Functionally important cavity lining residues of two types of iterative KS domains. MSAS (A) and NAP (B). The cavities of the
models have been shown in surface rendering. Each model has been superimposed with the structural template. The two orange residues
correspond to the positions 229 and 400, which together block the downward flow of the MSAS cavity. One of these residues is an Ala in case of the
intermediate NAP-type cavity and this allows the cavity to flow downwards. These cavities are actually buried inside the protein, and residues forming
the top layer have been removed for clarity. (C) The internal topology of the structural template, E. coli KAS-II protein cavity has been depicted for
reference. The surface has been colored such that the catalytic triad is in purple, regions which are invariant among the different iterative KS domains,
are in green. Thus the differences in the cavity shapes arise from residues lying in the grey region of the depicted cavity surface. The cavity is
completely buried, but the top layer of residues has been removed for clarity of the figure.
doi:10.1371/journal.pcbi.1000351.g005
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A total of 39 characterized PKS clusters were analyzed in this

manner to test the validity of this assumption. For a representative

set of PKS clusters, Figure 8 shows in tabular format, the number

of favorable, unfavorable and neutral contacts in the cognate

combination and also the number of non-cognate combinations

having a score better, equal or worse compared to the cognate

combination. As can be seen from Figure 8, in several modular

PKS clusters unfavourable interactions are present. However, the

number of unfavourable interactions is much smaller than the

favourable or neutral interactions present in the cognate interfaces.

Thus analysis of cognate inter polypeptide contacts in 17 modular

PKS clusters suggest that, both the interactions need not be

favourable for effective docking domain interactions. However,

non-cognate interfaces have more number of unfavourable

interactions. Hence, there are relatively few non-cognate combi-

nations having a score better than cognate combination. In ten out

of 17 PKS clusters, no non-cognate combination has better score

than the cognate combination. Even though there are non-cognate

combinations having scores equal to cognate combination, the

cognate combination can still be ranked among top few in these 10

cases. In case of four other PKS clusters, there are a significant

number of non-cognate combinations having score higher then the

cognate combination. However, the cognate combination can still

be ranked within top 20% of all possible combinations. For

example, in case of nanchangmycin 480 non-cognate possibilities

have better score than cognate, 239 have scores equal to the

cognate combination. Thus the cognate combination is ranked in

top 720 combinations. However, the total number of combina-

Figure 6. A structure based sequence alignment of the docking domains from various PKS clusters. Helix 3 and helix 4 were
concatenated before secondary structure prediction. ESPript service [89] from the predict protein server was used for structural based sequence
alignment of docking domains. The N-terminus docking domain consists of the sequence stretch extending from N-termini to the beginning of the
first KS domain, while the C-terminus docking domain extends from the end of the last ACP domain to the C-terminus of the PKS protein. Inter
polypeptide contacts were extracted using the DEBS NMR structure as a template. The two pairs of interacting residues which constitute the docking
code have been highlighted in green and yellow respectively. The reference sequence of DEBS docking domains is highlighted in purple color.
doi:10.1371/journal.pcbi.1000351.g006
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torial possibilities is 5040. Therefore, our computational method

ranks the cognate combination in top 14% in case of nanchang-

mycin PKS cluster. It is important to note that, despite the large

number of combinatorial possibilities, prediction based on docking

domain sequences alone is able to reject a sufficiently high number

of non-cognate combinations. Thus, our results on analysis of

docking domain sequences indicate that, in more than 80% of the

cases the cognate order of substrate channeling can be predicted

correctly. However, we must clarify that, ‘correct prediction’

would mean eliminating significant number of non-cognate

combinations and restricting the cognate combination to a

relatively smaller number of possibilities. Such a relaxed definition

of ‘correct prediction’ can be justified by the fact that, we are using

a simple prediction method involving few crucial contacting

residues rather than all the interactions present in the docking

domain structure. Secondly, we are not taking into account role of

other catalytic domains in preventing chain elongation in case of

non-cognate associations.

Even though very recent theoretical studies [5,16] have

attempted to predict physical interaction between PKS proteins

based on analysis of co-evolution of docking domain sequences,

the prediction accuracy for order of substrate channeling has

either not been studied in detail [16] or found to be low in cases

involving clusters consisting of more than four ORFs [5].

However, in contrast to these purely sequence based methods,

we have used a structure based approach. Using the conserved

core structure of the docking domain as template, we have

extracted crucial interacting residues which were suggested earlier

by Broadhurst et al [29] to be determinants of specificity of inter

subunit interactions. Exploitation of this crucial information in our

study probably helps in improvement of prediction accuracy.

Identification of specific interacting residue pairs also make the

predictions easily amenable to experimental testing by site directed

mutagenesis approach. Recent experimental studies [30,31] have

further established the feasibility of altering specificity of inter

subunit interactions based on manipulation of putative interacting

residues in the docking domain frame work. Apart from helping in

deciphering the chemical structure of final polyketide product, our

computational analysis of ‘‘docking code’’ in cognate and non-

cognate interacting pairs in experimentally characterized modular

PKS cluster can also provide knowledge base for fruitfully

combining non-cognate ORF pairs for generation of novel

aglycone structures. Our analysis of such interacting residues in

docking domains of a mycobacterial PKS protein involved in

biosynthesis of mycoketide has led to the discovery of a completely

novel ‘‘Modularly iterative’’ mechanism of polyketide biosynthesis

[48]. However, we must clarify that, apart from interactions

between N-terminal and C-terminal docking domains of PKS

proteins, the substrate specificity of various catalytic domains

would also have a role in preventing chain elongation in case of

non-cognate associations of PKS ORFs. Similarly, interactions

between ACP and downstream KS will also discriminate non-

cognate associations. In this work, we have only addressed the role

of docking domains.

Discussion

We have demonstrated that, the KS domains can be successfully

classified into various functional subfamilies with high prediction

accuracy using their HMM profiles. Structural modeling of the

active site pockets of various iterative KS domains has revealed

that certain key residues in the active site pocket can potentially

control the size of final product by governing the total number of

iterations. This result is in agreement with recent experiments

[38,39] which report cavity volume being a major determinant of

substrate specificity of fungal PKSs. The major highlight of our

work is that programmed iteration by fungal polyketide synthases

may be rationally controlled by site directed mutagenesis of certain

specific residues. These results also demonstrate that the number

of chain extension reactions catalyzed by an iterative PKS protein

Figure 7. List of various combinatorial possibilities for the order of substrate channeling in the Spinosad modular PKS cluster. The
Spinosad PKS has five ORFs which can be arranged in six different combinations, if the identity of the first and last ORF is fixed. This has been shown
in the first column, where the native or correct order of ORFs has been highlighted. Each combination has four possible interfaces and each interface
has been scored for two pairs of critical contacts. These two interactions can be favorable (green tick mark) or unfavorable (red cross mark) or neutral
(pink dot). The last column shows the total number and type of contacts. The combination of ORFs with the highest number of favorable contacts
and lowest number of unfavorable contacts is assigned as the best scorer. As can be seen, the native combination is the highest scorer in this case.
doi:10.1371/journal.pcbi.1000351.g007
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can be predicted by computing the cavity volume of the active site

pocket of its KS domain. This represents a major advance towards

prediction of the polyketide products of iterative PKS proteins.

We have analyzed the docking domain sequences of various

modular PKS clusters in detail to investigate if information

contained in the docking domain sequences can be used to identify

the correct order for channeling of substrates. Using the recently

available NMR solution structure [29] of the docking domains from

the erythromycin biosynthetic cluster as template, inter polypeptide

contacts were analyzed for various types of cognate and non-

cognate pairing of ORFs in various modular PKS clusters. Our

investigation revealed that, cognate pairing of ORFs always

generated energetically favorable inter polypeptide contacts, while

in majority of cases non-cognate pairing resulted in energetically

unfavorable contacts. The results of our benchmarking on known

modular PKS clusters indicated that, using such inter polypeptide

contact analysis, it is possible to narrow down the number of

possible choices for the cognate order of substrate channeling. Thus

our analysis of docking domain sequences would help in predicting

the final polyketide products of modular PKS clusters.

In summary, the current work demonstrates that, in silico

analysis of experimentally characterized PKS clusters can not only

enhance our understanding of mechanistic polyketide biosynthesis,

it helps in formulating rules for predicting, whether a given PKS

protein is modular or iterative, the order of substrate channeling

for modular PKSs, and the number of chain extension reactions

catalyzed by iterative PKSs. Hence, our results can aid in

identifying metabolic products of uncharacterized PKS clusters

found in newly sequenced genomes.

Methods

KS dataset
In addition to the PKS gene clusters cataloged in the NRPS-PKS

server, additional modular PKS clusters that were used for this

analysis are ansamitocin [49], albicidin [50], Bacillus subtilis PKS,

coronafacic acid, compactin CDKS [51], lovastatin LDKS [52],

geldanamycin [53], leinamycin [54], lankacidin [55], microcytin

(from two organisms) [56,57], monensin [58], nanchangmycin [41],

pederin [59], mupirocin [60], ta1 [61], bleomycin [62] and

yersiniabactin [63]. The experimentally characterized fungal type

I iterative PKS clusters used in this analysis are aflatoxin [64],

avilamycin [65], bikaverin [35], C-1027 [66], calicheamicin (has

two type I PKSs) [67], compactin [51], lovastatin [52], fumonisin

[68], MSAS from four organisms [69–71], sterigmatocystin [72],

THN from five organisms [73–76], T-toxin [77] and napthopyrone

[78]. To this data, we added sequences analyzed in a previous

phylogenetic analysis of fungal [79] type-I PKSs.

KS subfamilies
Profile HMM analysis [33] was carried out by HMMER

package. The available KS dataset was divided into five different

Figure 8. Result of the docking code analysis. The first two columns depict a PKS cluster and its corresponding number of ORFs. The third
column shows the total number of ORF combinations possible, of which only one is the correct (or native) order. All possible combinations were
tested for the presence of two critical interactions. The fourth and fifth columns have been further divided into three sub-columns each. The fourth
column shows the interaction score (favorable, unfavorable and neutral) for the correct order of ORFs. The fifth column depicts the number of non-
native combinations which resulted in a score that was better than, same or worse than native. Rows colored red depict the cases where this
prediction method failed.
doi:10.1371/journal.pcbi.1000351.g008
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subfamilies. Apart from the major clusters of iterative and modular

KS domains, the KS domain phylogenetic dendrogram showed

further clustering into subfamilies like enediynes and non-

enediynes within the iterative cluster. Similarly, modular KS

domains have three clusters corresponding to pure modular PKSs,

hybrid NRPS-PKSs and trans-AT systems. The enediyne family of

antibiotics is structurally characterized by the enediyne core, a unit

consisting of two acetylenic groups conjugated to a double bond or

incipient double bond within the nine-membered or ten-

membered ring. The enediyne cores bear no structural resem-

blance to any characterized polyketides, but precursor labeling

experiments have unambiguously established that they are derived

minimally from eight head-to-tail acetate units [80]. Natural

products of hybrid peptide-polyketide origin have been known for

a long time. These are metabolites that are assembled from amino

acid and carboxylic acid precursors by hybrid NRPS-PKS gene

clusters in which an NRPS-bound growing peptidyl intermediate is

further elongated by a PKS module or vice versa [81]. Trans-AT

clusters are also referred to as the AT-less clusters. These are

complex PKSs where a single AT protein functions in trans- and

charges the ACP domains of all the modules in the cluster [20].

Since the modular PKSs often have several KS domains on the

same ORF, for building Hidden Markov Models of various

subfamilies repartitioning of the various data sets into training and

test set was done based on individual ORFs, rather than polyketide

clusters or KS domains.

Modeling of iterative KS domains and analysis of their
active site pockets

The various iterative KS domains were modeled using

comparative modeling approach. The structural templates were

identified by BLAST search against PDB or by using threading

approach. Threading analyses were done using a local version of

Threader package [82] (downloaded from the PSIPRED protein

prediction server site) to identify the structural templates for

modeling various KS domains. The various KS domains have

been modeled using fatty acid KAS structure as template, which

show only about 20% sequence identity with polyketide KS

domains. However, availability of several structures of thiolase fold

indicates that even at this low sequence identity, two KS proteins

can adopt very similar structures. Since the overall active site

architecture is conserved in this class of enzymes, our structural

predictions are likely to be reliable even at low sequence identity

between target and template. The crystal structure of the act KS-

CLF protein and recently reported structure of DEBS KS have

revealed that modular as well as iterative polyketide KS domains

also adopt a thiolase fold, thus validating our assumptions.

Models of various polyketide KS domains were built using a

local version of modeller V6.2 [83]. Structural mapping, ligand

construction and pocket architecture visualization were done using

different modules of InsightII package. The active site pockets of

iterative KS domains were compared in terms of their hydropho-

bicity and cavity volumes to understand how binding pocket

residues control chemical structure of the polyketide product.

Cavity volumes were calculated using CASTp [84]. Only those

cavities which contained the catalytic triad residues were chosen

from the CASTp output for comparison across various models of a

given KS domain. The cavity lining residues (CLRs) were

identified from the selected CASTp pockets. The total number

and total hydrophobicity of hydrophobic CLRs was tabulated for

comparison with the FAS structural template. Hydrophobicity was

calculated using Kyte and Doolittle’s protein hydropathy scale

[85]. Since cavity identification is often sensitive to small changes

in orientation of residues, all the above mentioned parameters

were calculated from at least five different homology models for

the same sequence. Structural alignment of various KS structures

was done using Combinatorial Extension (CE) server [86].

Visualization was also done using VMD [87].

Analysis of docking domains
Secondary structure propensities of various docking domain

sequences were derived from the PredictProtein server [88].

ESPript service [89] from the predict protein server was used for

structure based sequence alignment of docking domains. Interacting

residues for each docking domain pair was identified by aligning

their sequences with the docking domain structure. For each

interface, the interacting residue pairs obtained from this alignment

were ranked as favorable, unfavorable or neutral as per a simple

scoring scheme (Table S1). A given combinatorial arrangement of a

set of ORFs in a PKS cluster was assigned a score based on the

favorable, unfavorable or neutral contacts present in all the

interfaces. All the combinatorial possibilities were scored for each

modular PKS cluster and score of the cognate combination was

compared with scores of various non-cognate arrangements. The

computational tool for carrying out inter subunit contact analysis

involving docking domains and predicting the order of substrate

channeling in modular PKS clusters is available as web server at

http://www.nii.res.in/pred_pks_orf_order.html.
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