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Abstract
It is now common to use knowledge about human auditory processing in the development of audio
signal processors. Until recently, however, such systems were limited by their linearity. The
auditory filter system is known to be level-dependent as evidenced by psychophysical data on
masking, compression, and two-tone suppression. However, there were no analysis/synthesis
schemes with nonlinear filterbanks. This paper describe18300060s such a scheme based on the
compressive gammachirp (cGC) auditory filter. It was developed to extend the gammatone filter
concept to accommodate the changes in psychophysical filter shape that are observed to occur
with changes in stimulus level in simultaneous, tone-in-noise masking. In models of simultaneous
noise masking, the temporal dynamics of the filtering can be ignored. Analysis/synthesis systems,
however, are intended for use with speech sounds where the glottal cycle can be long with respect
to auditory time constants, and so they require specification of the temporal dynamics of auditory
filter. In this paper, we describe a fast-acting level control circuit for the cGC filter and show how
psychophysical data involving two-tone suppression and compression can be used to estimate the
parameter values for this dynamic version of the cGC filter (referred to as the “dcGC” filter). One
important advantage of analysis/synthesis systems with a dcGC filterbank is that they can inherit
previously refined signal processing algorithms developed with conventional short-time Fourier
transforms (STFTs) and linear filterbanks.

Keywords
Compression; nonlinear analysis/synthesis auditory filterbank; simultaneous masking; speech
processing; two-tone suppression

I. Introduction
It is now common to use psychophysical and physiological knowledge about the auditory
system in audio signal processors. For example, in the field of computational auditory scene
analysis (CASA) (e.g., [1]), models based on auditory processing [2]-[6] are recommended
to enhance and segregate the speech sounds of a target speaker in a multisource
environment. It is also the case that popular audio coders (e.g., MP3 and AAC) use human
masking data in their “perceptual coding,” to match the coding resolution to the limits of
human perception on a moment-to-moment basis [7]-[11]. Nevertheless, most speech
segregation systems and audio coders still use nonauditory forms of spectral analysis like the
short-time Fourier transform (STFT) and its relatives. One of the major reasons is their
computational efficiency. It is also the case that simple auditory models with linear auditory
filterbanks do not necessarily improve the performance of audio processors. Research over
the past two decades shows that the auditory filter is highly nonlinear and it is dynamic;
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specifically, the frequency response of the auditory filter exhibits level-dependent
asymmetry [12]-[14] and a compressive input/output function [15]-[17], and both of these
characteristics are fundamentally dynamic; that is, the filter adapts to signal amplitude with
a time constant on the order of 1 ms. It seems likely that these nonlinear characteristics are
partly responsible for the robustness of human speech recognition, and that their inclusion in
perceptual processors would make them more robust in noisy environments. In this paper,
we introduce a dynamic version of the compressive gammachirp filter with a new level-
control path that enables the filter to explain “two-tone suppression,” a prominent nonlinear
feature of human masking data. Dynamic auditory filterbanks with these properties should
also be useful as preprocessors for hearing aids [18].

The use of a nonlinear filterbank raises a problem for analysis/synthesis processors, because
there is no general method for resynthesizing sounds from auditory representations produced
with nonlinear filterbanks. So, although there are a number of dynamic nonlinear cochlear
models based on transmission-line systems (e.g., [19], [20]) and filterbanks (e.g., [21]), none
of them supports the analysis/synthesis framework. The reason is that they were developed
to simulate auditory peripheral filtering, and the brain does not resynthesize directly from
the encoded representation. This is a serious constraint for CASA systems, where the
resynthesized version of the target speaker is used to evaluate the performance of the
system. The filter structures in cochlear models are complex and, typically, the specification
of the impulse response is not sufficiently precise to support high-quality resynthesis.
Recently, we developed a linear auditory filterbank with the aim of eventually developing a
nonlinear analysis/synthesis system [22]. In this paper, we demonstrate how the linear
system was extended to produce a dynamic nonlinear auditory filterbank that can explain a
substantial range of nonlinear behavior observed in psychophysical experiments. We also
demonstrate how it can be used as the basis for an analysis/synthesis, perceptual processor
for CASA and speech research.

Theoretically, within the framework of wavelet (e.g., [23]), inversion is straightforward
when the amplitude and phase information is preserved. It can be accomplished using
filterbank summation techniques after compensation for the group delay and phase lag of the
analysis filter. The same is not true, however, for nonlinear filterbanks. There were a limited
number of studies of inversion with auditory filterbanks where part of the phase information
was missing [25]-[27]. The resynthesis technique involved an iterative process which had
local minima problems and which precluded establishing a one-to-one correspondence
between the representation and the resynthesized signal. Moreover, the resynthesized sounds
were distorted even when there was no manipulation of the coded representation because
these systems can never guarantee high-quality reconstruction. Thus, what is required is a
nonlinear filterbank that enables properly defined resynthesis, at least when the amplitude
and phase information are preserved. A nonlinear dynamic filterbank that can guarantee the
fidelity of a processor would enable us to manipulate the encoded representation of a sound
and then resynthesize the corresponding sound appropriately. Such a system could inherit
the many excellent signal-processing algorithms developed previously in the linear domain
(e.g., [28]), while avoiding the problems of the STFT and the linear filterbank. Thus, the
framework should be useful for a range of applications from coding and speech
enhancement to speech segregation [1]-[6] and hearing aids [18].

The gammachirp auditory filter [22], [29]-[31] was developed to extend the domain of the
gammatone auditory filter [32], to provide a realistic auditory filterbank for models of
auditory perception and to facilitate the development of a nonlinear analysis/synthesis
system. A brief summary of the development of the gammatone and gammachirp filterbanks
over the past 20 years is provided in[31, Appendix A]. The resultant compressive
gammachirp filter (cGC) was fitted to a large body of simultaneous masking data obtained
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psychophysically [31]. The cGC consists of a passive gammachirp filter (pGC) and an
asymmetric function which shifts in frequency with stimulus level as dictated by data on the
compression of basilar membrane motion. The fitting of the psychophysical data in these
studies was performed in the frequency domain without temporal dynamics.

A time-varying version of the gammachirp filterbank was proposed [22], [33] in which an
infinite impulse response (IIR) asymmetric compensation filter (AF) was defined to simulate
the asymmetric function. The filter is minimum phase and, thus, invertible. Moreover, since
it is a time-varying linear filter, it is possible to invert the signal even when the filter
coefficients are time-varying if the history of the coefficients from the analysis stage is
preserved and applied properly in the synthesis stage. (Indeed, it is only necessary to
preserve the history of the estimated signal level, since the filter coefficients are entirely
determined by the signal level.) This enables us to resynthesize sound from the output of the
dynamic filterbank. The resynthesized sound is very similar to the original input sound; the
fidelity is limited simply by the frequency characteristics and the density of the filters, and
the total bandwidth of the linear analysis/synthesis filterbank. When the coefficients of the
IIR asymmetric compensation filter are controlled by the estimated level of the input signal,
the system has nonlinear characteristics that enable it to explain psychophysical suppression
and compression data.

Thus, all that is actually required is to extend the static version of the cGC filter into a
dynamic level-dependent filter that can accommodate the nonlinear behavior observed in
human psychophysics. In this paper, we use psychophysical data involving two-tone
suppression [34], [35] and compression [15], [16] to derive the details of the level control
circuit for a dynamic version of the cGC. We then go on to describe an analysis/synthesis
filterbank based on the cGC that can resynthesize compressed speech.

II. Gammachirp Auditory Filters
Fig. 1 is a block diagram of the proposed gammachirp analysis/synthesis filterbank. The
system consists of a set of linear passive gammachirp filters, a set of asymmetric
compensation filters both for analysis and synthesis, and a level estimation circuit. Between
the analysis and synthesis stages, it is possible to include a very wide range of signal
processing algorithms including ones previously developed with linear systems. This section
explains the dynamic, compressive gammachirp (dcGC) filterbank in terms of A) the
mathematical background of the compressive gammachirp (cGC) filter [29]-[31] and the
method used to fit it to psychophysical masking data [12]-[14], B) a time-domain
implementation of the cGC filter [22], [33], C) the incorporation of a new level estimation
circuit, in a channel somewhat higher in frequency than the signal channel, that enables the
system to accommodate two-tone suppression data [34], [35] and compression data [15],
[16], and D) a discussion of the computational costs.

A. Compressive Gammachirp Filter Function
The complex analytic form of the gammachirp auditory filter [29] is

(1)

where a is amplitude; n1 and b1 are parameters defining the envelope of the gamma
distribution; c1 is the chirp factor; fr1 is a frequency referred to as the asymptotic frequency
since the instantaneous frequency of the carrier converses to it when t is infinity; ERBN(fr1)
is the equivalent rectangular bandwidth of average normal hearing subjects [13], [14]; φ1 is
the initial phase; and ln t is the natural logarithm of time. Time is restricted to positive
values. When c1 = 0, (1) reduces to the complex impulse response of the gammatone filter.
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(2)

The Fourier magnitude spectrum of the gammachirp filter is

(3)

(4)

|GT(f)| is the Fourier magnitude spectrum of the gammatone filter, and exp (c1θ1(f)) is an
asymmetric function since θ1 is an antisymmetric function centered at the asymptotic
frequency, fr1 (4). aΓ is a constant.

Irino and Patterson [30] decomposed the asymmetric function exp (c1θ1(f)) into separate
low-pass and high-pass asymmetric functions in order to represent the passive basilar
membrane component of the filter separately from the subsequent level-dependent
component of the filter to account for compressive nonlinearity observed psychophysically.
The resulting “compressive” gammachirp filter |Gcc(f)| is

(5)

Conceptually, this compressive gammachirp is composed of a level-independent, “passive”
gammachirp filter (pGC) |GCP(f)| that represents the passive basilar membrane, and a level-
dependent, high-pass asymmetric function (HP-AF) exp(c2θ2(f)) that simulates the active
mechanism in the cochlea. The filter is referred to as a “compressive” gammachirp (cGC)
because the compression around the peak frequency is incorporated into the filtering process
itself. The HP-AF makes the passband of the composite gammachirp more symmetric at
lower levels.

Fig. 2 illustrates how a level-dependent set of compressive gammachirp filters (cGC; upper
set of five solid lines; left ordinate) can be produced by cascading a fixed passive
gammachirp filter (pGC; lower solid line; right ordinate) with a set of high-pass asymmetric
functions (HP-AF; set of five dashed lines; right ordinate). When the leftmost HP-AF is
cascaded with the pGC, it produces the uppermost cGC filter with most gain. The HP-AF
shifts up in frequency as stimulus level increases and, as a result, at the peak of the cGC,
gain decreases as stimulus level increases [30]. The filter gain is normalized to the peak
value of the filter associated with the highest probe level, which in this case is 70 dB.

The angular variables are rewritten in terms of the center frequency and bandwidth of the
passive gammachirp filter and the level-dependent asymmetric function to accommodate the
shifting of the asymmetric function relative to the basilar membrane function with level. If
the filter center frequencies are fr1 and fr2, respectively, then from (4)

and
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(6)

The peak frequency fp1 of pGC is

(7)

and the center frequency fr2 of HP-AF is defined as

In this form, the chirp parameters, c1 and c2, can be fixed, and the level dependency can be
associated with the frequency ratio frat. The peak frequency fp2 of the cGC is derived from
fr2 numerically. The frequency ratio frat is the main level-dependent variable when fitting the
cGC to the simultaneous masking data merically [30], [31]. The total level at the output of
the passive GC Pgcp was used to control the position of the HP-AF. Specifically

(8)

The superscripts 0 and 1 designate the intercept and slope of the line.

In Fig. 2, as the signal level increases, the peak frequency of the cGC filter first increases
slightly and then decreases slightly, because the pGC filter is not level independent in the
current model. It would be relatively easy to include monotonic level-dependency in the
peak frequency fp2 of the cGC filter by introducing a level-dependency in the asymptotic
frequency frl of the pGC filter. In this case, the pGC filters would not necessarily be equally
spaced along the ERBN rate axis. It is, however, beyond the scope of this paper because 1)
the level-dependent peak frequency cannot be estimated from the notched noise masking
data used to determine the coefficients of the current cGC filter, 2) a small amount of peak
fluctuation does not affect the output of the filterbank much since adjacent filters tend to
shift together in the same direction, and 3) it is simpler to use a linear pGC filter for the
discussion of analysis/synthesis filterbanks.

A detailed description of the procedure for fitting the gammachirp to the psychophysical
masking data is presented in [31, Appendix B]. Briefly, the five gammachirp filter
parameters b1, c1, b2, c2 and frat were allowed to vary in the fitting process; n1 was fixed at
4. The filter coefficients were found to be largely independent of peak frequency provided
they were written in terms of the critical band function (specifically, the ERBN rate function
[14], [31]). So, each filter parameter can be represented by a single coefficient. The frat
parameter has to change with level and so it requires two coefficients. This means that a
dynamic, compressive gammachirp filterbank that explains masking and two-tone
suppression data for a very wide range of center frequencies and stimulus levels can be
described with just six coefficients [31], whose values are as listed in the second row of
Table I.

B. Time Domain Implementation
The description above is based on the frequency-domain response of the gammachirp filter.
For realistic applications, it is essential to define the impulse response. The following is a
brief summary of implementation; the details are presented in [22], [30], and [33].
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The high-pass asymmetric function exp(c2θ2) does not have an analytic impulse response.
So, an asymmetric compensation filter was developed to enable simulation of the cGC
impulse response, in the form

(9)

Here, ac is a constant, gca(t) is the gammachirp impulse response from (1), and hc(t) is the
impulse response of the asymmetric compensation filter Hc(f) that simulates the asymmetric
function such that

(10)

The asymmetric compensation filter [22], [33] is defined in the z-plane as

(11)

(12)

(13)

(14)

(15)

(16)

where p0, p1, p2, and p4 are positive coefficients;fs is the sampling rate; and N is the number
of filters in the cascade. When N = 4 (which is the case throughout this paper)

and

With these values, the discrepancy between |Hc(f)| and exp(c·θ) is small in the critical region
near the asymptotic frequency fr [33]. Since the asymmetric compensation filter is always
accompanied by the bandpass filter of the gammatone or gammachirp filter, the error in the
combined filter is reliably reduced to less than 1 dB within the wide range required by
parameters b and c. It is also the case that the impulse responses are in excellent agreement.
The coefficients p2 and p4 are functions of the parameters b and c. So, it is also possible to
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derive the values on a sample-by-sample bases even when b and c are time-varying and
level-dependent, although it is not the case of the current simulation.

Since the asymmetric compensation filter is a minimum phase filter, it is possible to define
the inverse filter which is

(17)

since the numerator and denominator in (12) are invertible depending on the sign of c. The
inverse filter is a low-pass filter when the analysis filter is a high-pass filter, so that their
product is unity. The crucial condition is to ensure that it is possible to invert the filtered
signal, even when the parameters b, c, and fr vary with stimulus level [22], [33]; the
coefficients used in the analysis are preserved and precisely applied in the synthesis. In the
current study, it is sufficient to preserve the temporal sequences of the estimated levels since
the gammachirp parameters are level-independent except for frat, which is a linear function
of the level as in (8).

Fig. 1 shows the block diagram of the cGC analysis/synthesis filterbank. The initial block is
a bank of linear pGC filters; the second block is a bank of HP-AF filters which simulate the
high-pass asymmetric function in (9) and (10). We refer to both the high-pass filter and the
high-pass function as “HP-AF” for simplicity, since there is a one-to-one correspondence
between them. Together, this cascade of filterbanks represent the dcGC filterbank; the
architecture of the dcGC filter itself is described in the next section. After arbitrary signal
processing of the dcGC output, it is possible to resynthesize the sound: 1) The outputs of
filterbank are applied to a bank of low-pass asymmetric compensation filters (LP-AFs) that
is the inverse of the HP-AF filterbank as in (17) and has level-dependent coefficients based
on the estimated level at the analysis filterbank. (2) The linearized filterbank outputs are
applied to a time-reversed pGC filterbank and then summed up across the channel. When
there is no signal processing between the analysis and resynthesis stages, the resynthesized
sound is almost indistinguishable from the input sound. The degree of precision is
determined by the passband of the linear pGC filterbank and the density of the filters. There
are many possible variations of the architecture, depending on the purpose of the signal
processing. For example, in Section III-C, we demonstrate resynthesis from compressed
speech by removing the LP-AF filterbank; under normal circumstances, the original,
noncompressed speech is recovered as described above.

C. Filter Architecture
Preliminary simulations had shown that the previous cGC filterbank with six coefficients
(second row in Table I) could not explain two-tone suppression data (e.g., [34], [35]). So, we
had to modify the filterbank architecture. Since the cGC has a precise frequency response, it
is possible to simulate two-tone suppression in the frequency domain just as we did when
fitting the simultaneous masking data. This greatly reduces the simulation time required to
find a reasonable candidate for the filter architecture from the enormous number of possible
variations. The result was the filter architecture shown in Fig. 3.

As in the previous compressive gammachirp [31], there are two paths which have the same
basic elements; one path is for level-estimation and the other is for the main signal flow. The
signal path (bottom blocks) has a pGC filter with parameters, b1, c1, fp1, and a HP-AF with
parameters b2, c2, fr2 (= frat · fp1. This combination of pGC and HP-AF results in the
compressive gammachirp (cGC) defined in (5) with peak frequency fp2. The parameter
values are the same as in the previous study and are listed in the fourth row of Table I. The
level-estimation path (upper blocks) has a pGC with parameters, b1, c1, fp1L and an HP-AF
with parameters b2, c2, fr2L (= fratL · fp1L). The components of the level-estimation path are
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essentially the same as those of the signal path; the difference is the level-independent
frequency ratio, fratL. The peak frequency fp1L of the pGC in the level-estimation path is
required to satisfy the relationship

(18)

where ERBNrate(f) is the ERBN rate at frequency f [13], [14], and rEL is a parameter that
represents the frequency separation between the two pGC filters on the ERB rate axis.

The output of the level-estimation path is used to control the level-dependent parameters of
the HP-AF in the signal path. In order to account for the different rates of growth of
suppression in the upper and lower suppression regions [35], it was necessary to use not
only the level at the output of the pGC as in the previous cGC [31], but also the level of the
output of the HP-AF. The level Pc was estimated in decibels on a sample-by-sample basis
and used to control the level in the signal path.

If the outputs of the pGC and HP-AF in the level-estimation path are s1 and s2, then the

estimated linear levels  and  are given by

and

(19)

where Δt is the sampling time, and TL is the half-life of the exponential decay. It is a form
of “fast-acting slow-decaying” level estimation. The estimated level tracks the positive
output of the filter as it rises in level, but after a peak, the estimate departs from the signal
and decays in accordance with the half-life. The effect of the half-life on the simulation of
compression is illustrated in Section III-B. The control level Pc(t) is calculated as a weighted
sum of these linear levels in decibels.

(20)

and

where wL, vlL, and v2L are weighting parameters, PRL and is a parameter for the reference
level in decibels.

In the filterbank, the asymptotic frequencies frl of the pGC filters are uniformly spaced along
the ERBN scale. The peak frequencies fp1 of the pGC filters are also uniformly spaced and
lower than the asymptotic frequencies fp1, since c1 < 0 in (7). The peak frequencies fp2 of
the dcGC filters are, of course, level-dependent and closer to the asymptotic frequencies fr1
of the pGC filters. The resultant filterbank is referred to as a dcGC auditory filter.
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We used an equal-loudness contour (ELC) correction to simulate the outer and middle-ear
transfer functions [13], [14] in the following simulations. The ELC filter is implemented
with an FIR filter, and it is possible to define an inverse filter for resynthesis.

D. Computational Cost
The computational cost of a filterbank is one of important properties, particularly in realtime
applications. We estimated the computational cost in terms of the total number of filters in
the system. The cGC filter consists of a gammatone filter (GT), a lowpass asymmetric
compensation filter (LP-AF), and a highpass asymmetric compensation filter (HP-AF) as in
(5). The GT filter is implemented with a cascade of four second-order IIR filters [36]. The
LP-AF and HP-AF filters are also implemented with a cascade of four second-order IIR
filters. So, there are a total of 12 second-order IIR filters for one channel of the signal path.
Since the pGC filter in the level-estimation path of one cGC filter is identical to the pGC in
the signal path of a cGC filter with a higher peak frequency, it is not necessary to calculate
the output of the pGC filter in the level-estimation path twice. The HP-AF in the level
estimation path is necessary and is also implemented as a cascade of four second-order IIR
filters. So, in total, one channel in the analysis filterbank requires calculation of 16 second-
order IIR filters.

For the synthesis filterbank, it is necessary to use a cascade of four second-order IIR filters
per channel for the LP-AF filter (inverse of HP-AF) to linearlize the nonlinear
representation. The temporally-reversed gammachirp filterbank is not essential when
considering the cost because the synthesis is accomplished with a filtebank summation
technique after compensating for the group delay and phase lag of the analysis filter. The
maximum group delay is defined as the group delay of the gammachirp auditory filter with
the lowest center frequency; it is just under10 ms when the lowest center frequency is 100
Hz.

The computational cost increases linearly with the number of channels. It is, however,
possible to reduce the cost considerably by down sampling. It should now be possible to
produce a real time version of the analysis and synthesis components. So, the total
computational cost would largely depend on the cost of the signal processing implemented
between the analysis and synthesis filterbanks.

In the current study, we used two filterbanks—one for the two-tone suppression data and
one for the compression data. The suppression filterbank had 100 channels covering the
frequency range from 100 to 4000 Hz (i.e., ERBNrates from 3.4 to 27) The compression
filterbank also had 100 channels with a frequency range from 100 to 15 000 Hz (i.e., ERBN
rates from 3.4 to 39). The filter densities were 4.2 and 2.8 filters per ERBN rate,
respectively, which was sufficient to obtain reasonbly accurate paramater values. The
sampling rate was 48 000 Hz, and no down sampling was used since the fitting procedure
does not need to run in real time. The maximum center frequency of the auditory filter needs
to be less than one quarter of the sampling rate in order to define the filter impulse response
properly. In the simulation of compression, however, there was no problem since the
maximum frequency of the signal components was 6000 Hz and the sampling rate was 48
000 Hz.

III. Results
This section illustrates the use of the dcGC filterbank to simulate two-tone suppression and
compression, and the potential of the filterbank in speech processing. The dcGC filter
parameters b1, c1, frat, b2 and c2 (Table I) are essentially the same values as for the previous
cGC filter used to fit the simultaneous masking data [31]. These specific values were
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determined with a fitting procedure that was constrained to minimize the number of free
parameters as well as the rms error of the fit. The frequency ratio parameters, fratL, in the
level-estimation path is 1.08 so that the peak gain of the cGC is 0 dB when the peak gain of
the pGC is 0 dB, as it is in this simulation. The other level-estimation parametes rEL, wL,
v1L, v2L and PRL were set to the values listed in the bottom row of Table I which were
derived from preliminary simulations.

A. Two-Tone Suppression
Two-tone suppression [34], [35] is one of the important characteristics for constructing an
auditory filterbank. The amplitude of the basilar membrane in response to a “probe” tone at
a given frequency is reduced when a second “suppressor” tone is presented at a nearby
frequency at a higher level. The suppressor dominates the level-estimation path of the dcGC
(Fig. 3) where it increases the compression of the probe tone by shifting the HP-AF of the
signal path.

The method for simulating suppression is simple. A probe tone about 100 ms in duration and
1000 Hz in frequency is presented to the filterbank, and the output level of the filter with the
peak at the probe frequency is calculated, in decibels, for various suppressor tones. Fig. 4
shows the suppression regions (crosses) and the probe tone (triangle). They show
combinations of suppressor-tone frequency and level where the suppressor-tone reduces the
level of the filter output at the probe frequency by more than 3 dB. There are regions both
above and below the probe frequency. The solid curve shows the “excitatory” filter, that is,
the inverted frequency response of the dcGC with a peak frequency of 1000 Hz, when the
probe tone level is 40 dB. The dashed lines centered at about 1100 and 1300 Hz show the
“suppressive” filters, that is, the inverted frequency response curves of the pGC and cGC in
the level estimation path, respectively. When the estimated level of an input signal increases,
the HP-AF in the signal path moves upward in the frequency and reduces or “suppresses”
the output level of the signal path. The two-tone suppression is produced by the relationship
between these excitatory and suppressive filters.

The dashed and dotted lines show the suppression regions observed psychophysically with
the pulsation threshold technique [35]; the simulated suppression regions are quite similar to
the observed regions except for the upper-left corner of the high-frequency region. The
discrepancy arises partially because the upper skirt of the dcGC filter is shallower than what
is usually observed in physiological measurements. The current parameters were derived
from two large databases of human data on simultaneous masking without any constraints
on the upper slope. The simulated suppression areas could be manipulated to produce a
better fit by changing the filter parameters if and when the correspondence between the
physiological and psychophysical data becomes more precise. The current example serves to
demonstrate that the dcGC filter produces suppression naturally and it is of roughly the
correct form.

At this point, it is more important to account for the asymmetry in the growth of suppression
with stimulus level in the lower and upper suppression regions [35]. Plack et al. [16]
reported that the current dual resonance nonlinear (DRNL) model [21] could not account for
the asymmetry in growth rate even when the parameters were carefully selected. Fig. 5
shows the relative output level of the dcGC filter for a 1000-Hz probe tone, as a function of
suppressor level, when the suppressor frequency is either 400 Hz (left panel) or 1400 Hz
(right panel). It is clear that the absolute growth rate of the suppression for the lower
suppressor frequencies is greater than for the upper suppressor frequencies. It is also the case
that the suppressor levels are different for the “bend points” (or “break points” in [35, Fig.
11]), where the output level starts to decrease as the suppressor level increases. The bend-
point levels for a 40-dB probe tone are about 60 dB for 400 Hz and 40 dB for 1400 Hz. This
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difference it appears to be largely due to the difference in the curvature of the suppression
curve; it is more acute in the lower region and more gradual in the upper region.

The maximum absolute growth rate is about 0.4 dB/dB when the suppressor frequency is
400 Hz. In contrast, the maximum slope is about 0.3 dB/dB when the suppressor frequency
is 1400 Hz. Note that the output level is compressed by the very nature of the dcGC
architecture, and the degree of compression increases as the probe level increases. The
observed decrement in the depth for the 60-dB tone does not necessarily mean the actual
suppression slope decreases. To avoid the effect of compression, the degree of suppression
was measured in terms of the input signal level so that the output level at the probe
frequency was unchanged before and after the suppressor was introduced. Using this
criterion, the growth rates in the model data increase slightly to about 0.5 and 0.3 dB/dB,
respectively, when the probe is 40-dB sound pressure level (SPL). The suppression levels in
psychophysical data vary considerably with listener and level [35]; the rates are 0.5-3 dB/dB
for a 400-Hz suppressor as in [35, Fig. 4], and less than 0.2 dB/dB for one subject (no data
for other subjects) for a 1400-Hz suppressor as in [35, Fig. 10]. The reason for the variability
across listeners and levels is unclear. The growth rates in the lower frequency suppressor are
generally much larger than the rates in the current simulation. We could change the level-
estimation parameter values or modify the level estimation function in (20) to accommodate
the data. It is, however, not currently clear which set of data is the most appropriate or
reliable, and so we will not pursue the fitting further in this paper. We did, however, confirm
that we were able to change the depth of suppression for 400- and 1400-Hz suppressors by
changing the weight parameters wL, v1L and v2L. For current purposes, it is sufficient to
note that the dcGC filter produces two-tone suppression, the growth rate is greater on the
low-frequency side of the probe tone, and qualitatively, at least, the model is consistent with
psychophysical data unlike the DRNL filter model [16], [21].

B. Compression
Compressive nonlinearity is also an important factor in the auditory filterbanks. Oxenham
and Plack [15] estimated the compression characteristics for humans using a forward-
masking paradigm. They also explained the data using a DRNL filter model [21]. This
section shows how the dcGC filter can also explain the compression data.

1) Method—The experiment in question [15] was performed as follows: a brief, 6000-Hz,
sinusoidal probe was presented at the end of a masker tone whose carrier frequency was
either 3000 or 6000 Hz, depending on the condition. The probe envelope was a 2-ms
Hanning window to restrict spectral splatter; the duration of the masker was 100 ms. In
addition, a low-level noise was added to the stimulus to preclude listening to low-level, off-
frequency components. Threshold for the probe was measured using a two-alterative, forced
choice (2AFC) procedure in which the listener was required to select the interval containing
the probe tone. The level of the masker was varied over trials to determine the intensity
required for a criterion level of masking.

The dcGC filter was used to simulate the experiment as follows: The output of each channel
of the dcGC filterbank was rectified and low-pass filtered to simulate the phase-locked
neural activity pattern (NAP) in each frequency channel, and then the activation was
averaged using a bank of temporal windows to simulate the internal auditory level of the
stimulus. The window was rectangular in shape, 20-ms in duration, and located to include
the NAPs of the end of the masker and the probe. The shape of the temporal window does
not affect the results because it is a linear averaging filter and the temporal location of the
probe tone is fixed. The output levels for all channels were calculated for the masker alone
and the masker with probe, and the array was scanned to find the channel with the maximum
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difference, in decibels. The calculation was performed as a function of masker level in 1-dB
steps. Threshold was taken to be the masker level required to reduce the difference in level
between the two intervals to 2 dB in the channel with the maximum difference. The half-life
of the level estimation was varied to minimize the masker level at threshold; the remaining
parameter values were exactly the same as in the simulation of the two-tone suppression
data (Table I).

2) Results—Fig. 6 shows the experimental results [15] as thick dashed lines. The
simulation was performed for seven half-lives ranging from 0 to 5 ms (19), and the results
are presented by thin solid lines. The solid lines above the dotted diagonal show the
simulated threshold when the probe and masker have different frequencies, namely, 6000
and 3000 Hz. It is clear that the half-life affects the growth of masked threshold. When the
half-life is 0.5 or 1 ms, the change in the growth rate is very similar to that in the
experimental data (thick dashed line). The average growth rate is larger in other conditions;
it is about 0.5 dB/dB when the half-life is 5 ms and it is more than 0.3 dB/dB when the half-
life is 0.1 ms. When the half-life is 0 ms, the average slope is close to 0.8 dB/dB which
means almost no compression. So, the level-estimation process must be quick, but not
instantaneous, with a half-life on the order of 0.5-1.0 ms.

The best fit would appear to be for a half-life of 0.5 ms. In this case, the simulation error is
less than 3 dB, since we set the threshold criterion to 2.0 dB to minimize this error.
Threshold for the condition where the probe and masker have the same frequency (namely,
6000 Hz) is located a few decibels below the dotted diagonal line. The threshold functions
are almost the same, despite relatively large half-life differences, and they are essentially
linear input-output functions. This is consistent with the psychophysical data, at least, for
one subject [23]. When the threshold criterion decreases, the lines for both conditions shift
up in the same way, that is, both when the probe and masker have the same frequency and
when they have different frequencies. We would still need to explain the subject variability
which can be more than 5 dB when the probe and masker have the same frequency. We
would also need to estimate the half-life for frequencies other than 6000 Hz, which is not
possible currently because there are no psychophysical data for other frequencies.

In summary, the current model provides a reasonable account of the compression data; with
the exception of the time constant, the parameters values were identical to those used to
explain two-tone suppression and simultaneous masking.

C. Speech Processing
It appears that the dcGC analysis/synthesis filterbank can be used to enhance the plosive
consonants in speech and the high-frequency formants of back vowels. The effects are
illustrated in Fig. 7 which shows three “cochlear” spectrograms, or “cochleograms,” for the
Japanese word “aikyaku”; the three segments of each cochleogram correspond to “ai,”
“kya,” and “ku.” The cochleograms were produced by the pGC filterbank on its own (a), the
linear cGC filterbank without dynamic level-estimation and when the control level Pc, was
fixed at 50 dB (b), and the dcGC filterbank with dynamic level-estimation (c). The output of
each filterbank was rectified, averaged for 2 ms with a frame shift of 1 ms, normalized by
the rms value of the whole signal, and plotted on a linear scale. The smearing of the
formants in (a) arises from the fact that the pGC filter has a much wider passband than either
the cGC or dcGC filter. Compare the representations of the plosives around 350 and 570 ms,
and the representation of the high-frequency formants of the vowel in “ku” in the region
beyond 600 ms. The comparisons show that the dcGC filter compresses the dynamic range
of the speech which emphasizes the plosive consonants and the higher formants of back
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vowels, and do so without the need of a separate compression stage like those typically used
with linear auditory filterbanks or short-time Fourier transforms.

Fig. 8 shows excitation patterns (or frequency distributions) derived from the same speech
segment at points centered on 60 ms (a) and 630 ms (b) in the sustained portions of the /a/
and /u/ vowels, respectively. The solid curve was derived by averaging the output of the
dcGC filterbank [Fig. 7(c)] for 21 ms (1024 sample points). The dashed curve was derived
from the output of the linear cGC filterbank [Fig. 7(b)] and the total rms level was set to the
same level as the output of the dcGC filterbank. The excitation patterns of the nonlinear
dcGC and linear cGC filterbanks are similar but in both cases the dcGC filterbank increases
the relative size of the upper formants, and the effect is stronger for the /u/ which has the
weaker upper formants [Fig. 8(b)]. The dashed and dotted curve is a level-dependent
excitation pattern derived with a roex filterbank [13], which is provided for reference. The
pattern was calculated from the signal level produced by a STFT with a hanning window of
1024 points.

The speech can be resynthesized from the cochleograms using the time-reversed pGC
filterbank in which the peak frequencies are almost the same as those of the cGC and dcGC
filterbanks. The synthesis LP-AF is not required in this case. The original speech wave is
shown in Fig. 9(a); the resynthesized speech from the linear cGC and dcGC filterbanks are
shown in Fig. 9(b) and (c), respectively. These sounds are normalized to the rms value of the
whole signal. The resynthesized cGC wave [Fig. 9(b)] is essentially the same as the original
[Fig. 9(a)]. It is clear that the peak factor of the resynthesized dcGC wave [Fig. 9(c)] is
reduced and the relative level of the plosives has been increased. The sound quality of the
compressed speech is not quite as good as the original, but it has the advantage of sounding
louder for a given rms value.

Fig. 10 shows the compression characteristics (input-output functions) for the linear cGC
and dcGC filterbanks. The sound pressure level, in decibels, is derived from the rms value of
a entire word. The average and standard deviation of the SPL were calculated from fifty
word segments of speech in a phonetically-balanced Japanese database. The dashed line
with error bars on the dotted diagonal is for the analysis/synthesis signal produced with the
linear cGC filterbank. The solid line with error bars is for speech compressed by the dcGC
filterbank; the output level is set to 100-dB SPL for an input level of 90-dB SPL. The solid
line with circles shows the compression characteristic for the forward-masking condition
where the half-life is 0.5 ms, as shown in Fig. 6. The linear analysis/synthesis signal has
variability because the filterbank restricts the passband between about 100 and 6000 Hz and,
thus, the low- and high-frequency components drop off. The variability of the compressed
speech is less than about 2 dB.

The slope of the input/output (I/O) function is about 0.6 dB/dB which is greater than that for
the masking of short probe tones, where it is about 0.2 dB/dB at minimum. This moderate
slope is reasonable for speech signals because speech consists of a range of frequency
components which interact with each other; at one moment a component acts like a
suppressor and at another it acts like a suppressee. This is an important observation for the
design of compressors like those in hearing aids because the degree of compression is
different for the simple tone sounds used to define the compression, and the speech sounds
that the user wants to hear.

The compression of the dcGC filterbank is reminiscent of the compression in the much
simpler wide dynamic range compression (WDRC) hearing aids [18]. However, both of
these compression processes have a serious drawback. When there is background noise or
concurrent speech, small noise components are effectively enhanced, and they interfere with
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the speech components. It will be essential to introduce noise reduction [28] and speech
segregation (e.g., [1]) in future speech processors. The analysis/synthesis, dcGC filterbank
provides a framework for the design and testing of advanced auditory signal processors of
this sort.

IV. Conclusion
We have developed a dynamic version of the compressive gammachirp filter with separate
paths for level-estimation and signal processing. We have also developed a complete,
analysis/synthesis filterbank based on the dynamic, compressive gammachirp auditory filter.
We have demonstrated that the filterbank can simulate the asymmetric growth of two-tone
suppression and the compression observed in nonsimultaneous masking experiments. The
dcGC filterbank provides a framework for the development of signal processing algorithms
within a nonlinear analysis/synthesis auditory filterbank. The system enables one to
manipulate peripheral representations of sounds and resynthesize the corresponding sounds
properly. Thus, it provides an important alternative to the conventional STFTs and linear
auditory filterbanks commonly used in audio signal processing. The new analysis/synthesis
framework can readily inherit refined signal processing algorithms developed previously in
the linear domain. This framework should be useful for various applications such as speech
enhancement and segregation [1]-[6], [28], speech coding [7]-[11], and hearing aids [18].
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Fig. 1.
Block diagram of an analysis/synthesis filterbank based on the dynamic, compressive
gammachirp auditory filter. The first two blocks produce a peripheral representation of
sound whose features can be manipulated with standard signal processing algorithms. Then,
the sound can be resynthesized to evaluate its quality.
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Fig. 2.
Set of compressive gammachirp filters (cGC, with peak frequency fp2) which are
constructed from one passive gammachirp filter (pGC, with peak frequency fp1) and a high-
pass asymmetric function (HP-AF) whose center frequency fr2 shifts up as stimulus level
increases, as indicated by the horizontal arrow [30]. The gain of the cGC filter reduces as
level increases, as indicated by the vertical arrow. The five filter shapes were calculated for
probe levels of 30, 40, 50, 60, and 70 dB using the parameter values listed in the second row
of Table I.
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Fig. 3.
Block diagram of the dcGC filter illustrating how the pGC and HP-AF in a higher frequency
channel (fp1L) are used to estimate the level for the HP-AF in the signal path of the dcGC
filter with channel frequency fp1.
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Fig. 4.
Simulation of two-tone suppression data. The probe tone is shown by the triangle. The
suppression regions are shown with crosses. The dashed and dotted lines show the
suppression regions observed psychophysically with the pulsation threshold technique [34].
The solid curve shows the filter shape of the cGC for the probe tone on its own. The dashed
curves show the inverted frequency response curves of the pGC and cGC in the level
estimation path, respectively.
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Fig. 5.
Relative level of the output of the dcGC for a 1000-Hz probe tone, as a function of
suppressor level, when the suppressor frequency is either 400 Hz (left panel) or 1400 Hz
(right panel). The numbers in the left-hand side show the probe level in decibels SPL. The
output level is normalized to 50-dB SPL by shifting a constant decibel value. There is
suppression whenever the probe level drops below its starting value where the suppressor is
20-dB SPL.
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Fig. 6.
Compression data from [15] (thick dashed lines) and simulations of the data with dcGC
filters in which the half-life for level estimation varies from 0 to 5 ms (thin solid lines).
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Fig. 7.
“Cochlear” spectrograms, or cochleograms, for the Japanese word “aikyaku,” plotted on a
linear scale to reveal level differences. (a) pGC filter. (b) Linear cGC filter. (c) dcGC filter.

Irino and Patterson Page 24

IEEE Trans Audio Speech Lang Processing. Author manuscript; available in PMC 2009 March 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 8.
Excitation patterns calculated from the dcGC filterbank (solid line) and a linear cGC
filterbank (dashed line). The time is (a) 60 ms and (b) 630 ms. A rectangular window with
1024 points was used for averaging the filter output. The dashed and dotted curve is a level-
dependent excitation pattern derived with a roex filterbank [13].
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Fig. 9.
(a) Original speech wave. (b) Resynthesized versions from the linear cGC analysis/synthesis
filterbank. (c) dcGC analysis filterbank with the linear pGC synthesis filterbank.
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Fig. 10.
Compression characteristics (input-output functions) of the resynthesized speech sounds.
The solid line with error bars shows the compressed speech from the dcGC filterbank; the
dashed line with error bars shows the analysis/synthesis signal from the linear cGC
filterbank; the solid line with circles shows the compression characteristic for the forward-
masking condition where the half life is 1 ms, as shown in Fig. 5.
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