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Abstract
Traumatic spinal cord injury (SCI) in mammals causes widespread glial activation and recruitment
to the CNS of innate (e.g., neutrophils, monocytes) and adaptive (e.g., T and B lymphocytes) immune
cells. To date, most studies have sought to understand or manipulate the post-traumatic functions of
astrocytes, microglia, neutrophils or monocytes. Significantly less is known about the consequences
of SCI-induced lymphocyte activation. Yet, emerging data suggest that T and B cells are activated
by SCI and play significant roles in shaping post-traumatic inflammation and downstream cascades
of neurodegeneration and repair. Here, we provide neurobiologists with a timely review of the
mechanisms and implications of SCI-induced lymphocyte activation, including a discussion of
different experimental strategies that have been designed to manipulate lymphocyte function for
therapeutic gain.
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Introduction to adaptive immunity, lymphocyte regulation and autoimmune
responses
General principles of lymphocytes and adaptive immunity

Cells of innate and adaptive immunity play fundamentally different roles during an immune
response. Innate immune cells (e.g., neutrophils, monocytes, dendritic cells, etc.) provide
immediate defense against infection or other inflammatory stimuli but also help activate and
recruit cells of the adaptive immune system (i.e., T and B lymphocytes). This is accomplished
through complex interactions involving antigen presentation and the release of various
inflammatory mediators (e.g., cytokines and chemokines). Once lymphocytes recognize
antigen, they proliferate, yielding large numbers of “daughter cells” or clones specific for that
antigen (clonal selection or clonal expansion). Some clones persist indefinitely, providing
“memory” against the inciting antigen. Childhood vaccines attempt to exploit this aspect of
adaptive immunity by intentionally creating a persistent repertoire of lymphocytes with
exquisite specificity for select pathogens (e.g., measles virus). More recently, therapeutic
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vaccines have been developed that try to exploit neuroantigen-specific T and B cell function
for repairing the CNS (see below).

During an adaptive immune response, lymphocyte clones not entering the memory pool
become effector cells which enter the circulation and home to sites of injury or infection in
search of antigen. Therein, effector lymphocytes secrete cytokines and antibodies that
orchestrate and amplify the functions of other immune cells. For example, when antibody binds
to antigen, an immune complex is created that facilitates phagocytic removal of antigen.
Antibodies also activate innate immune cells by cross-linking Fc receptors—specialized
antibody receptors that have tyrosine-based activation motifs2,16,101. Immune complexes
catalyze activation of serum and tissue complement—a system of proteins that circulate in the
blood and are produced by glia and neurons in the CNS5,11,29,74,126. Activated complement
proteins serve as chemotactic agents (e.g., C5a, C3b) to amplify immune cell recruitment and
function and they can also directly lyse cells bearing target antigen. These antigen-specific
immune responses will persist until the antigen is removed or until endogenous regulatory
cascades suppress the response.

Originally, it was thought that each lymphocyte receptor was specific for a single antigen. More
recently, it has become clear that a single T cell receptor (TCR) or immunoglobulin can bind
epitopes found on a number of distinct antigens, i.e., they are polyspecific37,132. For example,
a TCR or an antibody may be specific for a measles virus capsid protein but may also bind a
protein present in CNS myelin. However, that same TCR or antibody might not bind skeletal
muscle or Mycobacterium tuberculosis. Because the number of potential antigens far exceeds
the number of lymphocytes found in the immune system, polyspecificity is important for
optimal host-defense; however, it also introduces the potential for triggering autoimmunity.

Immunoregulation and autoimmunity
When lymphocytes recognize and become activated by self-antigens (e.g., non-pathogenic
peptides, proteins, lipids or nucleic acids found in the host), autoimmune disease can develop.
Due to the processes of receptor editing and positive and negative selection, most self-reactive
lymphocytes are deleted or inactivated (anergized) during development. Why then do we
maintain the ability to respond to self antigens throughout adulthood? Although the answer to
this question is not entirely clear, there is compelling data to suggest that self-antigens are
important for modulating the sensitivity of naïve lymphocytes and reducing the overall number
of ligands needed to initiate an adaptive immune response68,121. In this way, autoimmune
recognition plays a physiological role in adjusting the strength of the immune response. It is
believed that autoimmune pathology occurs only after an ambiguous threshold of activation is
surpassed in autoreactive cells. This likely requires an optimal but poorly understood
interaction between antigen, antigen presenting cell and lymphocytes, with concomitant
dysregulation of assorted immunoregulatory networks that maintain immunological tolerance
(reviewed in24). For example, naturally occurring regulatory T cells (Tregs) suppress immune
responses23,65,90,115,118. This suppression is antigen-specific, can be enhanced
experimentally and is mediated by diverse mechanisms including the release of immune
suppressive cytokines (e.g., TGFβ, see 1,13 for review). The fact that depletion of naturally
occurring Tregs causes autoimmune disease in otherwise normal animals is evidence of the
profound role for Tregs in maintaining immune tolerance106,107.

Mechanisms of trauma-induced autoimmune disease: Lessons from Multiple
Sclerosis

Despite the presence of multiple immune regulatory checkpoints, autoimmune disease does
occur. Multiple sclerosis (MS) is the most common and best-understood CNS autoimmune
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disease. Like its primary animal model, experimental autoimmune encephalomyelitis (EAE),
MS results when lymphocytes bind antigens on healthy myelin and axons causing
demyelination and axon injury with the subsequent onset of neurological dysfunction77.
Controversy surrounds the precise mechanism(s) responsible for triggering MS. The prevailing
theory is that a viral infection activates polyspecific lymphocyte clones that also recognize
CNS autoantigens85,133. In this scenario, lymphocytes that become activated by viral antigens
bypass the blood-brain barrier where they become reactivated by myelin and/or axonal proteins
that share sequence homology with the viral protein. Repeated exposure to the virus may trigger
disease relapse in established MS4.

Autoreactive lymphocytes also can infiltrate the CNS subsequent to BBB dysfunction caused
by high levels of circulating cytokines released during infection or following idiopathic
microvascular trauma35,55,75,92,97,119,137. Recent data also indicate dysregulation of
Tregs in MS patients102,128. Once autoreactive lymphocytes bypass mechanisms of immune
tolerance and gain access to the brain or spinal cord, they cause inflammation and cell death
culminating in demyelination, axonal degeneration and neurological deterioration56,127. The
autoimmune response is self-propagating and is characterized by recurrent BBB dysfunction
with continued upregulation of molecules needed for T cell activation, i.e., MHC class II and
costimulatory molecules on resident glia or infiltrating innate immune cells45,46,50,58,63,
78,100. As a result of ongoing pathology, new CNS antigens are released that have the potential
to ligate and activate other autoimmune lymphocytes 25,26,71,79,84. This phenomenon is
known as epitope spreading and can perpetuate neuroinflammation and pathological
progression.

Obviously, the etiology of SCI and MS is different. However, there are some surprising
commonalities (discussed below; also see Popovich et al.94) and in both cases, it appears that
mechanisms of immunological tolerance are suppressed, resulting in the onset and maintenance
of a chronic autoimmune response.

Autoimmunity induced by Traumatic SCI
Autoimmune reactions are triggered by traumatic SCI in animals and humans. In rats, SCI
activates MBP-reactive T cells capable of causing neuroinflammation and transient
paralysis94. In SCI humans, the frequency of MBP-reactive T cells increases, reaching levels
that approximate those seen in MS patients60. Also, >50% of SCI patients have increased
levels of serum and CSF antibodies specific for galactocerebroside, MBP and GM-1
gangliosides43,86,123. We have recently shown that CNS autoantibodies are significantly
elevated in the circulation of >90% of SCI mice6. A preliminary analysis of potential
autoantigen targets in SCI mice suggests that the breadth of autoimmune responses elicited by
SCI extends beyond the predicted repertoire of neuroantigens (e.g., MBP) (Figure 1). Indeed,
because SCI-induced autoimmune responses are so prevalent, it is logical to question how they
are initiated and their pathophysiological significance.

Mechanisms of lymphocyte activation after SCI
Presumably, the trauma and vascular injury caused by SCI overcome mechanisms of peripheral
tolerance and initiate the earliest phases of lymphocyte activation. This may occur subsequent
to neuroantigens being released into the blood and lymphatics with drainage into spleen and
lymph nodes41,64,73. Also, cells present in the injury site may sequester debris and carry CNS
antigens to secondary lymphoid organs (spleen and lymph nodes) via these same humoral
routes54. There, neuroantigens would be processed and presented by antigen presenting cells
(e.g., dendritic cells) to lymphocytes, triggering lymphocyte activation. Support for peripheral
priming of autoimmunity after SCI comes from our studies in mice showing that the number
of activated T and B cells increases in the spleen and bone marrow within 24 hours of SCI6,

Ankeny and Popovich Page 3

Neuroscience. Author manuscript; available in PMC 2010 February 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



53. By three days, T cells isolated from secondary lymphoid tissues of SCI rats are capable of
causing transient hind limb paralysis and spinal cord inflammation when they are injected
intravenously into naïve recipients94. The pathogenic potential of SCI-activated B cells still
remains to be directly tested, but early indications suggest that B cells also are pathological6.
Data from other models also confirm a direct link between primary CNS pathology and
peripheral lymphocyte activation36,41,64,91.

Once lymphocytes gain access to the injury site, they persist indefinitely6,59,110,120. Indeed,
T and B cell numbers increase in the mouse SCI lesion through at least 9 weeks post-injury.
This occurs despite complete restoration of BBB integrity17,93,129, suggesting that intraspinal
cytokine/chemokine gradients exist chronically and are able to upregulate integrin expression
on endothelia and nearby cells9,12,70,80,109. These chemokine gradients and adhesion
molecules represent molecular targets for manipulating the effects of intraspinal lymphocytes
after SCI10,15,34,39,40. The persistence or progressive increase in lymphocyte numbers may
also be explained by lymphocyte reactivation and proliferation within the injured spinal cord.
Indeed, intraspinal lymphocytes co-localize with parenchymal microglia, perivascular
macrophages, infiltrating monocytes and B cells. All are cells that express the MHC class II
antigens and costimulatory molecules (e.g., CD80, CD86) necessary for lymphocyte
activation6,59,95,96,108,120. The presence of large T and B cell clusters in the injured spinal
cord that are morphologically identical to germinal centers found in lymph node and spleen
(sites of active lymphocyte proliferation and differentiation) further supports the hypothesis
that cells are reactivated locally6. Similar “ectopic” lymphoid follicles have been described at
sites of chronic autoimmune inflammation (e.g., synovium in rheumatoid arthritis, meninges
in MS)61,112,114. Additional support for local activation comes from data showing intraspinal
expression of genes encoding autoantibodies specific for systemic autoantigens (Fig. 1).
Preliminary data suggest that potent lymphocyte survival/activation factors (e.g., APRIL or
BAFF81,135) are expressed in the injured spinal cord (data not shown). The chronic expression
of these factors could support autoimmune lymphocyte survival and function. As such,
therapies designed to block these factors may prove beneficial by reducing the effects of post-
injury autoimmunity. But regardless of why lymphocytes persist indefinitely at the lesion site,
there is no doubt that these cells are uniquely positioned to influence post-injury degenerative
and regenerative processes.

Functional implications of endogenous autoimmune responses triggered by
SCI

Currently, the implications of post-traumatic lymphocyte activation and intraspinal
accumulation remain ill-defined and controversial; what is known will be reviewed below.
However, before considering if T and B cells exacerbate tissue injury or promote CNS repair,
let us first consider which antigens are driving SCI-induced autoimmunity. By doing so, we
hope to broaden the context in which the effects of T and B cells are considered after SCI.

In clinical and experimental SCI, only a few autoantigen targets have been documented (i.e.,
MBP, GM-1 ganglioside, galactocerebroside, glutamate receptor 2/3, RNA and DNA)6,43,
86,123 (also see Fig. 1). More recently, we used serum antibodies from individual SCI mice
to probe homogenized spinal cord proteins separated by 2D-gel electrophoresis. A preliminary
proteomics analysis of the 2D gels indicates that >50 different self-proteins are being targeted
by SCI autoantibodies (data not shown). Because some of these autoantigens are found
throughout the body (e.g., actin, RNA/DNA), it may be appropriate to consider SCI as a trigger
for CNS and systemic autoimmune disease. For example, an increase in autoantibodies that
bind nuclear antigens (e.g., RNA/DNA) and glutamate receptors6 could cause or exacerbate
renal insufficiency and may explain the idiopathic cognitive declines that occur in a subset of
individuals with SCI30,32. Renal failure and reproductive sterility are considered to be
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secondary consequences of impaired neural function in para- or quadriplegics. However, it is
intriguing to consider that autoimmune responses may contribute to this pathology6. Indeed,
in patients with neuropsychiatric lupus, the polyspecific antibodies that bind DNA and NMDA
receptors also cause kidney pathology and cortical neurodegeneration31,67,125,130.
Antibodies with similar specificities are found after SCI in mice6.

It is also possible that the autoimmune responses that we interpret as being CNS-specific are
in fact aberrant byproducts of pre-existing host-defense reactions. For example, if an immune
response against a bacterium or virus was occurring prior to SCI, activated polyspecific T and
B cells could become reactivated in the inflammatory milieu of the injury site. In the same way
that environmental pathogens trigger MS onset or disease relapses, pre- or post-traumatic
exposure to pathogens or unrelated systemic trauma could initiate SCI-induced autoimmune
reactions via polyspecificity.

Given that an alarming number of lymphocytes specific for pathogens or systemic antigens
(e.g., nucleic acids) can also react with CNS antigens3,18,31,37,49,51,72,124,130, it seems
certain that SCI or any perturbation that can trigger an immune response will activate
autoimmunity. However, there is little evidence that autoimmune processes cause delayed
pathology or neurological decline after SCI or other forms of neural trauma (e.g., traumatic
brain injury, stroke). Perhaps this is because the threshold for detecting these changes is
extremely high after severe CNS injury. Indeed, in an individual who is already paralyzed, it
would be difficult to discriminate a neurological deficit resulting from focal activation of T or
B cells in discrete regions of the spinal cord. Alternatively, because researchers and clinicians
typically focus on measuring changes in spinal-mediated motor/sensory function (both after
SCI and in MS), it is possible that pathology caused by autoimmunity in systemic organs (e.g.,
kidney) or disturbances in cognitive function would be missed or simply attributed to neural
deficits caused by SCI. An equally plausible explanation is that severe trauma activates
immunoregulatory pathways that limit the extent of autoimmune pathology. For example,
studies by Lafaille and colleagues showed that SCI simultaneously activates Tregs and
pathogenic autoreactive T cells. In this model, Tregs were shown to control and arrest
pathogenic T cells thereby limiting inflammation and injury-induced gliosis14,19,90,136.
Interestingly, in transgenic mice deficient in Tregs, SCI induces pathological
autoimmunity53,69. Injury-induced suppression of pathological autoimmunity may also be a
consequence of dysregulated function in the sympathetic nervous system and neuroendocrine
axis. We and others have shown that circulating levels of glucocorticoids are increased and
that norepinephrine-mediated killing of lymphocytes is enhanced after SCI and stroke27,28,
66,76,99. The resulting lymphocyte death could simultaneously limit the potential for
developing autoimmunity while simultaneously increasing susceptibility to opportunistic
infection.

Finally, we must consider the possibility that some autoimmune reactions are tolerable and
may in fact be beneficial. For example, autoimmune cells including those reactive with MBP
have been shown to secrete neurotrophins like BDNF upon stimulation by antigen33,47,57.
This is thought to protect CNS cells from degeneration and also may promote axon growth and
repair 87,116. Because autoimmune cells selectively accumulate in and nearby sites of CNS
injury, neurotrophins may be delivered in a context-dependent manner. The potential benefits
afforded by autoimmune reactions after CNS injury are discussed in more detail below.

Manipulating adaptive immunity as a therapy for SCI
Clearly, the adaptive immune system is capable of exacerbating tissue damage and promoting
various indices of CNS repair. A focus of current research is to learn how to exploit
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autoimmune-mediated repair while minimizing or circumventing the pathological
consequences of autoreactive lymphocytes. A few of these approaches are summarized below.

Strategies seeking to enhance adaptive immunity for repair of injured spinal cord
Numerous studies have intentionally evoked autoimmune responses after SCI using active
immunization or vaccine protocols (i.e., where antigens emulsified in immune-stimulating
adjuvants are injected into the injured subject). Huang et al. immunized SCI mice with whole
spinal cord homogenate in an attempt to promote axon regeneration48. The goal of this study
was to increase the production of autoantibodies that would bind proteins in myelin known to
inhibit axon growth (e.g., MAG). Indeed, only in immunized mice were anti-myelin antibody
titers increased concomitant with enhanced axon regeneration beyond the site of SCI48. A
similar approach was used to successfully block the axon growth-inhibitory properties of Nogo-
A83. Specifically, an intrasplenic injection of a fusion protein containing the NogoA peptide
was used to promote synthesis of high-affinity anti-Nogo-A antibodies. Importantly, this
immunization protocol rapidly increased anti-Nogo-A antibodies without inducing
pathological autoimmunity83. Schwartz and colleagues have shown that autoantigen vaccines
can also safely induce T cell-mediated neuroprotection, i.e., “protective autoimmunity” 42,
62,88,113.

As an alternative to active immunization, the passive delivery of autoantibodies has been used
successfully as a repair strategy in models of demyelination, Alzheimer's disease and SCI8,
38,111. Rodriguez and colleagues discovered an IgM autoantibody that binds to
oligodendrocyte precursor cells and stimulates their entry into the cell cycle in vitro 103,104.
When injected in vivo, these antibodies promote remyelination of chemically-demyelinated
spinal cord lesions105. In models of SCI, Schnell et al. showed that infusions of IN-1
antibodies, later shown to bind Nogo, stimulated long distance axon growth and functional
recovery22,82,111. The repeated successes using IN-1 and later generation anti-Nogo
antibodies to promote axon regeneration and functional recovery in rodents and primates has
resulted in the start of a Phase I clinical trial in which humanized anti-Nogo antibodies are
being tested as a treatment for human SCI20,21.

Evidence that suppressing adaptive immunity is neuroprotective after SCI
Using vaccine protocols similar to those described above, we and others have shown that
autoimmune responses can exacerbate CNS pathology7,36,52,89,122,131. In fact, when used
in rat and mouse models of peripheral or CNS injury, active and passive immunization
protocols consistently exacerbate neuropathology and impair neurological function7,52.
Surprisingly, autoimmune vaccines caused a disseminated experimental autoimmune attack
(i.e., EAE) throughout the neuraxis in mice receiving a facial nerve axotomy7. Importantly,
no disease developed in immunized mice not receiving a peripheral nerve injury7. These data
emphasize the potential for mild nerve injury to break or overcome mechanisms of immune
regulation in the periphery.

In a separate study, we performed SCI in mice possessing a T cell repertoire biased towards
recognition of MBP53. We predicted that these mice would reveal the true physiological
potential of MBP-reactive T cells in the context of SCI. Indeed, without using adjuvants to
bias the function T cells, we could examine how neuroantigen-specific T cells influence, in a
context-dependent fashion, neuropathology and recovery from SCI. If MBP-reactive T cells
are neuroprotective as predicted by the concept of protective autoimmunity, then we expected
that T cell activation and entry into the spinal cord would reduce demyelination and axonal
injury and promote functional recovery. Conversely, if they augment the acute destructive
potential of innate immunity and exacerbate antibody-mediated demyelination and axonal
injury, we predicted that spinal cord pathology and associated neurological deficits would be
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enhanced. The data clearly support the notion that MBP-reactive T cells are neurodestructive
in the context of a sterile SCI53.

Other data also suggest that lymphocytes are deleterious to the injured CNS. For example, SCI
mice given antibodies against CXCL10, a chemokine which facilitates T cell recruitment to
sites of inflammation, had reduced T cell accumulation accompanied by significant anatomical
and functional preservation40. Similarly, when rats devoid of T cells (athymic nude rats)
received a SCI, the lesions were significantly smaller and functional recovery was improved
relative to SCI rats with T cells98. However, using a model of facial nerve axotomy, Jones and
colleagues have shown that survival of axotomized motor neurons depends on the presence of
an anti-inflammatory CD4+ T cells30,117. More recently, this same group expanded their
analysis of T cell subsets influenced by axotomy and showed that both anti-inflammatory (Th2
or Tregs) and proinflammatory (Th1 or Th17) T cells were activated 134. This balanced
activation of different T cell subsets may be important for T cells to exert a neuroprotective
phenotype. Interestingly, after SCI, adaptive immunity is biased towards the Th1
proinflammatory phenotype6,53. Thus, the preferential induction of Th2 immunity may prove
to be neuroprotective after SCI44. More studies are needed to prove this conclusively.

Conclusions
There is compelling evidence that SCI activates autoreactive T and B cells with the potential
to exert divergent functions. On the one hand, studies have shown that endogenous
autoimmunity can be enhanced to promote spinal cord repair. On the other hand, there are data
that prove that autoimmune responses can exacerbate the deleterious consequences of spinal
cord or peripheral nerve injury. From these conflicting data, it is becoming clear that in order
to develop safe and effective therapies, we must learn how to simultaneously suppress the
pathological effects of lymphocytes and boost their reparative effects without interfering with
their pivotal role in host-defense. The challenge for the future is to reveal the key molecular
determinants that control these divergent functions. Only then can we make treatments like
this a reality.
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Spinal cord injury

CNS  
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Central nervous system

TCR  
T cell receptor

Treg  
Regulatory T cell

MS  
Multiple Sclerosis

EAE  
Experimental autoimmune encephalomyelitis

BBB  
Blood-brain barrier

MBP  
Myelin basic protein

CSF  
Cerebrospinal fluid
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Figure 1.
SCI triggers production of antibodies specific for systemic and CNS antigens. (A) Sera from
naïve (n=5; lanes 1-5), sham (n=4; lanes 6-9) or SCI mice at 14 (n=5; lanes 10-14) or 42 days
post-injury (n=5; lanes 15-19) were used to probe homogenized CNS proteins. Lane 20 was
probed with a commercial anti-MBP antibody (1:40,000) and lane 21 with serum (1:200) from
a mouse immunized 35d previously with 200 μg guinea-pig MBP in adjuvant. Quantitation of
mean band intensity in each lane within a group is shown and reveals marked induction of anti-
CNS antibodies at 42 dpi vs. naïve, sham and 14 dpi groups (OD ± SEM at the bottom of each
column; *** p< 0.001 vs naive, **p < 0.01 vs sham, *p < 0.05 vs dpi 14, ANOVA with Tukey's
post test; mean binding in samples from sham or uninjured mice were not different from zero;
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t-test). (B-G) Sera were used to probe HEp-2 (B-D) and Crithidia luciliae (E-G) substrate slides
(for anti-nuclear and anti-DNA antibodies, respectively). Sera from SCI B cell knockout
(BCKO, B&E) and uninjured (C&F) mice fail to show anti-nuclear or anti-DNA binding. In
contrast, sera from SCI C57BL/6 mice (D&G) reveal strong binding to nuclear antigens and
DNA. High power (inset in D) shows labeling consistent with binding to nuclear membranes,
nucleosomes and/or centromeres. (H) Sera from SCI mice indicate possible binding to neuronal
glutamate receptors [∼110 kD; compare anti-GluR2/3 positive-control labeling (lane 1) with
SCI (dpi 42) sera labeling in lane 2]. Pre-injury sera failed to bind neuronal antigens (lane 3;
arrow). Scale = 25 μm (B-G). (I) Gene chip data shows upregulation of selected genes encoding
autoreactive immunoglobulins within the mouse SCI contusion site. Data are expressed relative
to genes found in the spinal cord of mice given laminectomy (sham) surgery but no SCI. (A-
H reprinted with permission from The Journal of Neurochemistry, November 2006, Volume
99(4), pg 1073-1087.)
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