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I
nsulin resistance in muscle and liver and �-cell
failure represent the core pathophysiologic defects
in type 2 diabetes. It now is recognized that the
�-cell failure occurs much earlier and is more severe

than previously thought. Subjects in the upper tertile of
impaired glucose tolerance (IGT) are maximally/near-
maximally insulin resistant and have lost over 80% of their
�-cell function. In addition to the muscle, liver, and �-cell
(triumvirate), the fat cell (accelerated lipolysis), gastroin-
testinal tract (incretin deficiency/resistance), �-cell
(hyperglucagonemia), kidney (increased glucose reab-
sorption), and brain (insulin resistance) all play important
roles in the development of glucose intolerance in type 2
diabetic individuals. Collectively, these eight players com-
prise the ominous octet and dictate that: 1) multiple drugs
used in combination will be required to correct the multi-
ple pathophysiological defects, 2) treatment should be
based upon reversal of known pathogenic abnormalities
and not simply on reducing the A1C, and 3) therapy must
be started early to prevent/slow the progressive �-cell
failure that already is well established in IGT subjects. A
treatment paradigm shift is recommended in which com-
bination therapy is initiated with diet/exercise, metformin
(which improves insulin sensitivity and has antiathero-
genic effects), a thiazolidinedione (TZD) (which improves
insulin sensitivity, preserves �-cell function, and exerts
antiatherogenic effects), and exenatide (which preserves
�-cell function and promotes weight loss). Sulfonylureas
are not recommended because, after an initial improve-
ment in glycemic control, they are associated with a
progressive rise in A1C and progressive loss of �-cell
function.

NATURAL HISTORY OF TYPE 2 DIABETES

The natural history of type 2 diabetes has been well
described in multiple populations (1–16) (rev. in 17,18).
Individuals destined to develop type 2 diabetes inherit a
set of genes from their parents that make their tissues
resistant to insulin (1,16,19–24). In liver, the insulin resis-
tance is manifested by an overproduction of glucose
during the basal state despite the presence of fasting
hyperinsulinemia (25) and an impaired suppression of
hepatic glucose production (HGP) in response to insulin
(26), as occurs following a meal (27). In muscle
(19,26,28,29), the insulin resistance is manifest by im-

paired glucose uptake following ingestion of a carbohy-
drate meal and results in postprandial hyperglycemia (27).
Although the origins of the insulin resistance can be traced
to their genetic background (17,20), the epidemic of
diabetes that has enveloped westernized countries is re-
lated to the epidemic of obesity and physical inactivity
(30). Both obesity (31) and decreased physical activity
(32) are insulin-resistant states and, when added to the
genetic burden of the insulin resistance, place a major
stress on the pancreatic �-cells to augment their secretion
of insulin to offset the defect in insulin action (1,17). As
long as the �-cells are able to augment their secretion of
insulin sufficiently to offset the insulin resistance, glucose
tolerance remains normal (33). However, with time the
�-cells begin to fail and initially the postprandial plasma
glucose levels and subsequently the fasting plasma glucose
concentration begin to rise, leading to the onset of overt
diabetes (1–4,12,17,18,34). Collectively, the insulin resis-
tance in muscle and liver and �-cell failure have been
referred to as the triumvirate (1) (Fig. 1). The resultant
hyperglycemia and poor metabolic control may cause a
further decline in insulin sensitivity, but it is the progres-
sive �-cell failure that determines the rate of disease
progression.

The natural history of type 2 diabetes described above
(1) is depicted by a prospective study carried out by Felber
and colleagues in Lausanne, Switzerland (35) (Fig. 2).
Although the study was originally cross-sectional in na-
ture, subjects were followed up for 6 years and shown to
progress from one category of glucose intolerance to the
next. All subjects had a euglycemic insulin clamp to
measure tissue sensitivity to insulin and an oral glucose
tolerance test (OGTT) to provide an overall measure of
glucose homeostasis and �-cell function. In lean subjects
with normal glucose tolerance (NGT), the mean plasma
glucose and insulin concentrations during the OGTT were
115 mg/dl and 62 �U/ml, while the mean rate of insulin-
stimulated glucose disposal (measured with a 40 mU/m2

per min euglycemic insulin clamp) was 265 mg/m2 per min.
Obesity was associated with a 29% decline in insulin
sensitivity, but glucose tolerance remained perfectly nor-
mal because of the compensatory increase in insulin
secretion. With time the obese NGT individuals progressed
to IGT in association with a further 28% reduction in
insulin sensitivity (total decrease � 57% from NGT to IGT).
However, the rise in plasma glucose concentration was
quite modest because of a further compensatory increase
in insulin secretion. However, people with IGT are in a
very precarious position. They are maximally or near-
maximally insulin resistant, and their �-cells are function-
ing at less than maximum capacity. With time the �-cells
cannot continue to produce these very large amounts of
insulin and the obese IGT individual progresses to overt
diabetes. The decline in glucose tolerance is associated
with a marked decrease in insulin secretion without
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further change in insulin sensitivity (Fig. 2). This charac-
teristic rise in insulin response to insulin resistance and
hyperglycemia, followed by a subsequent decline, has
been referred to as Starling’s curve of the pancreas (1).
This natural history of type 2 diabetes has been demon-
strated in many prospective studies carried out in many
diverse ethnic populations (1–18,36,37). Although the rel-
ative contributions of insulin resistance and �-cell failure
to the development of type 2 diabetes may differ in
different ethnic groups (38), the onset and pace of �-cell
failure determines the rate of progression of
hyperglycemia.

�-CELL FUNCTION

Although the plasma insulin response to the development
of insulin resistance typically is increased during the
natural history of type 2 diabetes (Fig. 2), this does not
mean that the �-cell is functioning normally. To the
contrary, recent studies from our group have demon-
strated that the onset of �-cell failure occurs much earlier
and is more severe than previously appreciated. In the San
Antonio Metabolism (SAM) study and the Veterans Admin-
istration Genetic Epidemiology Study (VAGES), we exam-
ined a large number of subjects with NGT (n � 318), IGT
(n � 259), and type 2 diabetes (n � 201) (39–42). All
subjects had an OGTT with plasma glucose and insulin
concentrations measured every 15 min to evaluate overall

glucose tolerance and �-cell function and a euglycemic
insulin clamp to measure insulin sensitivity. It now is
recognized that simply measuring the plasma insulin re-
sponse to a glucose challenge does not provide a valid
index of �-cell function (43). The �-cell responds to an
increment in glucose (�G) with an increment in insulin
(�I) (43). Thus, a better measure of �-cell function is
�I/�G. However, the �-cell also is keenly aware of the
body’s sensitivity to insulin and adjusts its secretion of
insulin to maintain normoglycemia (33,43–45). Thus, the
gold standard for measuring �-cell function is the insulin
secretion/insulin resistance (�I/�G ÷ IR), or so called
disposition, index. Note that insulin resistance is the
inverse of insulin sensitivity. Supplemental Fig. A1 (available
in an online appendix at http://diabetes.diabetesjournals.org/
cgi/content/full/db09-9028/DC1) displays the glucose area un-
der the curve (AUC) and insulin AUC in NGT, IGT, and
type 2 diabetic subjects who participated in VAGES and
SAM. In the right panel, the typical inverted U-shaped or
Starling’s curve of the pancreas for the plasma insulin
response is evident. Although subjects with IGT have an
increase in the absolute plasma insulin concentration, this
should not be interpreted to mean that the �-cells in these
individuals are functioning normally.

Figure 3 depicts the insulin secretion/insulin resistance
index (�I/�G ÷ IR) in NGT, IGT, and type 2 diabetic
subjects as a function of the 2-h plasma glucose concen-
tration during the OGTT. If a 2-h plasma glucose �140
mg/dl is considered to represent “normal” glucose toler-
ance, subjects in the upper tertile (2-h PG � 120–139
mg/dl) have lost two-thirds of their �-cell function (see
arrow in Fig. 3). Most disturbingly, subjects in the upper
tertile of IGT (2-h PG � 180–199 mg/dl) have lost 80–85%
of their �-cell function (see second arrow in Fig. 3).
Although not commented upon, similar conclusions can be
reached from data in previous publications (2,3,7,15). The
therapeutic implications of these findings are readily evi-
dent. By the time that the diagnosis of diabetes is made,
the patient has lost over 80% of his/her �-cell function, and
it is essential that the physician intervene aggressively
with therapies known to correct known pathophysiologi-
cal disturbances in �-cell function.

In biomedical phenomena, most reactions take place as
a log function. Figure 4 depicts the natural log of the 2-h
plasma glucose concentration during the OGTT as a
function of the natural log of the insulin secretion/insulin
resistance (�-cell function) index. These two variables are

FIG. 1. Pathogenesis of type 2 diabetes: the triumvirate. Insulin
resistance in muscle and liver and impaired insulin secretion represent
the core defects in type 2 diabetes (1). See text for a more detailed
explanation.

FIG. 2. Natural history of type 2 diabetes. The plasma insulin response
(E) depicts the classic Starling’s curve of the pancreas (1). See text for
a more detailed explanation. F, insulin-mediated glucose uptake (top

panel).

FIG. 3. Insulin secretion/insulin resistance (disposition) index (�I/
�G � IR) in individuals with NGT, IGT, and type 2 diabetes (T2DM) as
a function of the 2-h plasma glucose (PG) concentration in lean and
obese subjects (39–42).
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strongly and linearly related with an r value of 0.91 (P �
0.00001). There are no cut points that distinguish NGT
from IGT from type 2 diabetes. Rather, glucose intolerance
is a continuum, and subjects simply move up and down
this curve as a function of the insulin secretion/insulin
resistance index. Therefore, the current diagnostic criteria
(46) for IGT and type 2 diabetes are quite arbitrary and,
like plasma cholesterol, glucose tolerance should be
viewed as a continuum of risk. The higher the 2-h plasma
glucose concentration, even within the range of IGT, the
greater is the risk for microvascular complications (see
subsequent discussion).

Even more ominous are the observations of Butler et al.
(47). In a postmortem analysis, these investigators quanti-
tated relative �-cell volume and related it to the fasting
plasma glucose concentration. As individuals progressed
from NGT to impaired fasting glucose (IFG), there was a
50% decline in �-cell volume, suggesting a significant loss
of �-cell mass long before the onset of type 2 diabetes.
With the progression to overt diabetes, there was a further
and significant loss of �-cell volume. Although �-cell
volume should not be viewed to be synonymous with
�-cell mass, these results suggest that significant loss of
�-cell mass occurs long before the onset of type 2 diabetes,
according to current diagnostic criteria (46).

In summary, our findings (40–42) demonstrate that, at
the stage of IGT, individuals have lost over 80% of their
�-cell function, while the results of Butler et al. (47)
suggest that subjects with “pre-diabetes” have lost approx-
imately half of their �-cell volume.

“PRE-DIABETES”

The recently published results of the Diabetes Prevention
Program (DPP) (48) have raised further concern about the
clinical implications of the term “pre-diabetes.” In the
DPP, individuals who entered with a diagnosis of IGT and
still had IGT 3 years later had a 7.9% incidence of back-
ground diabetic retinopathy at the time of study end.
Individuals who entered the DPP with IGT but who
progressed to diabetes after 3 years had a 12.6% incidence
of diabetic retinopathy at the time of study end. Moreover,
these IGT individuals developed diabetic retinopathy with
an A1C of 5.9 and 6.1%, respectively, values much less than
the current American Diabetes Association (ADA) treat-
ment goal of 7% (49). Peripheral neuropathy also is a
common finding in IGT, occurring in as many as 5–10%
individuals (50,51).

In summary, individuals with IGT are maximally or near-
maximally insulin resistant, they have lost 80% of their
�-cell function, and they have an approximate 10% inci-
dence of diabetic retinopathy. By both pathophysiological
and clinical standpoints, these pre-diabetic individuals
with IGT should be considered to have type 2 diabetes.

The clinical implications of these findings for the treat-
ment of type 2 diabetes are that the physician must
intervene early, at the stage of IGT or IFG, with interven-
tions that target pathogenic mechanisms known to pro-
mote �-cell failure.

PATHOGENESIS OF �-CELL FAILURE (SUPPLEMENTAL

FIG. A2)

Age. Advancing age plays an important role in the pro-
gressive �-cell failure that characterizes type 2 diabetes.
Numerous studies (52–54) have demonstrated a progres-
sive age-related decline in �-cell function. This is consis-
tent with the well-established observation that the
incidence of diabetes increases progressively with advanc-
ing age.
Genes. �-Cell failure also clusters in families, and studies
in first-degree relatives of type 2 diabetic parents and in
twins have provided strong evidence for the genetic basis
of the �-cell dysfunction (55–58). Impaired insulin secre-
tion has been shown to be an inherited trait in Finnish
families with type 2 diabetes with evidence for a suscep-
tibility locus on chromosome 12 (59). Most recently, a
number of genes associated with �-cell dysfunction in type
2 diabetic individuals have been described (20,60–62). Of
these genes, the transcription factor TCF7L2 is best estab-
lished (60,61). Studies by Groop and colleagues (63) have
shown that the T-allele of single nucleotide polymorphism
rs7903146 of the TCF7L2 gene is associated with impaired
insulin secretion in vivo and reduced responsiveness to
glucagon-like peptide 1 (GLP-1). Both the CT and TT
genotypes predict type 2 diabetes in multiple ethnic
groups (64). In both the Malmo and Botnia studies, pres-
ence of either the CT or TT genotype was associated with
a significant reduction in the diabetes-free survival time,
with odds ratios of 1.58 and 1.61, respectively (63).
TCF7L2 encodes for a transcription factor involved in Wnt
signaling, which plays a central role in the regulation of
�-cell proliferation and insulin secretion (65).

Unfortunately, at present there are no known therapeu-
tic interventions that can reverse either the age-related
decline or genetic-related factors responsible for impaired
insulin secretion. However, there are a number of causes
of �-cell failure that can be reversed or ameliorated.
Insulin resistance. Insulin resistance, by placing an
increased demand on the �-cell to hypersecrete insulin,
also plays an important role in the progressive �-cell
failure of type 2 diabetes. Therefore, interventions aimed
at enhancing insulin sensitivity are of paramount impor-
tance. The precise mechanism(s) via which insulin resis-
tance leads to �-cell failure remain(s) unknown. It
commonly is stated that the �-cell, by being forced to
continuously hypersecrete insulin, eventually wears out.
Although simplistic in nature, this explanation lacks a
mechanistic cause. An alternate hypothesis, for which
considerable evidence exists, is that the cause of the
insulin resistance is also directly responsible for the �-cell
failure. Thus, just as excess deposition of fat (LC-fatty acyl
CoAs, diacylglycerol, and ceramide) in liver and muscle
has been shown to cause insulin resistance in these

FIG. 4. Natural log of the 2-h plasma glucose (PG) concentration versus
natural log of the insulin secretion/insulin resistance index (measure
of �-cell function) (39–42). T2DM, type 2 diabetes.

R.A. DEFRONZO

DIABETES, VOL. 58, APRIL 2009 775



organs, i.e., lipotoxicity, deposition of fat in the �-cell
leads to impaired insulin secretion and �-cell failure (see
subsequent discussion). Similarly, hypersecretion of islet
amyloid polypeptide (IAPP), which is co-secreted in a
one-to-one ratio with insulin, can lead to progressive �-cell
failure (see subsequent discussion).
Lipotoxicity. Elevated plasma free fatty acid (FFA) levels
impair insulin secretion, and this has been referred to as
lipotoxicity (66,67). Studies from our laboratory (24) have
shown that a physiological elevation of the plasma FFA
concentration for as little as 48 h markedly impairs insulin
secretion in genetically predisposed individuals (Fig. 5). In
this study, the normal glucose tolerant offspring of two
type 2 diabetic parents received a 48-h infusion of saline or
Intralipid to approximately double the plasma FFA con-
centration and then received a 2-h hyperglycemic (125
mg/dl) clamp. Compared with saline infusion, lipid infu-
sion markedly impaired both the first and second phases
of C-peptide release and reduced the insulin secretory
rate, calculated by deconvolution of the plasma C-peptide
curve. Conversely, a sustained reduction in plasma FFA
concentration with acipimox in nondiabetic subjects with
a strong family history of type 2 diabetes improved insulin
secretion (68). In vivo studies in rodents (69–71) and in
humans (72), as well as in vitro studies (73), also support
an important role for lipotoxicity. Thus, when human
pancreatic islets were incubated for 48 h in presence of 2
mmol/l FFA (oleate-to-palmitate ratio 2:1), insulin secre-
tion, especially the acute insulin response, was markedly
reduced. Exposure to FFA caused a marked inhibition of
insulin mRNA expression, decreased glucose-stimulated
insulin release, and reduction of islet insulin content (69).
Rosiglitazone, a peroxisome proliferator–activated recep-
tor (PPAR)� agonist, prevented all of these deleterious
effects of FFA (74). Consistent with these in vitro obser-
vations, we have shown that both rosiglitazone and piogli-
tazone markedly improve the insulin secretion/insulin
resistance index in vivo in type 2 diabetic humans (75).

In summary, interventions—such as weight loss and
TZDs—that mobilize fat out of the �-cell would be ex-
pected to reverse lipotoxicity and preserve �-cell function.
Glucotoxicity. Chronically elevated plasma glucose lev-
els also impair �-cell function, and this has been referred
to as glucotoxicity (76). Studies by Rossetti et al. (77) have
provided definitive proof of this concept (Fig. 6). Partially
pancreatectomized diabetic rats are characterized by se-

vere defects in both first- and second-phase insulin secre-
tion compared with control rats. Following treatment with
phlorizin, an inhibitor of renal glucose transport, the
plasma glucose profile was normalized without changes in
any other circulating metabolites. Normalization of the
plasma glucose profile was associated with restoration of
both the first and second phases of insulin secretion. In
vitro studies with isolated human islets also have demon-
strated that chronic exposure to elevated plasma glucose
levels impairs insulin secretion (78,79). In rats, Leahy et al.
(80) showed that elevation of the mean day-long plasma
glucose concentration in vivo by as little as 16 mg/dl leads
to a marked inhibition of glucose-stimulated insulin secre-
tion in the isolated perfused pancreas.

Thus, strict glycemic control is essential not only to
prevent the microvascular complications of diabetes but
also to reverse the glucotoxic effect of chronic hypergly-
cemia on the �-cells (80–84), as well as on hepatic and
muscle insulin resistance.
IAPP. Hypersecretion of IAPP and amyloid deposition
within the pancreas have also been implicated in the
progressive �-cell failure of type 2 diabetes (85,86).
Although convincing evidence for a pathogenic role of
IAPP exists in rodents (87,88), the natural history of
pancreatic amylin deposition in humans has yet to be
defined (89).

FIG. 5. Effect of physiological elevation (48 h) in the plasma FFA concentration (brought about by lipid infusion) on plasma C-peptide
concentration (left) and insulin secretory response (deconvolution of the palsma C-peptide curve) (right) in offspring of two type 2 diabetic
parents (24).

FIG. 6. First-phase (0–10 min) and second-phase (10–120 min) plasma
insulin response during hyperglycemic clamp in partially pancreatec-
tomized diabetic (DIAB) and control (CON) rats (77). PHLOR, phlori-
zin.
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To address this issue, Chavez and colleagues (90,91)
examined the relationship between pancreatic amylin dep-
osition and �-cell function in 150 baboons spanning a wide
range of glucose tolerance. Since the baboon genome
shares more than 98% homology with the human genome,
results in baboons are likely to be pertinent to those in
humans (92). As the relative amyloid area of the pancre-
atic islets increased from �5.5% to �51%, there was a
progressive decline in the log of HOMA-�. The decline in
�-cell function was strongly correlated with the increase in
fasting plasma glucose concentration. Studies by Butler
and colleagues (93,94) have also provided additional evi-
dence for a �-cell toxic effect for the soluble IAPP fibrils.

Because amylin is secreted in a one-to-one ratio with
insulin (95,96) and IAPP oligomers are toxic (89,93,94),
interventions that improve insulin sensitivity, i.e., TZDs/
metformin/weight loss, by leading to a reduction in insulin
secretion, would be expected to preserve �-cell function
on a long-term basis. Of note, rosiglitazone has been
shown to protect human islets against human IAPP toxic-
ity by a phosphatidylinositol (PI) 3-kinase–dependent
pathway (97).
Incretins. Abnormalities in the incretin axis have been
shown to play an important role in the progressive �-cell
failure of type 2 diabetes. GLP-1 and glucose-dependent
insulinotrophic polypeptide (also called gastric inhibitory
polypeptide [GIP]) account for 	90% of the incretin effect
(98–100). In type 2 diabetes, there is a deficiency of GLP-1
(98–100) and resistance to the action of GIP (102–105).
The deficiency of GLP-1 can be observed in individuals
with IGT and worsens progressively with progression to
type 2 diabetes (101). In addition to deficiency of GLP-1,
there is resistance to the stimulatory effect of GLP-1 on
insulin secretion (106,107). In contrast to GLP-1, plasma
levels of GIP are elevated in type 2 diabetes, yet circulating
plasma insulin levels are reduced (108). This suggests that
there is �-cell resistance to the stimulatory effect of GIP on
insulin secretion, and this, in fact, has been demonstrated
(105). Of note, recent studies have shown that tight
glycemic control can restore the �-cells’ insulin secretory
response to GIP (109). Thus, �-cell resistance to GIP is
another manifestation of glucotoxicity.

Because GLP-1 deficiency occurs early in the natural
history of type 2 diabetes, it follows that GLP-1 replace-
ment therapy is a logical choice to restore the deficient
insulin response that is characteristic of the diabetic
condition.
Summary: �-cell dysfunction and development of
type 2 diabetes. In summary, although insulin resistance
in liver and muscle are well established early in the natural
history of the disease, type 2 diabetes does not occur in the
absence of progressive �-cell failure.

INSULIN RESISTANCE

Both the liver and muscle are severely resistant to insulin
in individuals with type 2 diabetes (rev. in 1,17,18). How-
ever, when discussing insulin resistance, it is important to
distinguish what is responsible for the insulin resistance in
the basal or fasting state and what is responsible for the
insulin resistance in the insulin-stimulated state.
Liver. The brain has an obligate need for glucose and is
responsible for 	50% of glucose utilization under basal or
fasting conditions (110). This glucose demand is met
primarily by glucose production by the liver and to a
smaller extent the kidneys (110). Following an overnight
fast, the liver of nondiabetic individuals produces glucose
at the rate of 	2 mg/kg per min (1,25) (Fig. 7). In type 2
diabetic individuals, the rate of basal HGP is increased,
averaging 	2.5 mg/kg per min (1,25) (Fig. 7). In an average
80-kg person, this amounts to the addition of an extra
25–30 g of glucose to the systemic circulation every night.
As shown in Fig. 7, control subjects cluster with a fasting
plasma glucose concentration of 	85–90 mg/dl, and their
rate of HGP averages 	2 mg/kg per min. In type 2 diabetic
subjects, as the rate of basal HGP rises, so also does the
fasting plasma glucose concentration, and these two vari-
ables are strongly correlated with an R value of 0.847 (P �
0.001). This overproduction of glucose by the liver occurs
in the presence of fasting plasma insulin levels that are
increased 2.5- to 3-fold, indicating severe resistance to the
suppressive effect of insulin on HGP. Similar observations
have been made by others (27,110–116). The increase in
basal HGP is explained entirely by an increase in hepatic
gluconeogenesis (117–119). In addition to hepatic insulin

FIG. 7. Basal HGP (left) in control and type 2 diabetic (T2DM) subjects. The relationship between basal HGP and fasting plasma glucose (FPG)
concentration is shown on the right (1,25).
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resistance, multiple other factors contribute to acceler-
ated rate of HGP including: 1) increased circulating gluca-
gon levels and enhanced hepatic sensitivity to glucagon
(120–122); 2) lipotoxicity leading to increased expression
and activity of phosphoenolpyruvate carboxykinase and
pyruvate carboxylase (123), the rate-limiting enzymes for
gluconeogenesis; and 3) glucotoxicity, leading to in-
creased expression and activity of glucose-6-phosphatase,
the rate-limiting enzyme for glucose escape from the liver
(124).
Muscle. Using the euglycemic insulin clamp technique
(125) in combination with tritiated glucose to measure
total body glucose disposal, we (1,18,19,26,28,29,40,
111,126) and others (12,16,44,45,116,127–130) conclusively
have demonstrated that lean type 2 diabetic individuals are
severely resistant to insulin compared with age-, weight-,
and sex-matched control subjects (Fig. 8). Employing
femoral arterial and venous catheterization in combination
with the insulin clamp, we further demonstrated that
muscle insulin resistance could account for over 85–90% of
the impairment in total body glucose disposal in type 2
diabetic subjects (19,28) (Fig. 8). Even though the insulin
clamp was extended for an additional hour in diabetic
subjects to account for the delay in onset of insulin action,
the rate of insulin-stimulated glucose disposal remained
50% less than in control subjects. A similar defect in
insulin-stimulated muscle glucose uptake in type 2 dia-
betic subjects has been demonstrated by others (131–133).

In type 2 diabetic subjects we, as well as others, have
documented the presence of multiple intramyocellular
defects in insulin action (rev. in 17,18,126), including
impaired glucose transport and phosphorylation (19,133–
137), reduced glycogen synthesis (111,138,139), and de-
creased glucose oxidation (26,140–142). However, more
proximal defects in the insulin signal transduction system
play a paramount role in the muscle insulin resistance
(126,143).
Insulin signal transduction. For insulin to work, it must
first bind to and then activate the insulin receptor by
phosphorylating key tyrosine residues on the � chain
(126,144–146) (supplemental Fig. A3). This results in the
translocation of insulin receptor substrate (IRS)-1 to the
plasma membrane, where it interacts with the insulin

receptor and also undergoes tyrosine phosphorylation.
This leads to the activation of PI 3-kinase and Akt,
resulting in glucose transport into the cell, activation of
nitric oxide synthase with arterial vasodilation (147–149),
and stimulation of multiple intracellular metabolic
processes.

Studies from our laboratory were the first to demon-
strate in humans that the ability of insulin to tyrosine
phosphorylate IRS-1 was severely impaired in lean type 2
diabetic individuals (126,143,150), in obese normal glucose
tolerant individuals (143), and in the insulin-resistant,
normal glucose tolerant offspring of two type 2 diabetic
parents (151,152) (Fig. 9). Similar defects have been
demonstrated by others in human muscle (21,23,153–156).
This defect in insulin signaling leads to decreased glucose
transport, impaired release of nitric oxide with endothelial
dysfunction, and multiple defects in intramyocellular glu-
cose metabolism.

In contrast to the severe defect in IRS-1 activation, we
have shown that the mitogen-activated protein (MAP)
kinase pathway, which can be activated by Shc, is nor-
mally responsive to insulin (143) (Fig. 9). The MAP kinase
pathway, when stimulated, leads to the activation of a
number of intracellular pathways involved in inflamma-
tion, cellular proliferation, and atherosclerosis (157–159).

FIG. 8. Insulin-stimulated total body glucose uptake (left) and insulin-stimulated leg glucose uptake (right) in control (CON) and type 2 diabetic
(T2DM) subjects (28,29).

FIG. 9. Relationship between impaired insulin signal transduction and
accelerated atherogenesis in insulin-resistant subjects, i.e., type 2
diabetes and obesity (126,143).
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Thus, the block at the level of IRS-1 impairs glucose
transport into the cell and the resultant hyperglycemia
stimulates insulin secretion. Because the MAP kinase
pathway retains its sensitivity to insulin (143,159,160), this
causes excessive stimulation of this pathway and activa-
tion of multiple intracellular pathways involved in inflam-
mation and atherogenesis. This, in part, explains the
strong association between insulin resistance and athero-
sclerotic cardiovascular disease in nondiabetic, as well as
in type 2 diabetic, individuals (161–166).

As shown by Miyazaki et al. (150) in our laboratory,
there is only one class of oral antidiabetic drugs—the
TZDs—that simultaneously augment insulin signaling
through IRS-1 and inhibit the MAP kinase pathways. These
molecular observations help to explain the recent results
from the CHICAGO (Carotid Intima-Media Thickness in
Atherosclerosis Using Pioglitazone) (167) and PERI-
SCOPE (Pioglitazone Effect on Regression of Intravascu-
lar Sonographic Coronary Obstruction Prospective
Evaluation) (168) studies, in which pioglitazone was
shown to halt the progression of carotid intima-media
thickness and coronary atherosclerosis, respectively, in
type 2 diabetic patients. Consistent with these anatomical
studies, pioglitazone in the PROactive study (169) was
shown to decrease (P � 0.027) the second principal end
point of death, myocardial infarction, and stroke by 16%.
The primary composite end point was reduced by 10% but
did not reach statistical significance because of an in-
crease in leg revascularization, which is not an end point
in most cardiovascular studies. This is not surprising since
gravity, not lipids or blood pressure, is the most important
risk for peripheral vascular disease.
Route of glucose administration: oral vs. intravenous.
The euglycemic insulin clamp, by maintaining plasma
glucose and insulin levels constant, has become the gold
standard for quantitating insulin sensitivity. However, the
normal route of glucose administration in every day life is
via the gastrointestinal tract. Using a double tracer tech-
nique (1-14C-glucose orally and 3-3H-glucose intrave-
nously) in combination with hepatic vein catheterization,

we set out to examine the disposal of oral versus intrave-
nous glucose in healthy, normal glucose tolerant and type
2 diabetic subjects (170–174).

Under basal conditions, with fasting plasma glucose and
insulin concentrations of 90 mg/dl and 11 mU/ml, respec-
tively, the splanchnic tissues, which primarily reflect the
liver, take up glucose at the rate of 0.5 mg/kg per min (Fig.
10). When insulin was administered intravenously to raise
the plasma insulin concentration to 1,189 �U/ml, while
maintaining euglycemia, in subjects with NGT, no stimu-
lation of hepatic glucose uptake was observed. When
insulin was infused with glucose to elevate both glucose
and insulin levels, hepatic glucose uptake increased, but
only in proportion to the increase in plasma glucose
concentration, despite plasma insulin concentrations in
excess of 1,000 �U/ml. In contrast, when glucose was
administered orally, hepatic glucose uptake increased
4.5-fold, despite plasma insulin and glucose concen-
trations that were much lower than with intravenous
glucose plus insulin administration (Fig. 10). When the
same oral glucose load was administered to type 2 diabetic
individuals, despite higher plasma glucose and insulin
concentrations than in nondiabetic subjects, hepatic glu-
cose uptake was reduced by �50%. Thus, individuals with
type 2 diabetes lack the gut factor that is responsible for
augmenting hepatic glucose uptake following glucose
ingestion.
Summary: pathogenesis. In summary, impaired insulin
secretion, decreased muscle glucose uptake, increased
HGP, and decreased hepatic glucose uptake all contribute
to the glucose intolerance in type 2 diabetic individuals.

DYSHARMONIOUS QUARTET (SUPPLEMENTAL FIG. A4)

The last decade has taught us that the fat cell also plays a
pivotal role in the pathogenesis of type 2 diabetes. Collec-
tively, the fat cell and his three friends—the muscle, liver,
and �-cell—comprise the harmonious quartet, or perhaps
more appropriately, the dysharmonious quartet, since to-
gether they sing a very bad tune for the diabetic patient.

FIG. 10. Hepatic glucose uptake in nondiabetic and diabetic (DIAB) subjects as a function of plasma glucose and insulin concentrations and route
of glucose administration (170–174).
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Considerable evidence implicates deranged adipocyte me-
tabolism and altered fat topography in the pathogenesis of
glucose intolerance in type 2 diabetes (17,26,68,127,175–
178): 1) Fat cells are resistant to insulin’s antilipolytic
effect, leading to day-long elevation in the plasma FFA
concentration (26,140,175–179). 2) Chronically increased
plasma FFA levels stimulate gluconeogenesis (180–182),
induce hepatic/muscle insulin resistance (142,183–185),
and impair insulin secretion (24,186). These FFA-induced
disturbances are referred to as lipotoxicity. 3) Dysfunc-
tional fat cells produce excessive amounts of insulin
resistance–inducing, inflammatory, and atherosclerotic-
provoking adipocytokines and fail to secrete normal
amounts of insulin-sensitizing adipocytokines such as adi-
ponectin (175,176). 4) Enlarged fat cells are insulin resis-
tant and have diminished capacity to store fat (187,188).
When adipocyte storage capacity is exceeded, lipid “over-
flows” into muscle, liver, and �-cells, causing muscle/
hepatic insulin resistance and impaired insulin secretion
(rev. in 175,176). Lipid can also overflow into arterial
vascular smooth cells, leading to the acceleration of
atherosclerosis.

Using 14C-palmitate in combination with the insulin
clamp technique, Groop et al. (26) demonstrated that the
antilipolytic effect of insulin was markedly impaired in
lean type 2 diabetic subjects, as well as in obese nondia-
betic subjects (140). In both type 2 diabetic (supplemental
Fig. A5) and obese nondiabetic subjects, the ability of
insulin to suppress the plasma FFA concentration and
inhibit FFA turnover is significantly impaired compared
with lean normal glucose tolerant control subjects at all
plasma insulin concentrations spanning the physiological
and pharmacological range.

Many investigators, including Boden, Shulman, and our-
selves (181,182,185,189), have shown that a physiological
elevation in the plasma FFA concentration stimulates HGP
and impairs insulin-stimulated glucose uptake in liver
(190) and muscle (151,182–185,189–194). As discussed
earlier, we and others (24,186) have also shown that
elevated plasma FFA levels inhibit insulin secretion.

Many years ago, Professor Philip Randle (195) described
his now famous cycle of substrate competition, whereby
elevated FFA oxidation in muscle reciprocally impaired
glucose oxidation. Although there clearly is substrate
competition between FFA and glucose with respect to
oxidative metabolism (196,197), FFAs have been shown to
have independent effects to inhibit glycogen synthase
(198,199) and both glucose transport and glucose phos-
phorylation (192,200).

More recently, we have examined the effect of a 4-h lipid
versus saline infusion on the insulin signal transduction
system in healthy lean normal glucose tolerant subjects
(201). Lipid was infused at three rates (30, 60, and 90 ml/h)
to cause a physiological and pharmacological elevation in
the plasma FFA concentration. During the saline control
study, insulin increased whole-body glucose metabolism
from 2.7 to 10.8 mg � kg
1 � min
1. Lipid infusion caused a
dose-response decline in insulin-stimulated whole-body
glucose disposal (by 22, 30, and 34%, respectively), which
primarily reflects muscle. Compared with the saline con-
trol study, lipid infusion caused a dose-response inhibition
of muscle insulin receptor tyrosine phosphorylation, IRS-1
tyrosine phosphorylation, PI 3-kinase activity, and Akt
serine phosphorylation (Fig. 11).

After fatty acids enter the cell, they can be converted to
triglycerides, which are inert, or to toxic lipid metabolites
such as fatty acyl CoAs, diacylglycerol, and ceramide.
Using magnetic resonance spectroscopy, we quantitated
intramyocellular triglyceride content in healthy normal
glucose tolerant and type 2 diabetic subjects and demon-
strated that muscle lipid content was significantly in-
creased in the diabetic group (R.A.D., unpublished data).
Similar results have been reported by Petersen et al. (202).
Fatty acyl CoAs, which are known to inhibit insulin
signaling (203,204), were also significantly increased in
muscle in diabetic subjects (205,206). Diabetic subjects
were treated with pioglitazone, which increases the ex-
pression of peroxisome proliferator–activated � coactiva-
tor 1 (PGC-1) (207). PGC-1 is the master regulator of
mitochondrial biogenesis and augments the expression of

FIG. 11. Effect of lipid infusion to cause a physiological-pharmacological elevation in plasma FFA concentration on insulin signal transduction
in healthy nondiabetic subjects (201). PY, phosphorylation.
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multiple genes involved in mitochondrial oxidative phos-
phorylation (208–210). Pioglitazone reduced the intramyo-
cellular lipid and fatty acyl CoA concentrations, and the
decrement in muscle fatty acyl CoA content was closely
related to the improvement in insulin-stimulated muscle
glucose disposal (205). When we reduced the intramyocel-
lular fatty acyl CoA content with acipimox, a potent
inhibitor of lipolysis, a similar improvement in insulin-
mediated glucose disposal was noted (206). Increased
intramyocellular levels of diacylglycerol (194,211) and
ceramides (212,213) have also been demonstrated in type
2 diabetic and obese nondiabetic subjects and shown to be
related to the insulin resistance and impaired insulin
signaling in muscle. Most recently, we demonstrated that a
48-h lipid infusion, designed to increase the plasma FFA
concentration 	1.5- to 2.0-fold, inhibited the expression of
PGC1�, PGC1�, PDHA1, and multiple mitochondrial genes
involved in oxidative phosphorylation in muscle (214),
thus mimicking the pattern of gene expression observed in
type 2 diabetic subjects and in the normal glucose tolerant,
insulin-resistant offspring of two type 2 diabetic parents
(215,216). Most recently, we examined the effect of palmi-
toyl carnitine on ATP synthesis in mitochondria isolated
from muscle of normal glucose tolerant subjects (217).
Low concentrations of palmitoyl carnitine (1–4 �mol/l)
augmented ATP synthesis. However, palmitoyl carnitine
concentrations �4 �mol/l were associated with marked
inhibition of ATP synthesis and a decrease in the inner
mitochondrial membrane potential, which provides the
electromotive driving force for electron transport. Collec-
tively, these findings provide strong support for lipotoxic-
ity and adipocyte insulin resistance in the pathogenesis of
type 2 diabetes.

QUINTESSENTIAL QUINTET

Although the fat cell is a worthy member of the dyshar-
monious quartet, the time has arrived to expand the
playing field to include the gastrointestinal tissues as the
fifth member of the quintessential quintet.

Glucose ingestion elicits a much greater insulin re-
sponse than an intravenous glucose infusion that mimics
the plasma glucose concentration profile observed with
oral glucose (98–100). The great majority (�99%) of this
incretin effect can be explained by two hormones: GLP-1
and GIP (98–100). As discussed earlier, GLP-1 secretion by
the L-cells of the distal small intestine is deficient (98–
100), while GIP secretion by the K-cells of the more
proximal small intestine is increased, but there is resis-
tance to the stimulatory effect of GIP on insulin secretion
(102–105). GLP-1 also is a potent inhibitor of glucagon
secretion (98–100), and the deficient GLP-1 response
contributes to the paradoxical rise in plasma glucagon
secretion and impaired suppression of HGP that occurs
after ingestion of a mixed meal (218). Clearly, the gut is a
major endocrine organ and contributes to the pathogene-
sis of type 2 diabetes.

Studies from our laboratory have demonstrated that in
healthy normal glucose tolerant subjects, approximately
one-half of the suppression of HGP following a mixed meal
is secondary to inhibition of glucagon secretion, the other
one-half is secondary to the increase in insulin secretion,
and the insulin-to-glucagon ratio correlated strongly with
the suppression of HGP during the meal (218). These
studies also demonstrated that a large amount of the
ingested glucose load did not appear in the systemic

circulation, consistent with previous studies from our
laboratory (28,170–172). This could have been the result of
delayed gastric emptying, a known effect of exenatide, or
an increase in splanchnic (primarily reflects liver) glucose
uptake. To examine this question more directly, type 2
diabetic subjects received a 6-h meal tolerance test with
the double tracer technique (1-14C-glucose orally and
3-3H-glucose intravenously) before and after 2 weeks of
exenatide treatment (219). Exenatide was not given on the
day of the study. The ingested glucose load was labeled
with acetaminophen to follow gastric empting. Exenatide
significantly reduced both the fasting and postprandial
plasma glucose levels following ingestion of the meal
compared with the baseline study performed prior to
exenatide. The increment in insulin secretory rate divided
by the increment in plasma glucose concentration in-
creased more than twofold, demonstrating a potent stim-
ulatory effect of exenatide on �-cell function. The increase
in insulin secretion, in concert with a decline in glucagon
release, led to a significant reduction in HGP following
ingestion of the mixed meal. Gastric emptying was unal-
tered by exenatide, since the last dose of exenatide was
administered more than 	16 h prior to the meal. Neither
splanchnic nor peripheral tissue glucose uptake was sig-
nificantly altered. Thus, the primary effect of exenatide to
improve glucose tolerance is related to the incretin’s
suppressive effect on HGP. Most recently, Cherrington
(220) and Bergman (221) and colleagues have presented
evidence in support of an effect of GLP-1 to enhance
hepatic glucose uptake of ingested glucose in dogs.

SETACEOUS SEXTET

The sixth member, who establishes the setaceous sextet,
is the pancreatic �-cell. Many groups, dating back to the
1970s, have demonstrated that the basal plasma glucagon
concentration is elevated in type 2 diabetic individuals
(119–121,222–224). The important contribution of elevated
fasting plasma glucagon levels to the increased basal rate
of HGP in type 2 diabetic individuals was provided by
Baron et al. (122). Compared with control subjects, dia-
betic individuals had a markedly elevated rate of basal
HGP, which correlated closely with the increase in fasting
plasma glucagon concentration. Following somatostatin
infusion, plasma glucagon levels declined by 44% in asso-
ciation with a 58% decrease in basal HGP. These results
conclusively demonstrate the pivotal role of hyperglu-
cagonemia in the pathogenesis of fasting hyperglycemia in
type 2 diabetes. There also is evidence that the liver may
be hypersensitive to the stimulatory effect of glucagon in
hepatic gluconeogenesis (120).

In summary, drugs that inhibit glucagon secretion or
block the glucagon receptor are likely to be effective in
treating patients with type 2 diabetes. One such example is
exenatide (225), but glucagon receptor antagonists also
have been shown to be effective (226).

SEPTICIDAL SEPTET

The next, and most recent member, implicated in the
pathogenesis of type 2 diabetes is the kidney who along
with the muscle, liver, �-cell, �-cell, adipocyte, and gut,
forms the septicidal septet.

The kidney filters 	162 g ([glomerular filtration rate �
180 l/day] � [fasting plasma glucose � 900 mg/l]) of
glucose every day. Ninty percent of the filtered glucose is
reabsorbed by the high capacity SGLT2 transporter in the
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convoluted segment of the proximal tubule, and the re-
maining 10% of the filtered glucose is reabsorbed by the
SGLT1 transporter in the straight segment of the descend-
ing proximal tubule (227). The result is that no glucose
appears in the urine.

In animal models of both type 1 and type 2 diabetes, the
maximal renal tubular reabsorptive capacity, or Tm, for
glucose is increased (228–230). In humans with type 1
diabetes, Mogensen et al. (231) have shown that the Tm for
glucose is increased. In human type 2 diabetes, the Tm for
glucose has not been systematically examined. No studies
in either type 1 or type 2 diabetic individuals have exam-
ined the splay in the glucose titration curve in humans.
However, cultured human proximal renal tubular cells
from type 2 diabetic patients demonstrate markedly in-
creased levels of SGLT2 mRNA and protein and a fourfold
increase in the uptake of �-methyl-D-glucopyranoside (AMG),
a nonmetabolizeable glucose analog (232) (Fig. 12).

These observations have important clinical implica-

tions. Thus, an adaptive response by the kidney to con-
serve glucose, which is essential to meet the energy
demands of the body, especially the brain and other neural
tissues, which have an obligate need for glucose, becomes
maladaptive in the diabetic patient. Instead of dumping
glucose in the urine to correct the hyperglycemia, the
kidney chooses to hold on to the glucose. Even worse, the
ability of the diabetic kidney to reabsorb glucose appears
to be augmented by an absolute increase in the renal
reabsorptive capacity for glucose.

In summary, the development of medications that inhibit
renal proximal tubular glucose reabsorption provides a ratio-
nal approach to the treatment of type 2 diabetes (227).

OMINOUS OCTET (FIG. 13)

The last, and perhaps most important, player to be impli-
cated in the pathogenesis of type 2 diabetes is the brain,
which, along with his seven companions, forms the omi-

FIG. 12. SGLT 2 transporter mRNA (left) and protein (middle) and glucose transport (�-methyl-D-glucopyranoside) (right) are increased in
cultured renal proximal tubular epithelial cells of individuals with type 2 diabetes (T2DM) versus nondiabetic subjects (CON) (232).

FIG. 13. The ominous octet. See text for a more detailed explanation.
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nous octet. It is abundantly clear that the current epidemic
of diabetes is being driven by the epidemic of obesity
(207,233). Porte and colleagues (234–237) were among the
first to demonstrate that, in rodents, insulin was a power-
ful appetite suppressant. Obese individuals, both diabetic
and nondiabetic, are characterized by insulin resistance
and compensatory hyperinsulinemia. Nonetheless, food
intake is increased in obese subjects despite the presence
of hyperinsulinemia, and one could postulate that the
insulin resistance in peripheral tissues also extends to the
brain.

Our laboratory has attempted to address the issue of
impaired appetite regulation by insulin in obese subjects
using functional magnetic resonance imaging (MRI) to
examine the cerebral response to an ingested glucose load
(238). After glucose ingestion, two hypothalamic areas
with consistent inhibition were noted: the lower posterior
hypothalamus, which contains the ventromedial nuclei,
and the upper posterior hypothalamus, which contains the
paraventricular nuclei. In both of these hypothalamic
areas, which are key centers for appetite regulation, the
magnitude of the inhibitory response following glucose
ingestion was reduced in obese, insulin-resistant, normal
glucose tolerant subjects, and there was a delay in the time
taken to reach the maximum inhibitory response, even
though the plasma insulin response was markedly in-
creased in the obese group. Whether the impaired func-
tional MRI response in obese subjects contributes to or is
a consequence of the insulin resistance and weight gain

remains to be determined. Nonetheless, these results
suggest that the brain, like other organs (liver, muscle, and
fat) in the body, may be resistant to insulin. Studies by
Obici et al. (239,240) in rodents have also provided evi-
dence for cerebral insulin resistance leading to increased
HGP and reduced muscle glucose uptake.

IMPLICATIONS FOR THERAPY

The preceding review of the pathophysiology of type 2
diabetes has important therapeutic implications (Table 1).
First, effective treatment of type 2 diabetes will require
multiple drugs used in combination to correct the multiple
pathophysiological defects. Second, the treatment should
be based upon known pathogenic abnormalities and NOT
simply on the reduction in A1C. Third, therapy must be
started early in the natural history of type 2 diabetes, if
progressive �-cell failure is to be prevented.

Let us now examine the current therapeutic options as
they relate to four of the key pathophysiological derange-
ments present in type 2 diabetes (Fig. 14). At the level of
the liver, we have shown that both metformin (241–243)
and the TZDs (175,244–252) are potent insulin sensitizers
and inhibit the increased rate of hepatic gluconeogenesis
(220,221) that is characteristic of type 2 diabetic patients.
In muscle, TZDs are potent insulin sensitizers (244–252),
whereas metformin is a very weak insulin sensitizer
(241,243,253). Since the TZDs work through the classic
insulin signaling pathway (150,254), whereas metformin
works through the AMP kinase pathway (255,256), combi-
nation therapy with a TZD plus metformin gives a com-
pletely additive effect to reduce the A1C (257–265), and
hypoglycemia is not encountered because these drugs are
insulin sensitizers and do not augment insulin secretion. In
adipose tissue, the TZDs are also excellent insulin sensi-
tizers and are potent inhibitors of lipolysis (263). TZDs
also effectively mobilize fat out of muscle, liver, and �-cell,
thereby ameliorating lipotoxicity (175,176,205,264–267).

At the level of the �-cell, only the TZDs conclusively
have been shown to improve and preserve �-cell function
(75,268) and demonstrate durability of control

TABLE 1
Pathogenesis of type 2 diabetes: implications for therapy

1) Effective treatment of type 2 diabetes requires multiple
drugs used in combination to correct multiple
pathophysiological defects.

2) Treatment should be based on known pathogenic
abnormalities and not simply on reduction of A1C.

3) Therapy must be started early in the natural history of type
2 diabetes to prevent progressive �-cell failure.

FIG. 14. Treatment of type 2 diabetes: a therapeutic approach based upon pathophysiology. See text for a more detailed explanation.
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(167,168,260, 268–272). There is also evidence that the
GLP-1 analogs can preserve �-cell function on a long-term
basis (273–275). Nonetheless, the two most commonly
prescribed drugs in the U.S. and throughout the world are
the sulfonylureas and metformin, and neither of these
drugs exerts any significant protective effect on the �-cell.
This is a major concern, since progressive �-cell failure is
the primary pathogenic abnormality responsible for the
development of overt diabetes and the progressive rise in
A1C (Fig. 2 and supplemental Fig. A1).
Sulfonylureas and metformin. Professor Robert Turner,
in the UK Prospective Diabetes Study (UKPDS), was the
first to conclusively show that sulfonylureas had no pro-
tective effect on the �-cell in newly diagnosed type 2
diabetic patients over the 15-year study duration (36).
After an initial drop in the A1C, sulfonylurea-treated
patients experienced a progressive deterioration in glyce-
mic control that paralleled the rise in A1C in the conven-
tionally treated group (Fig. 15). Moreover, in the UKPDS
sulfonylureas were shown not to have a significant protec-
tive effect against atherosclerotic cardiovascular compli-
cations (34), and some studies even have suggested that
sulfonylureas may accelerate the atherogenic process
(276,277). Similarly, metformin-treated patients in the
UKPDS, after an initial decline in A1C, secondary to the
biguanide’s inhibitory effect on HGP, also experienced a
progressive deterioration in glycemic control (Fig. 15)
(278). Using HOMA-�, Professors Holman and Turner
showed that the relentless rise in A1C observed with both
sulfonylureas and metformin resulted from a progressive
decline in �-cell function and that by 3 years 	50% of
diabetic patients required an additional pharmacological
agent to maintain the A1C �7.0% (279–284). Although
there is some in vitro evidence that metformin may
improve �-cell function and prevent �-cell apoptosis
(285,286), the in vivo data from the UKPDS fail to support
any role for metformin in the preservation of �-cell func-
tion. However, metformin was shown to reduce macrovas-
cular events in UKPDS (278), although by today’s
standards the number of diabetic subjects in the met-
formin arm (n � 342) would be considered inadequate to
justify any conclusions about cardiovascular protection.

It is especially noteworthy that UKPDS was originally
designed as a monotherapy study. However, after 3 years
it became evident that neither monotherapy with met-
formin nor sulfonylureas was capable of preventing pro-
gressive �-cell failure and stabilizing the A1C at its starting

level (279–283). Therefore, the investigators altered the
study protocol to allow metformin to be added to the
sulfonylurea arm, sulfonylureas to be added to the met-
formin arm, and/or insulin to be added to the sulfonylurea
arm (279–283). Although the addition of a second oral
antidiabetic agent improved glycemic control, after the
initial decline in A1C progressive �-cell failure continued
and the A1C rose progressively.

ADOPT (A Diabetes Outcome Progression Trial) (268)
has provided results similar to those obtained in the
UKPDS. In newly diagnosed type 2 diabetic patients
treated with glyburide, after an initial decline, the A1C
rose continuously due to the progressive loss of �-cell
function (Fig. 16). In contrast, rosiglitazone caused an
initial reduction in A1C that was largely sustained over the
5-year study duration because of a durable effect to
preserve �-cell function (Fig. 17). The rate of decline in
�-cell function was 3.5-fold greater in glyburide-treated
patients versus rosiglitazone-treated patients. Although
metformin produced a more sustained effect to lower the
A1C than the sulfonylureas in ADOPT, it also was associ-
ated with a progressive rise in A1C and progressive decline
in �-cell function after the first year (268).

A number of long-term (�1.5 years), active-comparator,
or placebo-controlled studies have examined the ability of
sulfonylureas to produce a durable reduction in A1C in
type 2 diabetic patients. All of these studies (36,166,167,
260,268–272) showed that, after an initial decline in A1C, a
variety of sulfonylureas, including glyburide, glimepiride,
and gliclazide, were associated with a progressive decline
in �-cell function with an accompanying loss of glycemic
control (Fig. 16). There are no exceptions to this consis-
tent loss of glycemic control with the sulfonylureas after
the initial 18 months of therapy. Thus, evidence-based
medicine conclusively demonstrates that the glucose-
lowering effect of the sulfonylureas is not durable and that
the loss of glycemic control is associated with progressive
�-cell failure (36,37,166,167,268–272,279–283).
TZDs. In contrast to the sulfonylureas, eight long-term
(�1.5 years) active-comparator or double-blind placebo-
controlled studies with the TZDs present a very different
picture (Fig. 17) (167,168,268–272). Thus, after an initial
decline in A1C, durability of glycemic control is main-
tained because of the preservation of �-cell function in
type 2 diabetic patients. In addition to these studies
performed in type 2 diabetic patients, there are five studies
in subjects with IGT demonstrating that TZDs prevent the
progression of IGT to type 2 diabetes (286–290). The
DREAM (Diabetes Reduction Assessment with Ramipril
and Rosiglitazone Medication) study showed a 62% de-
crease in the development of type 2 diabetes with rosigli-
tazone (287), while the ACT NOW (Actos Now for
Prevention of Diabetes) study (290) showed a 81% reduc-
tion in the conversion of IGT to type 2 diabetes with
pioglitazone. All five of these studies showed that, in
addition to their insulin sensitizing effect, the TZDs had a
major action to preserve �-cell function. In ACT NOW, the
improvement in the insulin secretion/insulin resistance
(disposition) index (measure of �-cell function) was
shown both with the OGTT and the frequently sampled
intravenous glucose tolerance test. Similar results have
been demonstrated in the TRIPOD (Troglitazone In Pre-
vention Of Diabetes) and PIPOD (Pioglitazone In Preven-
tion Of Diabetes) studies (286,289) in which the
development of diabetes in Hispanic women with a history
of gestational diabetes was decreased by 52 and 62%,

FIG. 15. The effect of sulfonylurea (glibenclamide � glyburide) and
metformin therapy on the plasma A1C concentration in newly diag-
nosed type 2 diabetic subjects. Conventionally treated diabetic sub-
jects received diet plus exercise therapy (36,279).
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respectively. Many in vivo and in vitro studies with human
and rodent islets have shown that TZDs exert a protective
effect on �-cell function (291–295).
GLP-1 analogs. Incretins also have been shown to im-
prove �-cell function and maintain durability of glycemic
control. Bunck et al. (273) studied 69 metformin-treated
type 2 diabetic patients with a mean age of 58 years and
BMI of 30.5 kg/m2. Subjects received glargine insulin or
exenatide to similarly reduce the A1C to 6.8%. Before and
after 1 year, C-peptide secretion was evaluated with an
80-min hyperglycemic clamp. During the repeat hypergly-
cemic clamp performed after 1 year, both the first (0–10
min) and second (10–80 min) phases of insulin secretion
were increased 1.5- and 2.9-fold, respectively, in the group
treated with exenatide versus the group treated with
glargine. Glargine increased by 31% the ratio of the C-
peptide response during the hyperglycemic clamp per-
formed after 1 year compared with the hyperglycemic
clamp performed at baseline. In contrast, exenatide in-

creased the ratio more than threefold, demonstrating a
potent effect of this GLP-1 analog to augment �-cell
function.

In a 32-week double-blind, placebo-controlled study,
exenatide (10 �g b.i.d.) reduced A1C by 	1.0–1.2% and
markedly decreased the postprandial rise in plasma glu-
cose concentration while maintaining the plasma insulin
response at pre-exenatide treatment levels (274). Conse-
quently, the �I/�G ratio increased dramatically, indicating
a robust effect on �-cell function. A subset of these
subjects were followed-up for 3.5 years, and the decline in
A1C was shown to persist (275). However, it is not known
whether the subjects who did not continue in this long-
term extension study had the same characteristics, i.e.,
level of glycemic control, etc., as those who continued to
be followed for 3.5 years. In vivo studies in rodents
(296,297) and in vitro studies with cultured human islets
(298) have shown that exenatide can expand �-cell mass
and prevent apoptosis of islets, respectively. Whether
these effects to augment �-cell mass will be observed in
diabetic humans remains to be determined. Irrespective of
changes in �-cell mass, the studies of Bunck et al. (273)
clearly document a major effect of exenatide to augment
�-cell function.

In addition to their effect on the �-cell, exenatide and
other GLP-1 beneficially impact four other members of the
ominous octet: liver (reduced HGP), �-cell (reduced glu-
cagon secretion), gut (replacement of deficient GLP-1
response), and brain (reduced appetite with weight loss).
Importantly, the stimulatory effect of exenatide on insulin
secretion dissipates when normoglycemia is achieved,
thereby minimizing the adverse effect of hypoglycemia.
Dipeptidyl peptidase-IV inhibitors. There are no long-
term studies examining the effect of the dipeptidyl pepti-
dase-IV (DPP-IV) inhibitors on �-cell function. However, in
short-term studies, from several months to 1 year, both
sitagliptin and vildagliptin (98,99,299,300) reduce the post-
prandial plasma glucose concentration while maintaining
the plasma insulin response, indicating a positive effect on

FIG. 16. Summary of studies examining the effect of sulfonylurea (SU) treatment versus placebo or versus active-comparator on A1C in type 2
diabetic subjects (36,166,167,260,269–273,279–285). See text for a more detailed discussion. GLY, glyburide.

FIG. 17. Summary of studies examining the effect of TZDs versus
placebo or versus active-comparator on A1C in type 2 diabetic subjects
(167,168,260,268–273). See text for a more detailed discussion. PIO,
pioglitazone; ROSI, rosiglitazone.
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�-cell function. Whether this enhancement in insulin se-
cretion will be translated into preservation of �-cell func-
tion on a long-term basis remains to be determined. The
DPP-IV inhibitors also decrease glucagon secretion, and in
concert with the rise in plasma insulin, this leads to a
reduction in basal HGP (301). Hypoglycemia does not
occur with the DPP-IV inhibitors, but they do not suppress
appetite or cause weight loss.
Summary. The introduction of the TZDs and GLP-1 ana-
logs into the diabetes market place and their potential to
preserve �-cell function offer a new therapeutic approach
to the treatment of type 2 diabetes.

ADA ALGORITHM FOR TREATMENT OF TYPE 2

DIABETES

The ADA algorithm for the treatment of type 2 diabetes
advocates a stepwise therapeutic approach that is based
upon reduction in the plasma glucose concentration and
NOT upon known pathophysiological disturbances (49). It
dictates the initiation of therapy with lifestyle modification
plus metformin to achieve an A1C � 7.0% (Fig. 18). If the
goal is not reached or if secondary failure occurs, the ADA
algorithm suggests one of three options: 1) First is the
addition of basal insulin, an option unlikely to be chosen
by primary care physicians or most endocrinologists in the
U.S. and unlikely to achieve the desired level of glycemic
control based upon well-designed studies by experts in the

field of insulin therapy (302–308). Moreover, all of these
insulin-based add-on studies have been associated with a
high incidence of hypoglycemia and major weight gain
(range 4.2–19.2 lbs, mean 8.5 lbs within 6–12 months or
less) (Fig. 19). 2) Second is the addition of a TZD, but this
option is unlikely to be chosen because of the concerns
raised in the ADA algorithm about this class of drugs.
Thus, the ADA algorithm basically guides the physician to
select a sulfonylurea as the choice for a second antidia-
betic agent. Moreover, third party reimbursers like this
option because sulfonylureas are inexpensive. Neither the
GLP-1 analogs nor the DPP-4 inhibitors are included as an
option in the ADA algorithm (49). Since neither the
sulfonylureas nor metformin exerts any effect to preserve
�-cell function (see previous discussion and Fig. 16), the
20% of �-cell function that was present at the time of
diagnosis of diabetes (40–42) will largely have been lost
by the time that combined sulfonylurea/metformin therapy
has failed, and the majority of these patients will require
insulin treatment. Insulin therapy is difficult for most
primary care physicians, and even in the hands of experi-
enced endocrinologists it is not easy to achieve and
maintain an A1C �7%—let alone �6.5%—without signifi-
cant hypoglycemia and weight gain (302–308). Moreover, it
is unclear why one would initiate insulin before exenatide,
since insulin rarely decreases the A1C to �7.0% and is
associated with significant weight gain and hypoglycemia
(302–308) (Fig. 19). Most recently, an ADA Consensus
Statement has significantly revised the ADA therapeutic
algorithm (309). A two-tier approach is advocated, and
sulfonylureas have been elevated into the first tier and are
to be used if diet/exercise plus metformin fail to reduce
the A1C to �7.0% (Fig. 20). From the pathophysiological
standpoint, this represents a major step backward, since
an overwhelming body of evidence-based medicine (Fig.
16) conclusively demonstrates that sulfonylureas do not
preserve �-cell function and do not achieve durability of
glycemic control. Although this algorithm is not the official
policy statement of ADA, it is likely to be interpreted as
such by most third-party payers.

PATHOPHYSIOLOGICAL-BASED ALGORITHM

An alternate therapeutic algorithm is based upon known
pathophysiological disturbances in type 2 diabetes (Fig.

FIG. 18. ADA algorithm for the treatment of type 2 diabetes (49). See
text for a more detailed explanation. SU, sulfonylurea.

FIG. 19. Effect of insulin (Ins) and exenatide on A1C and body weight in type 2 diabetic subjects (302–308).
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21). This algorithm provides a more rational approach and
is more likely to produce a durable long-term effect. This
algorithm initiates treatment with lifestyle modification
plus triple combination therapy with drugs known to
improve insulin sensitivity (TZDs and metformin) and,
most importantly, with drugs that have been shown to
preserve �-cell function (TZDs and exenatide) (Fig. 21).
Further, a more rational goal of therapy should be an A1C
�6.0%, since the DPP has taught us that as many as 12% of
individuals with IGT and an A1C of 6.0% already have
background diabetic retinopathy.

Comparison of the stepwise ADA algorithm with the
combination pathophysiological-based algorithm is shown
in Fig. 22. Many studies, including the UKPDS, have shown
that stepped metformin/sulfonylurea therapy does not
achieve durable glycemic control. Conversely, the TZDs
and the GLP-1 analogs, when used as monotherapy, each
have been shown to have a more durable effect. When
used in combination, if anything, one would hypothesize
an even more durable effect on �-cell function and reduc-
tion in A1C, although this remains to be proven. Neither
the sulfonylureas nor metformin has been shown to pre-
serve �-cell function. In contrast, both the TZDs and
exenatide have been shown to preserve �-cell function.
Hypoglycemia is common with the sulfonylureas and
insulin, and this prohibits the achievement of the optimal
A1C goal of 6.0%, let alone an A1C �7.0% (the ADA-
recommended goal). In contrast, hypoglycemia is uncom-
mon with the insulin sensitizers and GLP-1 analogs,
allowing the physician to titrate these drugs to maximum
doses to reduce the A1C �6.0%. Lastly, weight gain is
common with sulfonylurea and insulin therapy, whereas
weight loss is the norm with exenatide, and exenatide
blocks the weight gain that is associated with the TZDs.

Summary: Treatment. Although this paradigm shift,
which is based upon pathophysiology, represents a novel
approach to the treatment of type 2 diabetes, it is substan-
tiated by a vast body of basic scientific and clinical
investigational studies. Because this algorithm is based
upon the reversal of known pathophysiological defects, it
has a high probability of achieving durable glycemic
control. If the plasma glucose concentration can be main-
tained within the normal nondiabetic range, the microvas-
cular complications of the disease, which are costly to
treat and associated with major morbidity and mortality,
can be prevented. Most importantly, this will enhance the
quality of life for all diabetic patients.
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