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Adipose Overexpression of Desnutrin Promotes Fatty
Acid Use and Attenuates Diet-Induced Obesity
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OBJECTIVE—To investigate the role of desnutrin in adipose
tissue triacylglycerol (TAG) and fatty acid metabolism.

RESEARCH DESIGN AND METHODS—We generated trans-
genic mice overexpressing desnutrin (also called adipose triglyc-
eride lipase [ATGL]) in adipocytes (aP2-desnutrin) and also
performed adenoviral-mediated overexpression of desnutrin in
3T3-L1CARAL1 adipocytes.

RESULTS—aP2-desnutrin mice were leaner with decreased
adipose tissue TAG content and smaller adipocyte size. Overex-
pression of desnutrin increased lipolysis but did not result in
increased serum nonesterified fatty acid levels or ectopic TAG
storage. We found increased cycling between diacylglycerol
(DAG) and TAG and increased fatty acid oxidation in adipocytes
from these mice, as well as improved insulin sensitivity.

CONCLUSIONS—We show that by increasing lipolysis, desnu-
trin overexpression causes reduced adipocyte TAG content and
attenuation of diet-induced obesity. Desnutrin-mediated lipolysis
promotes fatty acid oxidation and re-esterification within adipo-
cytes. Diabetes 58:855-866, 2009

n mammals, white adipose tissue (WAT) is the
primary energy storage depot, accumulating fuel
reserves in the form of triacylglycerol (TAG) during
times of energy excess (1). However, unlike TAG
synthesis that also occurs at high levels in liver for VLDL
production, lipolysis for the provision of fatty acids (FAs)
as an energy source for use by other organs is unique to
adipocytes. The release of FA from TAG proceeds in an
orderly and regulated manner. TAG is hydrolyzed first to
form diacylglycerol (DAG) and then monoacylglycerol
(MAG) that is hydrolyzed to liberate the final FA and
glycerol (1-4).
We and others have recently identified a TAG lipase that
belongs to the patatin-like domain-containing family of
proteins (5-7). We named this enzyme desnutrin (also
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called PNPLA2, adipose triglyceride lipase, TTS2.2, and
iPLA,0) because it is induced during a low nutritional state
in mice (i.e., fasting) and it belongs to the same patatin-like
domain-containing family as another nutritionally regu-
lated protein, adiponutrin. Desnutrin is highly expressed in
adipose tissue but is also found at low levels in other
tissues (6). Understanding the role of desnutrin in fat
metabolism, specifically in adipose tissue, is of critical
importance, because dysregulated adipocyte TAG lipolysis
may cause elevated circulating FA concentrations that are
associated with severe metabolic derangements, including
the development of insulin resistance and type 2 diabetes
(8). Central to this understanding is the question of the
metabolic fate of FAs derived from desnutrin-mediated
TAG lipolysis, particularly when the release of these FAs is
dissociated from the energy requirements of other organs.

FAs liberated from adipocyte TAG can enter several
possible metabolic pathways. Primarily, they are released
to the systemic circulation, providing oxidative substrates
for use by other tissues during energy deprivation and
therefore maintaining whole-body energy homeostasis
(1,9). Alternatively, however, FAs hydrolyzed from TAG
can also be used directly within the adipocyte in re-
esterification reactions producing TAG or other lipid spe-
cies or in oxidative metabolism. FA oxidation occurs in
the mitochondria and peroxisomes. Although mitochon-
drial FA oxidation is normally tightly coupled to ATP
synthesis, uncoupling of this process can result in energy
wasting and heat production. Peroxisomal FA oxidation is
always poorly coupled, generating heat instead of ATP.

To investigate the adipocyte-specific function of desnu-
trin and the metabolic fate of FAs released from lipolysis,
we generated transgenic mice constitutively overexpress-
ing desnutrin in adipose tissue and also used adenoviral-
mediated overexpression of desnutrin in differentiated
3T3-L1CARA1 adipocytes. We report that desnutrin-medi-
ated lipolysis attenuates diet-induced obesity and, surpris-
ingly, does not result in ectopic TAG storage or increased
serum nonesterified FA (NEFA) levels. Rather, desnutrin
overexpression increases apparent cycling between TAG
and DAG (and/or MAG) in adipose tissue and promotes FA
oxidation specifically within adipocytes. As a result, aP2-
desnutrin mice are leaner and resistant to diet-induced
obesity with improved insulin sensitivity.

RESEARCH DESIGN AND METHODS

Transgene construct and generation and maintenance of transgenic
mice. The 1.7 kb coding sequence for hemagluttinin (HA)-tagged desnutrin,
including a bovine growth hormone polyadenylation sequence, was subcloned
under control of the 5.4-kb adipocyte FA-binding protein (aP2) promoter and
microinjected into the pronucleus of fertilized eggs of C57BL/6 X CBA mice.
aP2-desnutrin mice and their wild-type littermates were fed a high-fat diet
(HFD) (45 kcal% fat, 35 kcal% carbohydrate, and 20 kcal% protein; Research
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Diets) ad libitum at weaning. Experiments were performed in 20-week-old
transgenic mice and compared with sex-matched littermates.

RNA extraction and real-time RT-PCR. Total RNA was prepared using
Trizol Reagent (Invitrogen), and cDNA was synthesized from 2.5 pg of total
RNA by Superscript II reverse transcriptase (Invitrogen). Desnutrin-HA trans-
gene expression was determined by RT-PCR (forward primer: 5'-CTACTGAAC-
CAACCCAACCCT-3'; reverse primer: 5'-TTAGTAATCTGGAACATCGTA-
TGGGTA-3"). Tissue gene expression was determined by RT-qPCR performed
with an ABI PRISM 7700 sequence fast detection system (Applied Biosystems)
and was quantified by measuring the threshold cycle normalized to glyceral-
dehyde-3-phosphate dehydrogenase (GAPDH) or B-actin and then expressed
relative to wild-type controls.

Immunoblotting. Total lysates were subjected to 8% SDS-PAGE, transferred
to PVDF membranes, and probed with rabbit anti-desnutrin antibody or rabbit
anti-GAPDH antibody followed by peroxidase conjugated goat anti-rabbit anti-
body. Blots were visualized using enhanced chemiluminescence (PerkinElmer),
and images were captured using a Kodak Image Station 4000MM.

Adipocyte size determination. Gonadal fat samples were fixed in 10%
buffered formalin, embedded in paraffin, cut into 6-pwm-thick sections, and
stained with hematoxylin and eosin. Five separate fields from four different
mice were quantified using a LEICA DM IRB microscope.

Ex vivo lipolysis. Gonadal fat pads from overnight-fasted mice were cut into
50-mg samples and incubated at 37°C in 500 pl of Krebs-Ringer medium
buffered with bicarbonate plus HEPES containing 2% FA-free BSA and 0.1%
glucose with or without 0.5 mmol/1 dibutyryl cAMP (Sigma). FA and glycerol
release were measured in aliquots from incubation buffer using the NEFA C
Kit (Wako) and Free Glycerol Reagent (Sigma), respectively.

In vitro triolein lipase assay. TAG hydrolase activity of WAT extracts was
performed essentially as described (10). Briefly, WAT was homogenized in
lysis buffer (0.25 mol/l sucrose, 1 mmol/l EDTA, pH 7.0, 1 mmol/l DTT) and
then centrifuged at 4°C for 20 min at 10,000g. Triolein lipase activity was
assayed in 100 pg of supernatants. The reaction was initiated by addition of
100 pl of substrate that was prepared by sonicating 100 mmol/l potassium
phosphate, 2 mmol/l EDTA, pH 7.4, with 200 pmol/l [*H]triolein (40,000
cpm/reaction), 25 pmol/l lecithin, 10 pmol/l taurocholate, 1% BSA, and 1
mmol/l DTT. Reaction mixtures were incubated at 37°C for 30 min, terminated
by addition of 3.25 ml of methanol/chloroform/heptane (10:9:7), and extracted
with 1 ml of 0.1 mol/l potassium carbonate and 0.1 mol/l boric acid, pH 10.5.
Liberated FAs were quantified in 700 pl of the upper phase by liquid
scintillation counting.

Tissue analysis. Total neutral lipids were extracted by the method of Folch
(11). Lipids were solubilized in 1% Triton X-100, and TAG was measured using
Infinity Reagent (Thermo). Fat-free mass was estimated by subtracting total
adipose tissue mass from body weights.

Cell culture. 3T3-CARA preadipocytes, provided by Dr. D. Orlicky (Univer-
sity of Colorado), were maintained and differentiated as previously described
(12). These cells stably express the coxsackievirus and adenovirus receptor
allowing for 100-fold greater transduction efficiency with adenovirus (13) but
are otherwise indistinguishable from the parental 3T3-L1 cell line (14). For
radiolipid studies, day 8 differentiated 3T3-CARA adipocytes grown in 12-well
plates were pulse-labeled for 4 h with 0.05 w.Ci per well of [U-'*C]palmitic acid,
washed with cold media, and infected at the start of the chase period at an
MOI of ~100 with adenovirus expressing green fluorescent protein (GFP) or
GFP-desnutrin. '*C-FA was measured in the medium 30 h later by liquid
scintillation. For studies on endogenous TAG content and lipolysis, adipocytes
were infected as described at time point = 0. Three days later, medium was
changed to serum-free medium, with or without dibutyryl cAMP, 6 h before
measurement of FA and glycerol release. For imaging studies, 3T3-L1CARA
adipocytes grown and differentiated on coverslips were stained with Nile Red
and DAPI to visualize neutral lipids and nuclei, respectively, and were fixed
for image capture using a Zeiss Axiophot LSM 510Meta confocal microscope.
Total lipids were extracted from 3T3-L1ICARA adipocytes by the method of
Bligh and Dyer (15) and resolved by TLC in hexane:diethylether:acetic acid
(80:20:2). For determination of endogenous lipids, the band corresponding to
TAG was scraped and solubilized in 1% Triton X-100 and measured as
described. Radiolabeled TAG was scraped and quantified by liquid scintilla-
tion counting.

Indirect calorimetry and body temperature. Oxygen consumption (Vo,)
was measured using the Comprehensive Laboratory Animal Monitoring Sys-
tem (Columbus Instruments). Data were normalized to body weights. Body
temperatures were assessed in 25-week-old male mice using a RET-3 rectal
probe for mice (Physitemp).

Hyperinsulinemic-euglycemic clamp. We implanted jugular venous cathe-
ters 7 days before the study. After an overnight fast, we infused [3-*H]glucose
(Perkin Elmer) at a rate of 0.05 pCi min~! for 2 h to assess basal glucose
turnover followed by the hyperinsulinemic-euglycemic clamp for 140 min with
a primed/continuous infusion of human insulin (154 pmol/kg prime [21
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mU/kg]) over 3 min followed by 17 pmol - kg~ ! - min™ (3 mU - kg™ ! - min™ %)
infusion (Novo Nordisk, Princeton, NJ), a continuous infusion of [3-*H]glu-
cose (0.1 wCi/min), and a variable infusion of 20% dextrose to maintain
euglycemia (~100-120 mg/dl). We obtained plasma samples from the tail and
measured tissue-specific glucose uptake after injection of a bolus of 10 nCi of
2-deoxy-D-[1-'*C]glucose (Perkin Elmer) at 85 min (16). We analyzed our
results as previously described (17).

?H,0 labeling and GCMS analysis of TAG-glycerol and TAG-FA. The
heavy water (*H,0) labeling protocol and GCMS analyses of TAG-glycerol and
TAG-FA from adipose tissue have been described previously in detail (18).
Mice were administered H,O in drinking water starting at 20 weeks of age for
a 2-week period after which lipids were extracted from gonadal fat pads by the
method of Folch (11) for subsequent analysis.

Calculation of all-source TAG-glycerol synthesis. Fractional TAG-glyc-
erol synthesized from a-glycerol phosphate during the period of *H,0O admin-
istration was measured as described (18):

Jrac = EMlrag gycero/A1®rac-gycerol-

EM1 is the measured excess mass isotopomer abundance for M,-glycerol at
time ¢ and A, is the asymptotic mass isotopomer abundance for M;-glycerol,
assuming that four of five C-H bonds of a-glycerol phosphate are replaced by
H-atoms from tissue water (18).

Net lipolysis was estimated from f;,, synthesis and adipose mass as
follows:

[ frag X (adipose mass/labeling time)
— (Aadipose mass/labeling time) }/fat pad mass.

Values with net lipolysis equivalent to zero were excluded from analysis.
Calculation of de novo lipogenesis. Fractional contributions from de novo
lipogenesis (DNL) are calculated using a combinatorial model as previously
described (18):

Jont, = EM1ga/A %0p,

where [, represents the fraction of total TAG-palmitate in the depot that
derived from DNL during the labeling period.

The fraction of newly synthesized TAG-palmitate that came from DNL is
also calculated by correcting the measured fractional contribution from DNL
(fpn) for the degree of replacement of adipose TAG during the labeling
period:

DNL contribution to newly synthesized TAG = [ foxi/frac)

FA oxidation. Gonadal fat pads were digested for 1 h at 37°C with
collagenase in Krebs-Ringer medium buffered with bicarbonate plus HEPES
supplemented with 3 mmol/l glucose and 1% BSA, filtered through nylon mesh,
and centrifuged, and adipocytes were collected from the upper phase. FA
oxidation was determined by measuring '*CO,, production from [**C]palmitic
acid (0.2 pCi/ml) after incubation for 1 h at 37°C with gentle shaking. The
buffer was acidified with 0.25 ml of H,SO, (5N) and maintained sealed at 37°C
for an additional 30 min. Trapped radioactivity was quantified by liquid
scintillation.

Serum parameters. Fasting serum triglycerides and FAs were analyzed with
Infinity Triglyceride reagent (Thermo Trace) and NEFA C kit (Wako), respec-
tively. Serum insulin, leptin, and adiponectin levels were determined using
ELISA kits (Crystal Chem and B-Bridge).

The results are expressed as means * SEM. Statistically significant
differences between two groups were assessed by Student’s ¢ test. Differences
between multiple groups were assessed by one-way ANOVA with Bonferroni’s
post hoc test.

RESULTS

Desnutrin overexpression in adipose tissue attenu-
ates diet-induced obesity. We generated transgenic
mice overexpressing HA-tagged desnutrin under control of
the aP2 promoter to investigate the adipocyte-specific role
of desnutrin. Results reported here are a comparison
between mice from the founder line with the highest
desnutrin transgene expression and their littermates. Sim-
ilar results were obtained from an additional founder line
(data not shown). RT-PCR analysis indicated that expres-
sion of the transgene was limited to WAT and brown
adipose tissue (BAT) and was not detected in any other
tissues examined (Fig. 1A). Desnutrin was expressed
4.8fold and 3.4-fold above endogenous levels in gonadal
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FIG. 1. Desnutrin overexpression in adipose tissue of mice. A: Trans-
gene expression was verified by RT-PCR in tissues from aP2-desnutrin
mice. GAPDH, glyceraldehyde-3-phosphate dehydrogenase. B: Desnu-
trin mRNA level in gonadal WAT and BAT as determined by RT-qPCR
(n = 5-6). [J, wild type; B, aP2-desnutrin. C: CGI-58 mRNA level in
gonadal WAT as determined by RT-qPCR (n = 6-7). D: Immunoblot
and quantification of desnutrin-HA fusion protein in gonadal WAT and
BAT. [, endogenous; M, endogenous + transgene. E: TAG lipase
activity in WAT homogenates from wild-type and aP2-desnutrin mice.
*P < 0.05, **P < 0.01, ***P < 0.001. All data are from female mice. WT,
wild type. (A high-quality digital representation of this figure is
available in the online issue.)
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WAT and BAT, respectively, as analyzed by RT-qPCR (Fig.
1B). We also detected a 3.5-fold increase in expression of
CGI-58, a putative activator of desnutrin, in WAT of
aP2-desnutrin mice (Fig. 1C). Using a desnutrin-specific
antibody, we detected a band for desnutrin-HA protein in
WAT and BAT of aP2-desnutrin mice but not in wild-type
mice (Fig. 1D). We quantified desnutrin protein levels and
found that although there was no difference in endogenous
protein levels in both WAT and BAT in wild-type and
aP2-desnutrin mice, total desnutrin levels (endogenous +
transgene) were increased by approximately twofold in
transgenic mice (Fig. 1D). To confirm the presence of a
functional enzyme, we assayed homogenates of WAT
from aP2-desnutrin mice and found a 40% increase in
total triolein lipase activity (Fig. 1E). This represents a
substantial increase in total triglyceride lipase activity
over controls, because baseline TAG lipase activity is
already considerable in WAT extracts as a result of the
presence of additional triglyceride lipases, including
hormone-sensitive lipase (1).

aP2-desnutrin mice and wild-type littermates were fed a
standard chow diet or an HFD at weaning. On a chow diet,
there was no difference in body weight (Fig. 2B, inset), fat
pad weight, or organ weight between wild-type and aP2-
desnutrin mice at 20 weeks of age (Fig. 2C, left panels).
However, on an HFD, aP2-desnutrin mice were leaner
(Fig. 2A, upper panel) and gained weight at a slower rate
than wild-type littermates (Fig. 2B) despite similar food
intakes (Fig. 24, lower panel). Although there was no
difference in kidney, lung, or heart weights, liver weights
in aP2-desnutrin mice were 15% lower compared with wild
type (Fig. 2D, left panel). Inguinal, gonadal, renal, and
subcutaneous depots weighed 56, 59, 47, and 52% less,
respectively, compared with depots from wild-type litter-
mates (Fig. 2D, right panel). BAT depots from aP2-
desnutrin mice weighed 20% less than depots from wild-
type mice. We conclude that aP2-desnutrin mice are
protected from HFD-induced obesity. To understand the
mechanism underlying desnutrin-mediated protection
from diet-induced obesity, we compared HFD-fed aP2-
desnutrin mice and their wild-type littermates.

Decreased adipose tissue mass can result from a reduc-
tion in adipocyte size and/or a reduction in adipocyte
number due to impaired differentiation (9,19-21). The
expression level of adipocyte marker genes, including
CCAAT/enhancer binding protein o (C/EBPa), preadipo-
cyte factor (Pref)-1, peroxisome proliferator-activated re-
ceptor (PPAR)-y, and aP2/a-FABP (adipocyte FA binding
protein), was similar in aP2-desnutrin mice and their
wild-type littermates on an HFD, suggesting normal adipo-
cyte differentiation (Fig. 2F). Histological analysis, how-
ever, revealed a greater frequency of smaller adipocytes in
gonadal fat pads from aP2-desnutrin mice when compared
with wild-type littermates (Fig. 2F). We found a 55%
reduction in adipose tissue TAG content in aP2-desnutrin
mice relative to wild-type littermates (Fig. 3A), indicating
that decreased adipocyte size and TAG content explains
protection from diet-induced obesity. Because the effect of
desnutrin on TAG stores has been shown only in nonadi-
pocytes, which do not contain large lipid droplets (22), we
also performed adenovirus-mediated overexpression of
GFP-desnutrin in adipocytes (Fig. 3B). As previously
shown (7), desnutrin localized strongly to lipid droplets in
contrast to control GFP (Fig. 3C). Overexpression of
desnutrin decreased endogenous TAG levels by 23% under
basal conditions and by 25% after 6 h of stimulation with

857



ADIPOSE DESNUTRIN ATTENUATES DIET-INDUCED OBESITY

A

WT aP2-desnutrin
= wr
gg . Bl aP2-desnutrin gg Eﬂ-desnutrin
o pH 30. *
. 40' @25 ek
50- % 20 ol
3 15
2 10.
45 354 s
. HFD chow
40
CwT 30+ % A
B aP2-desnutrin é
37 354
> 25+
£6 20
T3 25 —~ male -WT —e— female - WT
K] % Ly -v- male - aP2-desnutrin —o— female - aP2-desnutrin
=~ 20 T T T T T T T T 1 15 T T T T T T T T 1
0 2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
8 Wk 20 Wk age (wk) age (wk)
C 2.50- 2.501 D 2.50 2.50
2.254 2.251 2.25 2.251
2.00+ OWT 2.001 2.00 1 OWT . 2.00+1
B 1.75 m aP2-desnutrin @ 1.75- S51.75- m aP2-desnutrin L) 1.754
g 21. 31 2"
< 1.50 S 1.501 £ 1.50 2 1.504
g 1.25, 2 1.25] 2 1.251 2 1.251
T © bk ke
§ 1.00- S 1.00- § 1.00 e 2 1.004 "
S 0.75- & 0.75; 5 0.75- < 0.754
0.50 0.50+ 0.50 4 0.504( |eis
0.25- 0.25+ 0.25 0.25+
i - - 0.00 - 0.00-
iver kidneylungs heart spleen Ing Gon Ren BAT SC liver kidney lungs heart spleen Ing Gon Ren BAT SC
E F ; 30 -
) wildtype
4 S 204 e
T >
1)
c
CaWT g
m aP2-desnutrin o 10+
3 o
5 [
E 0 A\PAN]
< Q Q%QﬁQg, M QQ)Q@Q%Q(QQQ)Q
s SRR RGP
né cell size (um?2)
@ 30
=
® = .
< 14 2 aP2-desnutrin
= > 20
o
$ c
. £ (]
' =
0- & A\ Q Vi L . 2 10
F & ¥ (F ‘ é’ -
(,\ Q 4 Q‘ﬂé 3 ™ }J A 3 A v ot { 0
2 - Aart R R R XN A T A A L H
2 J‘,ﬁ% PRGN
A B e o T § Pl cell size (um?)
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pad. E: RT-qPCR for C/EBP«, Pref-1, PPARYy, and aP2/aFABP from WAT of female wild-type and aP2-desutrin mice fed an HFD (n = 4-6). F:
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dibutyryl cAMP (Fig. 3D). Similarly, radiolabeled TAG was together, these results indicate that desnutrin overexpres-
depleted more rapidly in cells overexpressing desnutrin- sion results in smaller adipocytes with lower TAG content
GFP than in cells expressing control GFP (Fig. 3E). Taken but does not affect differentiation.

DIABETES, VOL. 58, APRIL 2009 859



ADIPOSE DESNUTRIN ATTENUATES DIET-INDUCED OBESITY

A, o4, B€ 0.09- *
E 8 0.08-
£ 0.3 B 0.07
> > 0.06-
O o2 z 0.05-
< U4 z
£ 3 0.04-
g » 0.03-]
g 014 2 0.021
8 2 0.01-
= 0.0 . 3 0.00

&
e’(‘
60
13
IbQ

C o03s- t D 1.4-
0.30- 1.2
. o
Z 0.25- < 1.0
[=] Y-
S 0.20 =, 0.8
g 4
2 0154 8 0.6-
© o
S 0101 2 044
0.05- = 0.2
0.00 0.0
N N
o o
¥ ¥
Y 3
PN R

FIG. 4. In vivo measures of TAG metabolism in WAT. A: Fractional in vivo synthesis of TAG-glycerol in gonadal WAT (n = 6). B: In vivo lipolysis
in gonadal WAT (n = 3-6). C: Fractional in vivo DNL in gonadal WAT (n = 6). D: Ratio of fractional in vivo DNL/fractional in vivo synthesis of

TAG-glycerol in gonadal WAT (n = 6). *P < 0.05, P = 0.07.

Desnutrin overexpression increases lipolysis and ap-
parent cycling between TAG and DAG. We next mea-
sured in vivo TAG metabolism over a 2-week period using
a recently developed heavy water labeling technique
(18,23). The fractional contribution of TAG synthesis to
adipose tissue TAG (fpag) Was not different (Fig. 4A4),
although the net in vivo lipolytic rate, calculated from the
absolute rate of new TAG synthesis and the change in
adipose mass, was significantly higher per gram of adipose
tissue in aP2-desnutrin mice compared with wild-type
littermates (Fig. 4B). Interestingly, there was an increase
(P = 0.07) in the fractional contribution from DNL (fjx;)
to adipose tissue palmitate in aP2-desnutrin mice com-
pared with wild-type littermates (Fig. 4C). The ratio of de
novo synthesized palmitate to new TAG synthesis (Fig.
4D), which represents the contribution from DNL to newly
formed adipose TAG-palmitate (18,24), was greater than
unity in aP2-desnutrin mice (1.10 = 0.25) but less than
unity in wild-type littermates (0.67 = 0.12). This change in
the ratio of DNL to TAG synthesis, particularly to values
greater than 100%, in the absence of an increase in
absolute DNL (data not shown), likely reflects recycling
between TAG and DAG and/or MAG. This also suggests
that re-esterification of DAG/MAG occurs predominantly
with FA originating from DNL rather than from preexisting
unlabeled FA. In support of our findings of increased
re-esterification, we found no change in WAT DAG levels
between wild-type and aP2-desnutrin mice (3.18 = 0.32
pg/mg versus 3.26 * 0.34 ng/mg, respectively). These
results are consistent with increased TAG lipolysis in
aP2-desnutrin mice, beyond that which was apparent from
measures of the complete hydrolysis of TAG to free
glycerol.

In agreement with our findings from in vivo lipolysis, we
found that glycerol release from adipocytes isolated from fed
aP2-desnutrin mice was significantly higher under basal and
adenosine deaminase or isoproterenol-stimulated conditions
(Fig. bA, left panel). FA release was also significantly higher
from adenosine deaminase or isoproterenol-treated adipo-
cytes from aP2-desnutrin mice (Fig. bA, right panel). We also
found that FA release from explants of gonadal WAT incu-
bated in the presence or absence of dibutyryl cAMP was 55%
higher under basal conditions and 42% higher under dibutyryl
cAMP-stimulated conditions after 4 h (Fig. 5B). Under basal
conditions, glycerol release tended to be higher in explants
from aP2-desnutrin mice compared with wild-type mice,
although this difference did not reach significance (Fig. 5C).
Under stimulated conditions, glycerol release was signifi-
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cantly higher in explants from aP2-desnutrin mice at both 2 h
(65% higher) and 4 h (95% higher). Cultured 3T3-L1 adipo-
cytes overexpressing desnutrin-GFP had a significantly in-
creased release of FA (Fig. 5D) as well as glycerol (Fig. 5EF),
and the proportionate increase in the release of glycerol was
greater under dibutyryl cAMP-stimulated conditions than
under basal conditions (28% versus 12% higher, respectively).
aP2-desnutrin mice have improved insulin sensitivity.
Because aP2-desnutrin mice have increased lipolysis and
are protected from diet-induced obesity, we postulated
there may be alterations in insulin sensitivity. To investi-
gate insulin action on whole-body and tissue-specific
glucose metabolism, we performed hyperinsulinemic—
euglycemic clamps with radioisotope-labeled glucose in-
fusion in HFD-fed wild-type and aP2-desnutrin mice. The
steady-state glucose infusion rate during the clamps was
higher in aP2-desnutrin mice, reflecting increased insulin
responsiveness (Fig. 6A-B), and whole-body glucose up-
take was increased by ~20% (P < 0.08) (Fig. 6C). Skeletal
muscle 2-deoxyglucose uptake was 38% higher in aP2-
desnutrin versus wild-type mice (Fig. 6D), whereas adi-
pose tissue glucose uptake did not differ (Fig. 6E). The
ability of insulin to suppress hepatic glucose production
during the clamp was improved by 36% in aP2-desnutrin
mice (Fig. 6F). Corresponding to increased hepatic insulin
sensitivity, Oil red O staining of liver sections revealed
smaller lipid droplets in aP2-desnutrin mice (Fig. 6G). We
examined TAG levels in various nonadipose tissues and
found significantly lower TAG levels in the livers of
aP2-desnutrin mice and, although not statistically signifi-
cant, a tendency toward lower TAG levels in other tissues,
including skeletal muscle (Fig. 6H). Despite increased
lipolysis in aP2-desnutrin mice, we found no significant
differences in most serum metabolites measured including
NEFA and glycerol as well as TAG, adiponectin, and leptin
(wild-type mice 5.77 = 1.79 ng/ml versus aP2-desnutrin
mice 3.73 £ 0.36 ng/ml, n = 6) (Table 1), although serum
insulin levels were significantly lower in HFD-fed aP2-
desnutrin mice (3.44 = 0.27 ng/ml for wild-type versus
2.38 = 0.16 ng/ml for aP2-desnutrin, P < 0.01).

Desnutrin overexpression increases thermogenesis,
energy expenditure, and FA oxidation within adipose
tissue. Because aP2-desnutrin mice had decreased adi-
pose tissue mass but an equivalent intake of food and an
absence of ectopic TAG storage compared with wild-type
mice, we hypothesized that these mice may have increased
energy expenditure. Average body temperatures measured
over the course of a day were 0.28°C higher in aP2-
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desnutrin compared with wild-type mice (Fig. 7A). To
investigate the source of the increased thermogenesis,
mice were housed in metabolic chambers for 24 h, where
oxygen consumption and locomotor activity were as-
sessed. Total oxygen consumption was 30% higher in
aP2-desnutrin mice over a 24-h period (Fig. 7B). Activity
levels, however, were not different between aP2-desnutrin
and wild-type mice (data not shown). Thus, aP2-desnutrin
mice have increased energy expenditure without changes
in food intake or physical activity.

To further investigate potential mechanisms underlying
the increased thermogenesis and oxygen consumption in
aP2-desnutrin mice, we examined genes involved in oxi-
dative metabolism. In skeletal muscle and liver, two tis-
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sues that play an important role in the use and regulation
of energy substrates, there were no significant differences
in the expression of acyl CoA oxidase or PPARa between
wild-type and aP2-desnutrin mice (Fig. 8C and D). In BAT
of aP2-desnutrin mice, uncoupling protein (UCP)-1 was
upregulated by 2.9-fold (Fig. 8B). PPARy coactivator
(PGC)-1a was also upregulated by 4.2-fold in BAT of
aP2-desnutrin mice. However, the significance of the
changes in expression of these genes in BAT is unclear
because we observed no difference in cold tolerance when
mice were housed at an ambient temperature of 4°C (data
not shown). However, there was a significant upregulation
in aP2-desnutrin WAT of genes involved in thermogenesis
and in both mitochondrial and peroxisomal FA oxidation
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TABLE 1
Serum parameters of chow- or HFD-fed and fasted male mice
Chow HFD
Wild-type aP2-des Wild-type Wild-type aP2-des Wild-type

fasted fasted fed aP2-des fed fasted fasted fed aP2-des fed
FA (mmol/l) 1.57+0.09 1.86*=0.10 0.84=0.06 1.00=0.07 139=*+0.06 146=*0.11 0.84 =0.07 1.00 = 0.07
Glycerol (mmol/1) 0.76 = 0.02 0.82=*0.04 0.65*+0.04 0.66=*0.02 0.76=*0.03 0.72%0.03 0.66=*0.02 0.76 = 0.05
Triglyceride (mg/dl) 69.81 = 1.50 67.55 £ 3.63 74.46 = 4.17 76.33 £3.30 70.65 = 3.06 65.34 £ 1.68 61.21 = 2.46 65.71 = 5.07

Adiponectin (ug/ml) 14.75 = 1.08 15.10 = 0.83 —

— 17.056 = 0.79 17.35 = 0.80 — —

(Fig. 84), including UCP-1 (7.1-fold), carnitine palmitoyl-
transferase (CPT)-1B (3.7-fold), PPAR« (3.4-fold), PPARS
(2.4-fold), PGC-1a (3.3-fold), fatty acyl coA oxidase (AOx)
(4.4-fold), phytanoyl-CoA hydroxylase (PhyH) (2.4-fold),
and catalase (4.4-fold). When we measured the production
of CO, from [*C]palmitate in isolated adipocytes, we
found that it was almost 2.5-fold higher in WAT of aP2-
desnutrin mice compared with their wild-type littermates
(Fig. 8F), clearly demonstrating increased FA oxidation
within adipocytes from aP2-desnutrin mice. Therefore, in
agreement with our observation that serum NEFA is
unchanged in aP2-desnutrin mice, we report that desnutrin
overexpression increases expression of oxidative genes
and promotes FA oxidation in adipocytes.

DISCUSSION

Dysregulation of adipocyte lipolysis, resulting in elevated
circulating NEFA, is associated with obesity and comor-
bidities, including the development of type 2 diabetes (8).
Understanding the effects of desnutrin overexpression on
adipose tissue TAG hydrolysis and TAG stores, as well as
subsequent FA metabolism is therefore fundamental to the
investigation of obesity and obesity-related diseases. Us-
ing transgenic mice constitutively overexpressing desnu-
trin in adipose tissue as well as adenoviral-mediated
overexpression of desnutrin in differentiated 3T3-L1CARA1
adipocytes, we investigated the metabolic fate of FA derived
from desnutrin-mediated TAG lipolysis.

Mice lacking desnutrin showed accumulation of TAG in
a variety of tissues with a relatively small (approximately
twofold) increase in WAT mass and premature mortality
with massive TAG accumulation in the heart (25). We
show that desnutrin overexpression in adipose tissue of
mice attenuated diet-induced obesity by reducing fat pad
TAG content and adipocyte size. Desnutrin overexpres-
sion in differentiated 3T3-L1CARAL1 adipocytes also resulted
in accelerated TAG breakdown, causing depletion of TAG
stores. Our results from aP2-desnutrin mice are in contrast to
results from a previous study in which adipose tissue over-
expression of hormone-sensitive lipase did not result in a
leaner phenotype in mice fed an HFD (26). New insights into
the metabolic fate of FA generated from TAG were provided
by the in vivo heavy water labeling study. The net in vivo
lipolytic rate over 2 weeks, which represents the complete
turnover of TAG to glycerol and FA, was elevated in adipose
tissue from aP2-desnutrin mice. Findings were also consis-
tent with increased re-esterification of DAG (and/or MAG) to
TAG predominantly with newly synthesized FAs and sug-
gested that although desnutrin overexpression increased the
hydrolysis of TAG to DAG, a major fate of that DAG was
retention within adipocytes. This finding also suggests that
TAG lipolysis to DAG occurred at an even greater rate than
that which is apparent from measures of the complete
hydrolysis of TAG to free glycerol.
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Despite the marked increase in lipolysis in adipose
tissue of aP2-desnutrin mice, serum NEFA levels were not
increased. FA levels in the blood represent a balance
between liberation from adipose tissue and uptake by
peripheral tissues, and therefore a number of factors may
play a role in regulating serum NEFA concentrations. Net
FA liberation is likely lower than expected in aP2-desnu-
trin mice, because adipose tissue mass is substantially
reduced compared with wild-type mice. Increased removal
of FA from the bloodstream by other organs may also have
contributed, although TAG content was not increased in
any tissues measured and was, in fact, significantly de-
creased in livers of aP2-desnutrin mice. Results from our
heavy water labeling study suggest that, at least in part,
increased re-esterification may have limited the release of
FAs from adipose tissue in vivo. However, because re-
esterification appeared to involve the incorporation of
newly synthesized FAs to a greater extent than pre-
existing fatty acids, and because aP2-desnutrin mice had
reduced adipose TAG content, increased loss of the hy-
drolyzed FA from adipose tissue was also indicated.
Although there was no change in oxidative gene expres-
sion in skeletal muscle or liver, there was a substantial
upregulation in aP2-desnutrin WAT of genes involved in
mitochondrial B-oxidation such as CPT-1p3; in peroxisomal
a-oxidation such as AOx, PhyH, and catalase; and in
thermogenesis such as PPAR«, PPARS, and PGC-1a. The
most striking change was a 7.1-fold upregulation of UCP-1
expression. Measurement of FA oxidation by adipocytes
isolated from aP2-desnutrin mice indicated a marked
increase compared with their wild-type littermates and
confirmed increased use of FAs directly within adipose
tissue. Notably, UCP-1 induction results in increased heat
production at the expense of ATP synthesis, as does
peroxisomal FA a-oxidation, and aP2-desnutrin mice had
significantly higher body temperatures over the course of
the day, corresponding to a significantly higher rate of
oxygen consumption. Taken together, our findings indi-
cate that increased thermogenesis resulting from oxida-
tion of hydrolyzed FAs within adipose tissue of aP2-
desnutrin mice contributed to the leaner phenotype and, at
least in part, to the absence of a rise in serum NEFA in
these mice.

Although the present study is the first to demonstrate
regulation of FA oxidation after overexpression of a TAG
lipase, others have suggested that increased oxidation in
adipocytes may contribute to protection against the devel-
opment of diet-induced obesity (27-29). For example,
overexpression of UCP-1 in WAT of mice has been shown
to increase respiratory uncoupling specifically in WAT,
resulting in a leaner phenotype (27), and hyperleptinemia
in rats was found to increase WAT UCP-1 and adipocyte
FA oxidation, resulting in dramatic fat loss (28). Perilipin
null mice also have elevated adipocyte FA oxidation and a
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leaner phenotype (27-29). These studies support our find-
ing of leanness in aP2-desnutrin mice that have increased
UCP-1 expression and adipocyte FA oxidation.

In association with their leaner phenotype, aP2-desnu-
trin mice demonstrate improved insulin sensitivity in
hyperinsulinemic-euglycemic clamping studies attribut-
able primarily to increased insulin-stimulated skeletal
muscle glucose uptake and suppression of hepatic glucose
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production. Decreased liver TAG content may have con-
tributed to the improved hepatic insulin sensitivity in these
mice. Despite abundant evidence of increased lipolysis in
aP2-desnutrin mice, circulating NEFA levels were un-
changed and therefore cannot be a factor in mediating
changes in insulin sensitivity. Adiponectin and leptin lev-
els, which are associated with insulin sensitivity, were also
unchanged in these mice. Thus, our aP2-desnutrin mice
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represent a new model in which a long-term increase in
adipocyte lipolysis results in metabolic adaptations, in-
cluding increased FA oxidation, leanness, and improved
insulin sensitivity. In this regard, mice overexpressing
UCP-1 in adipose tissue also exhibit leanness and in-
creased adipocyte FA oxidation (27), as well as an unex-
plained improvement in insulin sensitivity (30). Given the
similarities of the two models, it is possible that investi-
gation of yet to be identified factors linking increased
energy use in WAT to insulin sensitivity may provide new
insight into understanding obesity/diabetes.

In conclusion, we show that, by increasing lipolysis,
overexpression of desnutrin in adipose tissue causes re-
duced adipocyte TAG content and attenuation of diet-
induced obesity, at least in part, by promoting FA
oxidation and re-esterification within adipocytes. Overex-
pression of desnutrin in adipocytes also causes improved
insulin responsiveness resulting from increased peripheral
and hepatic insulin sensitivity that occurs independent of
changes in circulating NEFA levels.
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