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Do Non-HLA Genes Influence Development of Persistent
Islet Autoimmunity and Type 1 Diabetes in Children With
High-Risk HLA-DR,DQ Genotypes?
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OBJECTIVE—Specific alleles of non-HLA genes INS, CTLA-4,
and PTPN22 have been associated with type 1 diabetes. We
examined whether some of these alleles influence development
of islet autoimmunity or progression from persistent islet auto-
immunity to type 1 diabetes in children with high-risk HLA-
DR,DQ genotypes.

RESEARCH DESIGN AND METHODS—Since 1993, the Dia-
betes Autoimmunity Study in the Young (DAISY) has followed
2,449 young children carrying HLA-DR,DQ genotypes associated
with type 1 diabetes. Of those, 112 have developed islet autoim-
munity (persistent autoantibodies to insulin, GAD65, and/or
IA-2), and 47 of these have progressed to type 1 diabetes. The
influence of polymorphisms of INS(—23Hphl), CTLA-4(T17A),
and PTPN22(R620W) on development of persistent islet autoim-
munity and progression to type 1 diabetes was evaluated by
parametric models and by survival analyses.

RESULTS—PTPN22(R620W) allele T was associated with de-
velopment of persistent islet autoimmunity (hazard ratio 1.83
[95% CI 1.27-2.63]) controlling for ethnicity, presence of HLA-
DR3/4,DQB1%0302, and having a first-degree relative with type 1
diabetes. Survival analyses showed a significantly (P = 0.002)
higher risk of persistent islet autoimmunity by age 10 years for
the TT genotype (27.3%) than for the CT or CC genotype (7.9 and
5.3%, respectively). Cumulative risk of persistent islet autoimmu-
nity was slightly higher (P = 0.02) for the INS(—23Hphl) AA
genotype (7.8%) than for the AT or TT genotype (4.2 and 6.4% risk
by age 10 years, respectively).

CONCLUSIONS—Whereas the HLA-DR3/4,DQB1*#0302 geno-
type had a dramatic influence on both development of islet auto-
immunity and progression to type 1 diabetes, the PTPN22(R620W)
T allele significantly influences progression to persistent islet auto-
immunity in the DAISY cohort. Diabetes 58:1028-1033, 2009
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he INS (insulin), CTLA-4 (polymorphic cyto-

toxic T-lymphocyte—associated antigen), and

PTPN22 (protein tyrosine phosphatase nonre-

ceptor type 22) genes are some of the confirmed
non-HLA genes associated with type 1 diabetes (1-4). The
INS gene on chromosome 11p15 confers about 10% of the
genetic susceptibility to type 1 diabetes; both a variable
number of tandem repeats located ~0.5 kb upstream of
INS (1) and other polymorphisms in tight linkage disequi-
librium (LD) such as —23Hphl and +1140A/C (5) have
been implicated as etiological factors. All of the polymor-
phisms lie outside coding sequences, suggesting that dia-
betes susceptibility derives from modulation of INS
transcription (6).

The lymphoid-specific phosphatase (LYP), encoded by
the PTPN22 gene on chromosome 1pl3, is involved in
preventing spontaneous T-cell activation. The C1858T sin-
gle nucleotide polymorphism (SNP) results in a missense
mutation that changes an arginine at position 620 to a
tryptophan and, thereby, abrogates the ability of the
molecule to bind to the signaling molecule Csk (c-Src
tyrosine kinase) (3,7,8). The Trp620 variant is associated
with autoimmune disorders including Graves’ disease (9),
rheumatoid arthritis (7), and systemic lupus erythemato-
sus (10).

The CTLA-4 gene on chromosome 2q33 encodes a
molecule that functions as a negative regulator of T-cell
activation. The G allele of the first exon (Alal7Thr) has
been most consistently associated with type 1 diabetes
(11) and reduced control of T-cell proliferation (12). The
(AT)n microsatellite marker in the 3’ untranslated region,
in strong LD with Alal7Thr, is also associated with type 1
diabetes (2) and Graves’ disease (13). In this study, we
genotyped the children participating in the Diabetes Auto-
immunity Study in the Young (DAISY) for polymorphisms
in INS, CTLA-4, and PTPN22 to explore how these genes
influence development of persistent islet autoimmunity
and progression from persistent islet autoimmunity to type
1 diabetes.

RESEARCH DESIGN AND METHODS

Since 1993, DAISY has followed two cohorts of young children at increased
risk of type 1 diabetes: the siblings and offspring cohort (SOC) of relatives of
type 1 diabetes patients and the general population newborn cohort (NEC).
The latter consists of children expressing type 1 diabetes susceptibility
HLA-DR,DQ genotypes identified through screening of over 31,000 newborns
at St. Josephs Hospital, Denver, Colorado. The details of screening and
follow-up have been previously published (14). Children in this cohort have
been followed from birth to an average age of 7.0 years (range 5 months to
19.7 years). Informed consent was obtained from the parents of each study
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TABLE 1
Characteristics of the DAISY cohort

Affected with Unaffected Unadjusted HR

IA (n = 112) (n = 2,337) (95% CI) P
THLA-DR3/4 DQB1*0302 47 (42.0) 443 (19.0) 3.10 (2.13-4.51) <0.001
First-degree relative with type 1 diabetes 74 (66.1) 1,004 (43.0) 2.03 (1.37-3.00) <0.001
Sex (female) 62 (55.4) 1,106 (47.3) 1.38 (0.95-2.00) 0.093
tNon-Hispanic white 96 (85.7) 1,667 (71.8) 1.89 (1.11-3.21) 0.018
+Follow-up time (years) 4.85 *+ 3.6 711 44

Data are n (%) or means * SD unless otherwise indicated. Please note that DAISY cohort is highly enriched in HLA DR3/4 DQB1%0302
genotypes. THLA data missing for 4 children and ethnicity data missing for 16 children. iFor affected, age of the child at the first of two
consecutive positive visits; for unaffected, age of the child at the last visit. Boldface represents statistical significance.

subject. The Colorado Multiple Institutional Review Board approved all study
protocols.

Islet autoantibodies. Measurement of biochemical islet autoantibodies was
performed in the laboratory of G.S.E. at the Barbara Davis Center. We used
radioimmunoassays for autoantibodies to insulin, GAD65, and IA-2. The
combined GAD65 autoantibody (GAA) and IA-2 autoantibody (ICA512AA) (or
TA-2A) radioassay was done in duplicates on a 96-well filtration plate, and
radioactivity was counted on a TopCount 96-well plate B-counter using
methods previously described (15). The interassay coefficients of variation are
10 and 5% (n = 50) for GAA and ICA512AA, respectively. The upper limits of
normal nondiabetic sera (0.032 for GAA, 0.049 for ICA512AA) were estab-
lished as the 99th percentile of 198 healthy controls. In the 2005 Diabetes
Autoantibody Standardization Program (DASP) workshop (16), the sensitivity
and specificity were 76 and 99%, respectively, for GAA and 64 and 100%,
respectively, for ICA512AA. Insulin autoantibodies were measured by a
micro-insulin autoantibody (IAA) assay. An index was determined based on
the difference in counts per minute between wells without and with cold
insulin, with a positivity criterion of 0.010, which was the 99th percentile of
106 normal controls. The interassay coefficient of variation is 20% (n = 100) at
low positive levels. In the 2005 DASP workshop, the sensitivity and specificity
for micro-IAA were 58 and 99%, respectively.

Genotyping. INS-23Hphl (rs689), CTLA-4 T17A (rs231775), and PTPN22
R620W (rs2476601) polymorphisms were genotyped using a linear array
(immobilized probe) method essentially as described in Mirel et al. (17).
Briefly, ~100 ng of genomic DNA was PCR amplified with biotinylated
primers. The labeled amplicons were hybridized to an immobilized sequence-
specific oligonucleotide probe (SSOP) array on a nylon membrane. The
presence of bound amplicon to a specific probe is detected using streptavidin
horseradish peroxidase and a soluble colorless substrate, tetramethylbenzi-
dine, which can be converted in the presence of H,0, to a blue precipitate.
Statistical analysis. All analyses were performed in SAS version 9.1. (SAS
Institute, Cary, NC). The SNPs were in Hardy-Weinberg equilibrium for both
affected and unaffected subjects. Ongoing recruitment since 1994 and continu-
ing follow-up have resulted in variable lengths of follow-up, producing
right-censored data. Some of the affected children were positive for autoan-
tibodies on their first blood draw, producing left-censored data. Multiple
imputation was used to generate time of autoantibodies status change for the
left-censored subjects in order to perform an analysis on progression to type
1 diabetes. Two outcomes were analyzed, i.e., time to persistent islet
autoimmunity and time from persistent islet autoimmunity to type 1 diabetes.
A parametric model, accounting for right and left censoring assuming a

TABLE 2

Weibull distribution, was used, adjusting for presence of HLA-DR3/
4,DQB1*0302, ethnicity, sex, family history of type 1 diabetes, and age at
detection of islet autoimmunity. Cumulative risk of development of persistent
islet autoimmunity and progression from islet autoimmunity to type 1 diabetes
by genotypes was estimated by survival analyses for each SNP. Follow-up time
was defined as the age of the child at the first of the two consecutive positive
visits for affected children and age of the child at the last visit for unaffected
children. For the time to persistent islet autoimmunity, the survival curves
were derived using Turnbull’s algorithm, which is a nonparametric maximum
likelihood estimator of survival function for arbitrarily truncated and cen-
sored data. For the time to type 1 diabetes from persistent islet autoimmunity,
the Kaplan-Meier method was used to derive survival curves, which essen-
tially approximates the interval-censored data. The Wilcoxon test was used to
test differences in cumulative risk between groups. The analyses were based
on genotypes using the additive model.

To determine whether inclusion of multiple siblings per family in this
cohort affected our findings, we performed analyses treating siblings as
correlated. As those results were the same, we are presenting the data treating
siblings as independent. The level of significance was set at 0.05.

RESULTS

Of the 2,449 children included in this analysis, 112 have
developed persistent islet autoimmunity, i.e., one or more
islet autoantibody (IAA, GAA, or IA-2A), in samples col-
lected on two consecutive visits 3—6 months apart and
positive at the last visit; 47 of these children have pro-
gressed to type 1 diabetes, defined by a random blood
glucose measurement >200 mg/dl and/or an A1C >6.3% in
the presence of diabetes symptoms.

Descriptive characteristics of the DAISY cohort are
shown in Table 1. Affected (n = 112) compared with
unaffected (n = 2,337) children were more likely to be
non-Hispanic white, be positive for the HLA-DR3/
4,DQB1*0302 genotype, and have a first-degree relative
(FDR) with type 1 diabetes. Allele frequencies of PTPN22,
INS, and CTLA4 SNPs are shown in Table 2. Affected
subjects with persistent islet autoimmunity more often

Association of three SNPs with conversion to persistent islet autoimmunity and progression from persistent islet autoimmunity to

type 1 diabetes

Conversion to persistent
islet autoimmunity*
(112 cases/2,449 subjects

Progression to type 1
diabetest (47 cases/112

Allele counts (freq.) Univariate analyses in total) IA subjects)
Affected Unaffected Unadjusted HR Adjusted HR Adjusted HR
Risk allele m=112) (n = 2,337) (95% CI) P (95% CI) P (95% CI) P
PTPN22 (T) 37 (16.8) 452 (9.7) 1.81 (1.26-2.59) 0.001 1.83(1.27-2.63) 0.001 0.98 (0.50-1.93) 0.962
INS (A) 176 (78.6) 3,323 (71.8) 1.48(1.06-2.06) 0.020 1.39 (0.99-1.95) 0.053 1.34 (0.72-2.52) 0.353
CTLA4 (G) 95 (42.8) 1,850 (39.8) 1.11 (0.85-1.46) 0.429 1.12 (0.86-1.46) 0415  0.54 (0.33-0.88) 0.014

Data are n (%) unless otherwise indicated. ¥*Parametric model controlled for HLA-DR3/4,DQB1*0302, ethnicity, sex, and first-degree relative
with type 1 diabetes. TAdditionally controlled for age at onset of islet autoimmunity. $PTPN22 (R620W) data missing for 5, CTLA4 (T17A)
for 14, and INS-23Hphl for 23 children. Boldface represents statistical significance. IA, islet autoimmunity.
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FIG. 1. Cumulative risk of development of persistent islet autoimmunity (calendar age) by PTPN22 genotypes (A) and cumulative risk of
progression from persistent islet autoimmunity to type 1 diabetes (follow-up time since first islet autoimmunity positivity) by PTPN22 genotypes

(B) were estimated by survival analyses.

carried the risk alleles for PTPN22 and INS with, respec-
tively, unadjusted HR 1.81 (95% CI 1.26-2.59, P = 0.001)
and 1.48 (1.06-2.06, P = 0.019).

Cumulative incidence of the development of persistent
islet autoimmunity and progression from islet autoimmu-
nity to type 1 diabetes by genotypes for each SNP was
estimated by survival analyses. The PTPN22 (R620W) TT
genotype was associated with a significantly (P = 0.002)
higher incidence of persistent islet autoimmunity (27.3%
by age 10 years) than the CT (7.9%) or CC (5.3%) genotype
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(Fig. 1A). Cumulative incidence of progression to type 1
diabetes was also high in children with the PTPN22 TT
genotype, with three of four children progressing to type 1
diabetes. However, these results are not statistically sig-
nificant, likely due to the small sample size (Fig. 1B).
Analysis stratified by the presence of the HLA-DR3/
4,DQB1*0302 genotype revealed the highest risk of islet
autoimmunity in children carrying HLA-DR3/4, DQB1*0302
and PTPN22 TT genotypes (33.8% by the age of 10),
although this is not statistically different from the risk in
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FIG. 2. A: Cumulative risk of development of persistent islet autoimmunity (calendar age) by PTPN22 genotypes was estimated by survival
analyses and stratified by high-risk HLA-DR3/4,DQB1*0302. B: Cumulative risk of development of persistent islet autoimmunity (calendar age)

by INS genotypes was estimated by survival analyses.

HLA-non-DR3/4,DQB1*0302, PTPN22 TT. The next high-
est risk genotypes were HLA-non-DR3/4,DQB1*0302,
PTPN22 TT and HLA-DR3/4,DQB1%0302, PTPN22 CT,
with the risks of islet autoimmunity by age 10 years being
25.0 and 24.8%, respectively (Fig. 24).

The INS genotype appeared to modulate slightly (P =

DIABETES, VOL. 58, APRIL 2009

0.02) the cumulative incidence of persistent islet autoim-
munity (Fig. 2B). Within 10 years of detection of persistent
islet autoimmunity, 7.8% of children with the INS AA
genotype developed type 1 diabetes compared with 4.2
and 6.4% of those with AT and TT, respectively. There
were no differences in the rate of progression from persis-
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tent islet autoimmunity to type 1 diabetes by the INS-
23Hphl genotypes (data not shown). Survival analyses of
development of persistent islet autoimmunity and progres-
sion to type 1 diabetes showed no differences by CTLA-4
genotypes (data not shown).

We further analyzed the associations of these three
SNPs with development of persistent islet autoimmunity
and progression from persistent islet autoimmunity to type
1 diabetes in a multivariate parametric model controlling
for the presence of the HLA-DR3/4,DQB1*0302 genotype,
ethnicity, sex, family history of type 1 diabetes, and age at
detection of islet autoimmunity (Table 2). The presence of
the PTPN22 T allele was a significant independent predic-
tor of the development of persistent islet autoimmunity
(HR 1.83 [95% CI 1.27-2.63], P = 0.001). However, the
PTPN22 T allele did not independently predict progression
from islet autoimmunity to type 1 diabetes (0.98 [0.50—
1.93], P = 0.96). The INS genotype did not independently
predict islet autoimmunity or type 1 diabetes. The CTLA-4
G allele, normally associated with type 1 diabetes risk, did
not independently predict islet autoimmunity but was
negatively associated with progression from islet autoim-
munity to type 1 diabetes (0.54 [0.33-0.88], P = 0.01).
There was no interaction between the effect of the HLA-
DR3/4,DQB1*0302 genotype and either PTPN22, INS, or
CTLA-4 genotypes for the risk of islet autoimmunity or
type 1 diabetes (data not shown).

We also performed analyses by cohort, i.e., including
1,371 children from the NEC and 1,078 children from the
SOC (supplemental Tables 1 and 2, available in an online
appendix at http:/diabetes.diabetesjournals.org/cgi/con-
tent/full/db08-1179/DC1). Affected NEC subjects with per-
sistent islet autoimmunity more often carried the risk
alleles for INS and CTLA4 with, respectively, unadjusted
HR 1.91 (95% CI 1.08-3.36, P = 0.03) and 1.58 (1.02-2.45,
P = 0.04), whereas affected SOC subjects with persistent
islet autoimmunity more often carried the risk allele for
PTPN22 with unadjusted HR 1.95 (1.27-3.00, P = 0.002). In
a multivariate parametric model, the PTPN22 T allele was
associated with progression to persistent islet autoimmu-
nity in SOC subjects (HR 2.17 [95% CI 1.41-3.33], P <
0.001), whereas the CTLA4 G allele was an independent
predictor of the development of persistent islet autoimmu-
nity in NEC subjects (1.567 [1.01-2.44], P = 0.046). The
CTLA-4 G allele, normally associated with type 1 diabetes
risk, was negatively associated with progression from islet
autoimmunity to type 1 diabetes in SOC subjects only (0.41
[0.22-0.78], P = 0.006). However, these results should be
interpreted with caution due to the small sample size.

DISCUSSION

Whereas the associations between the INS, CTLA-4, and
PTPNZ22 polymorphisms and type 1 diabetes are widely
accepted, this study is the first comprehensive analysis of
the effects of these genes on the age-specific incidence
of persistent islet autoimmunity that precedes diagnosis of
diabetes in all patients but may not necessarily lead to
clinical diabetes. The distinction between the risk factors
for islet autoimmunity versus type 1 diabetes is important
because of potentially different mechanisms of gene-envi-
ronment and gene-gene interaction in triggering islet au-
toimmunity versus epitope spreading and progressive loss
of B-cell mass leading to overt diabetes. The results
confirm the pivotal role of HLA-DR,DQ in both triggering
islet autoimmunity and progression to type 1 diabetes.
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Whereas the PTPN22 1858 T allele may play a role at both
stages leading to type 1 diabetes (18) and predict faster
loss of the B-cell function afterward (19), in our population
it appears to have an effect independent of the HLA-DR,DQ
at the initial stage of islet autoimmunity development.
PTPN22 (R620W) results in a missense mutation that
changes an arginine at position 620 to a tryptophan and,
thereby, abrogates the ability of the molecule to bind to
the signaling molecule Csk (3,20). The LYP-Csk complex
downregulates T-cell receptor signaling, and the diabetes-
associated variant is reported to result in greater inhibition
of T-cell receptor signaling (8,21,22). Consistent with an
early and general effect on immune function is the finding
that the minor tryptophan-encoding allele is associated
with a series of autoimmune disorders including rheuma-
toid arthritis, systemic lupus erythematosus, Hashimoto
thyroiditis, and Graves’ disease (23,7,24). Hermann et al.
(18) showed evidence that PTPN22 (R620W) regulates
type 1 diabetes—specific autoimmunity and strongly affects
the progression from preclinical to clinical diabetes in islet
cell antibody—positive individuals.

Interestingly, when doing analyses separately by cohort,
the PTPN22 T allele is a strong independent predictor of
the development of persistent islet autoimmunity in the
SOC cohort, whereas the CTLA-4 G allele is associated
with progression to persistent islet autoimmunity in the
NEC cohort. Different genetic loci influence the develop-
ment of persistent islet autoimmunity and type 1 diabetes
in individuals who have a family history of type 1 diabetes,
and PTPN22 seems to be one of the genetic factors
responsible for increased type 1 diabetes risk in relatives
of type 1 diabetic subjects.

The number of subjects carrying the PTPN22 TT geno-
type is small, especially when analyzing progression from
persistent islet autoimmunity to type 1 diabetes. Although
three of four such children progress to type 1 diabetes,
these results should be interpreted with caution due to the
small sample size. This finding requires replication in
independent populations.

Alternately, this study provides little support for a major
independent effect of the INS(-23Hphl) or the CTLA-4
(T17A) polymorphisms on triggering islet autoimmunity or
progression to type 1 diabetes. The insulin gene has been
consistently associated with type 1 diabetes in almost all
the populations that have been tested, with an odds ratio
(OR) between 2 and 3 (1,5). We found a weak association
of INS AA genotype with persistent islet autoimmunity,
but not with progression to type 1 diabetes, after adjusting
for the effect of the HLA-DR3/4,DQB1*0302 genotype and
demographic factors. The adjustment or smaller sample
size may account for weaker than expected effect (25,26).
Although INS is a known factor associated with type 1
diabetes risk, its genetic effect seems to be rather weak
overall and is therefore unlikely to help in identifying
individuals at risk of type 1 diabetes in the general
population. The OR for CTLA-4 association with type 1
diabetes is normally not greater than 1.5 (2,27). In this
study, the decreased HR for progression from islet auto-
immunity to type 1 diabetes with allele G (normally
associated with risk) is likely a spurious finding. Overall,
CTLA-4 appears to be a stronger determinant of Graves’
disease than of type 1 diabetes (27).

In conclusion, the PTPN22 gene seems to have a large
influence on the development of early islet autoimmunity
associated with early progression to type 1 diabetes and
may be useful in disease prediction using genetic markers.
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With more accurate prediction, intervention can be pro-
vided for individuals at greatest risk.
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