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MicroRNAs (miRNAs) are small noncoding RNAs that control gene expression by inducing RNA cleavage or trans-
lational inhibition. Most human miRNAs are intragenic and are transcribed as part of their hosting transcription units.
We hypothesized that the expression profiles of miRNA host genes and of their targets are inversely correlated and
devised a novel procedure, HOCTAR (host gene oppositely correlated targets), which ranks predicted miRNA target
genes based on their anti-correlated expression behavior relative to their respective miRNA host genes. HOCTAR is the
first tool for systematic miRNA target prediction that utilizes the same set of microarray experiments to monitor the
expression of both miRNAs (through their host genes) and candidate targets. We applied the procedure to 178 human
intragenic miRNAs and found that it performs better than currently available prediction softwares in pinpointing
previously validated miRNA targets. The high-scoring HOCTAR predicted targets were enriched in Gene Ontology
categories, which were consistent with previously published data, as in the case of miR-106b and miR-93. By means of
overexpression and loss-of-function assays, we also demonstrated that HOCTAR is efficient in predicting novel miRNA
targets and we identified, by microarray and qRT-PCR procedures, 34 and 28 novel targets for miR-26b and miR-98,
respectively. Overall, we believe that the use of HOCTAR significantly reduces the number of candidate miRNA targets
to be tested compared to the procedures based solely on target sequence recognition. Finally, our data further confirm
that miRNAs have a significant impact on the mRNA levels of most of their targets.

[Supplemental material is available online at www.genome.org. The microarray expression data from this study have been
submitted to GEO under accession nos. GSE12091 and GSE12092.]

MicroRNAs (miRNAs) are a class of short noncoding RNAs

controlling the expression levels of their target genes. They play

a role in the differentiation of many tissues and organs and are

involved in the pathogenesis of human diseases (Chang and

Mendell 2007; Stefani and Slack 2008; Zhang 2008). At the mo-

lecular level, they exert their function in animal cells by binding,

with imperfect base pairing, to target sites in the 39 UTR of mes-

senger RNAs. This binding either causes the inhibition of trans-

lational initiation or leads to mRNA degradation (Zamore and

Haley 2005; Shyu et al. 2008). miRNA:mRNA base-pairing usually

includes a ‘‘nucleus’’ (or ‘‘seed’’), typically a perfect Watson-

Crick�base-paired stretch of approximately seven nucleotides

with a key role both in target site recognition and repression of the

target transcript. The nucleus is located at the 59 end of the

miRNA, typically between nucleotides 2 and 8 (Lewis et al. 2005).

Currently, more than 600 miRNAs have been identified in the

human and mouse genomes (miRBase database, http://microrna.

sanger.ac.uk/sequences/; Griffiths-Jones 2004), but estimates sug-

gest that their actual number may exceed 1000 (Bentwich et al.

2005). Taking into account the fact that each miRNA can regulate,

on average, the expression of 100–200 target genes (Krek et al.

2005; Lim et al. 2005), the whole miRNA apparatus seems to

participate in the control of gene expression for a significant

proportion of the mammalian gene complement. To gain insight

into the biological role of each miRNA, it is essential to identify the

full repertoire of its mRNA targets. However, this is not an easy task

as demonstrated by the limited number of bona fide miRNA tar-

gets that have been experimentally validated so far (see DIANA

TarBase database; Sethupathy et al. 2006). In order to identify true

miRNA targets, it is essential to improve the efficiency of their in

silico prediction by means of computational techniques (Maziere

and Enright 2007). Several computational approaches have re-

cently been developed for the prediction of miRNA targets in-

cluding, among the most popular ones, the miRanda, TargetScan,

and PicTar softwares (Lewis et al. 2003; John et al. 2004; Krek et al.

2005; Rajewsky 2006; Kuhn et al. 2008), which mainly rely on the

identification of the seed region between the miRNA and the

corresponding target genes. Unfortunately, the presence of a seed

region, although conserved across evolution, is not in itself a reli-

able way to identify functional miRNA targets. It has been shown

that a significant proportion of predicted miRNA–mRNA target

pairs, in spite of the presence of an appropriate seed region, are

false positives (Lewis et al. 2005; Didiano and Hobert 2006), thus

rendering the in silico preselection of miRNA targets very complex

and laborious.

Recently, it has been suggested that the simultaneous ex-

pression profiling of miRNAs and mRNAs could be an effective

strategy for miRNA target identification (Huang et al. 2007). This is

because, contrary to the original idea that miRNAs mostly act at

the translational level in animal cells, there is increasing evidence

that many miRNAs cause degradation of their targets (Bagga et al.

2005; Lim et al. 2005; Wu and Belasco 2008). They can therefore
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determine on their targets significant effects at the transcriptional

level that can be readily detectable by microarray and by quanti-

tative (q)RT-PCR procedures. Based on this evidence, Huang et al.

(2007) devised a strategy based on the evaluation of inverse ex-

pression relationships between miRNAs and mRNAs in large sets

of transcriptome experiments to identify more reliably miRNA-

target mRNA pairs. However, one limitation of this procedure is

represented by the restricted number of global expression profiling

experiments involving the direct analysis of the entire catalog of

miRNAs, as compared to the amount of transcriptomic data

available for mRNAs. This is mainly due to the relatively recent

availability of suitable procedures to evaluate miRNA expression

by microarrays (Yin et al. 2008).

We reasoned that it may be possible to overcome the latter

problem by exploiting the fact that many miRNAs are intragenic,

i.e., localized within the introns of transcriptional units (host

genes) representing either protein-coding or noncoding mRNAs

(Rodriguez et al. 2004). Several reports have shown that the ex-

pression profiles of intragenic miRNAs are highly correlated to

those of their corresponding host genes at both the tissue and

cellular levels (Baskerville and Bartel 2005; Karali et al. 2007; Kim

and Kim 2007). Therefore, it is possible, in principle, to use the

miRNA host gene as a proxy to monitor the expression of its

embedded miRNA(s) (Tsang et al. 2007). This may provide the

opportunity to analyze a larger set of transcriptome expression data

for intragenic miRNAs, which will be comparable to that available

for their putative mRNA targets.

In this report, we describe the design of a new procedure,

HOCTAR (host gene oppositely correlated targets), based on the

integration of expression profiling and sequence-based miRNA

target recognition softwares. HOCTAR turned out to be very effi-

cient in identifying a set of already validated miRNA targets, even

those that had already been suggested to be translational targets.

Furthermore, we demonstrate, by means of overexpression and

down-regulation experiments performed on two miRNAs, i.e.,

miR-26b and miR-98, that the HOCTAR procedure is efficient also

in predicting novel bona fide targets. A database collecting HOC-

TAR target predictions for 178 human miRNA is publicly available

at http://hoctar.tigem.it.

Results

The HOCTAR procedure

Based on the evidence that it is possible to use a miRNA host gene

as a proxy for the expression of the miRNA itself (Tsang et al.

2007), we hypothesized that the expression behavior of a miRNA

host gene may be inversely correlated to that of the targets of the

embedded miRNA. As a result, an increase in the expression levels

of the host gene should correspond to a decrease in the expression

levels of the targets of its embedded miRNA, at least in some tissues

or cellular conditions. In this study, we tested whether such an in-

verse correlation can be exploited to improve the prediction of

miRNA targets. To achieve this goal, we devised a novel strategy

that we termed HOCTAR (see Fig. 1).

As a first step, we extracted from miRBase (rel. 10.1) the lists

of all human intragenic miRNAs and of their corresponding host

genes (see Methods for further details). For each intragenic

miRNA, we compiled a nonredundant list of predicted mRNA

targets (hereafter referred to as PTs) by pooling all corresponding

miRanda, TargetScan, and PicTar predictions. Expression correlation

relationships between miRNA host genes and corresponding PTs

were inferred by using the g:Sorter web tool (http://biit.cs.ut.

ee/gprofiler/; Reimand et al. 2007). This resource allows the per-

formance of gene expression similarity searches on the tran-

scriptomic data available at the Gene Expression Omnibus (GEO)

database (Barrett et al. 2007). g:Sorter can be queried with a gene of

interest to retrieve the genes that have the most similar (corre-

lated) or dissimilar (anti-correlated) expression profiles in a spe-

cific data set. To ensure data homogeneity, we focused our analysis

on a single microarray platform type, namely the Affymetrix HG-

U133A, for which 160 different experimental data sets (for a total

of 3445 different microarray hybridization experiments) were

available at the time of analysis (October 2007). The HOCTAR

procedure consists in ranking the members of each PT list ac-

cording to their cumulative occurrence as host gene anti-correlated

genes across all investigated microarray experiments. In each of

the examined 160 data sets, a PT was considered as anti-correlated

to the tested host gene only when included within the top 3% of

its reported anti-correlated probes.

We applied the HOCTAR procedure to all human miRNA host

genes represented on the HG-U133A platform (n = 178). Results of

this analysis are available on-line in the format of a searchable

database (http://hoctar.tigem.it). The database contains the

HOCTAR target predictions for all the analyzed intragenic miRNAs

along with the annotation of the enriched Gene Ontology (GO)

categories (see also below).

HOCTAR is able to predict efficiently already validated
miRNA targets

To test the efficacy HOCTAR in pinpointing the most likely

miRNA targets, we decided to verify how the procedure performed

with respect to already known, experimentally validated miRNA

targets. We postulated that, if the HOCTAR tool is successful in

improving miRNA target prediction, then the experimentally

validated targets should display a tendency to be enriched at the

top of the HOCTAR ranked prediction lists pertaining to the host

genes of the corresponding embedded miRNAs. To test this hy-

pothesis, we first selected from PubMed (http://www.ncbi.nlm.

nih.gov/pubmed/) and DIANA TarBase (http://diana.cslab.ece.

ntua.gr/tarbase/) 56 already known human miRNA target genes.

These genes had previously been validated as targets of 20 different

intragenic miRNAs either at the mRNA (n = 34) or at the trans-

lational (n = 22) level (Supplemental Table S1). We first mapped the

selected validated targets onto the HOCTAR ranked lists of the

Figure 1. Flowchart of the HOCTAR procedure (see text for further
details).
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corresponding miRNAs. We then compared the HOCTAR lists

with the ranked lists of target predictions generated by the se-

quence-based prediction softwares miRanda, TargetScan, and

PicTar for the corresponding miRNAs.

miRanda, TargetScan, and PicTar predicted 27, 38, and 32 out

of the total number of 56 validated target genes, respectively. These

predictions were uniformly distributed along the entire ranked lists

pertaining to each of these softwares (Fig. 2). In contrast, the same

genes were distributed preferentially at the top of the HOCTAR

ranked lists (Fig. 2). In particular, we found that 51 out of the 56

(91%) validated targets fell within the first 50th percentile of the

HOCTAR ranked lists, as compared to 15 out of 27 (56%), 27 out of

38 (71%), and 21 out of 32 (66%) in the miRanda, TargetScan, and

PicTar prediction lists, respectively. It is important to point out

that the average number of predicted targets present in each list is

comparable, ranging from 450 to 700 (data not shown). In-

terestingly, we did not observe any significant difference in the

distribution of ‘‘transcriptional’’ vs. ‘‘translational’’ targets within

the HOCTAR ranked lists (data not shown).

To evaluate further the reliability of this procedure, we de-

termined the GO annotations of the genes that fell at least within

the first 50th percentile of the HOCTAR prediction lists for each

miRNA tested (Supplemental Table S2). This analysis revealed

a significant enrichment in Gene Ontology Biological Process

categories, which were consistent with previously published data.

For example, miR-106b and miR-93 were already known to play

a role in the expression control of genes involved in the negative

regulation of cell cycle progression (Ivanovska et al. 2008). We

found that the genes falling within the first 50th percentile of the

HOCTAR list for miR-106b and miR-93 were enriched for the GO

category ‘‘negative regulation of cell growth’’ as compared to

a random subset of sequence-based target predictions for the same

miRNA of equal size (http://hoctar.tigem.it).

These observations indicate that, by coupling miRNA target

prediction softwares with the analysis of expression correlation

using as proxies for intragenic miRNAs the corresponding host

genes, it is possible to recognize known target genes with a high

degree of efficiency. In addition, since we have verified that the

vast majority of validated targets fall within the first 50th per-

centile of HOCTAR lists, we assume that the genes present at

the top of the HOCTAR ranked lists have a higher probability of

representing bona fide targets of miRNAs. This may significantly

reduce the number of candidate targets to be tested for a given

miRNA, at least in a first screening, compared to the procedure

based solely on target sequence recognition.

miR-26b and miR-98 down-regulate HOCTAR
predicted targets

A possible limitation of the HOCTAR procedure is that a significant

fraction of the genes with an anti-correlated expression behavior

with respect to the miRNA host genes used as queries, although

containing the specific target recognition sequence in their 39 UTR,

may not be direct targets of the corresponding embedded miRNA.

They could represent targets of other independent regulatory pro-

cesses controlled, directly or indirectly, by the protein product of

the host gene and not by the embedded miRNA itself. To exclude

this possibility as well as to test whether HOCTAR is effective also in

predicting novel, not previously validated, miRNA target genes, we

decided to apply the procedure to newly generated experimental

data, namely those deriving from miRNA overexpression in human

cells. For this purpose, we transiently transfected the synthetic RNA

duplexes of the mature forms of human miR-26b and miR-98

(mimic-microRNA by Dharmacon) in HeLa cells. Transfection with

the Caenorhabditis elegans miRNA cel-miR-67 duplex was used as

control for each of the two overexpression experiments.

We tested by qRT-PCR the expression

levels of 52 predicted target genes distrib-

uted along the entire HOCTAR ranked

prediction list for miR-26b after transient

transfection of mimic-miR-26b in HeLa

cells. We observed that 34 out of 52 tested

genes showed significant transcript down-

regulation as compared to the cel-miR-67

transfection control (Fig. 3A). These genes

were enriched within the first 50th per-

centile of the HOCTAR ranked list for miR-

26b. The ratio between down-regulated

and analyzed genes was 0.84 in the first

50th percentile of the ranked list (31 down-

regulated out of 37 analyzed genes) and 0.2

in the second 50th percentile (three down-

regulated out of 15 genes analyzed). As

controls, we tested 22 genes not predicted

to be miR-26b targets (without a seed for

miR-26b) and none of these showed

significant down-regulation (Fig. 3A).

Similar results were observed when

we transiently transfected HeLa cells with

a mimic-miR-98 (Fig. 3B). We found that

28 out of 46 miR-98 putative targets tested

were significantly down-regulated in HeLa

cells following miR-98 overexpression.

Also in this case, down-regulated genes

were preferentially localized at the top of

Figure 2. HOCTAR performance in recognizing previously validated miRNA targets. Comparison of
HOCTAR with three sequence-based miRNA target prediction softwares (miRanda, TargetScan, and
PicTar) in predicting 56 validated targets of 20 different miRNAs (see text for further details). (A) The
panels display, for each of the algorithms analyzed, the ranking position, in a percentile format, of the
validated targets selected for the analysis (orange horizontal lines). The distribution of the predictions
by HOCTAR tends to be shifted toward the top 50th percentile in comparison to the other three
softwares. (B) Summary of the number of validated targets predicted by each of the algorithms.
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the HOCTAR ranked list for miR-98 (first 50th percentile, n = 22).

Nineteen control genes lacking a seed for miR-98 did not show any

significant change in their expression levels following miR-98

overexpression (Fig. 3B). Among the control genes used in both

overexpression experiments, we included a subset of genes that

displayed an anti-correlated expression behavior (as assessed by the

g:Sorter analysis) comparable to that of the real-timedown-regulated

targets falling in the top 50th percentile of the HOCTAR lists.

Figure 3. Experimental validation of a subset of HOCTAR predictions by overexpression of mimic-microRNAs in HeLa cells, as assessed by qRT-PCR.
Histograms showing differences in the expression levels, between miRNA-overexpressed HeLa cells (black bars) and control (cel-miR-67 transfected) HeLa
cells (white bars), of a subset of HOCTAR predicted target genes for miR-26b (A) and miR-98 (B) and of a subset of control genes by qRT-PCR assays. Y-axis:
fold change repression (expressed as 2�DDCt values). X-axis: predicted target genes tested (their symbols are indicated in the light blue boxes). The target
genes tested were distributed along the entire HOCTAR ranked prediction lists for miR-26b (A) and miR-98 (B), and the red lines below the diagrams
indicate the ranking of each target genes tested within the HOCTAR prediction ranked list for miR-26b (A) and miR-98 (B). The control genes shown on
the right part of the two diagrams are not predicted to represent targets of the two analyzed miRNAs. The housekeeping (HK) genes used to normalize the
expression of genes are HPRT1 and GAPDH. The analysis of each gene tested was performed in triplicate.
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To assess further the validity of the above described results,

we verified the effect of miR-26b and miR-98 overexpression on

protein production for some of the HOCTAR predicted targets by

dual luciferase reporter assays and we found a high correlation

with the qRT-PCR results (Supplemental Fig. S1). Overall, these

experiments show that the ranking provided by the HOCTAR tool

is reliable and specific in predicting high-confidence transcrip-

tional targets of miRNAs and is more efficient than the ranking

provided by sequence-based target prediction softwares, as shown

in Supplemental Figures S2 and S3.

To get a more comprehensive assessment of the efficiency of

HOCTAR, we also used global transcriptome analysis approaches.

We used the microarray platform HG-U133A (Affymetrix) to pro-

file the transcriptome changes in total RNA extracted from HeLa

cells transfected with either the miR-26b or the miR-98 vs. the

total RNA extracted from HeLa cells transfected with the cel-miR-

67 control. After transfection with the miR-26b RNA duplex, 3603

probes (corresponding to 2645 genes) were significantly down-

regulated and 3808 probes (corresponding to 2712 genes) were

significantly up-regulated. Among the down-regulated ones, 359

probes (307 genes) were contained in the PT list (see above) for

miR-26b. In order to verify whether the HOCTAR ranked list of

miR-26b predicted targets was enriched in its top part for probes

that were down-regulated following miR-26b transfection, we

performed gene set enrichment analysis (GSEA). GSEA is a com-

putational method for determining whether a defined subset of

probes (in our case the set of probes present in the HOCTAR

ranked list of miR-26b predicted targets) shows statistically sig-

nificant enrichment at the top of a larger list of probes ranked

according to their differential expression obtained from the

analysis of two biological states (e.g., HeLa cells transfected with

the miR-26b vs. HeLa cells transfected with the cel-miR-67 con-

trol). GSEA provides an enrichment score (ES) value that measures

the degree of enrichment between the two analyzed lists: the ES

value ranges from 0 to 1, where 1 indicates the highest enrichment.

We first evaluated the distribution of the entire HOCTAR

ranked list for miR-26b (1024 probes) within the data set com-

posed by the entire list of probes present in the microarray plat-

form analyzed (n = 22,277). The latter data set was ranked by

differential expression between cells transfected with miR-26b and

cells transfected with the control RNA duplex in an ascending

order. This analysis showed that the majority of the genes in-

cluded in the HOCTAR list for miR-26b were preferentially dis-

tributed at the top of the analyzed microarray data set, where most

down-regulated probes are localized (ES value = 0.53; P-value <

0.0001; Fig. 4A). This result is in line with previous observations

that the overexpression of a given miRNA is responsible for the

down-regulation of the transcript levels of many of its predicted

targets. However, to test whether the ranking order provided by

HOCTAR was effective in pinpointing the genes with the highest

probability of representing bona fide miR-26b targets, we per-

formed a more detailed GSEA analysis. We first divided the

HOCTAR ranked prediction list (1024 probes) into 10 bins (probe

sets), each of which containing 102 probes. We then repeated the

GSEA analysis for each of these bins on the restricted data set of

probes showing a differential expression in miR-26b- vs. control-

transfected HeLa cells, i.e., all probes showing an FDR < 0.05 (n =

7410). Interestingly, we found that the number of probes with

significant expression changes progressively decreased from bin1

to bin10 (Fig. 4C). In particular, 70 probes (corresponding to 60

genes) from bin1 and 66 probes (47 genes) from bin2 turned out to

show significant changes in their expression levels in HeLa cells

following miR-26b overexpression. The latter probes tend to be

preferentially distributed at the top of the list of the most down-

regulated probes of the miR-26b differentially expressed data set

(Supplemental Fig. S4). In agreement, we found that the data set of

probes differentially expressed in miR-26b-transfected cells vs.

control was significantly enriched only for probes belonging to

the two top-ranked bins of the HOCTAR prediction list for miR-

26b (Supplemental Fig. S4). Finally, we did not observe any sig-

nificant enrichment of up-regulated probes either in the entire

HOCTAR miR-26b prediction list or in any of its bins (data not

shown).

We carried out the same experimental procedure for miR-98

and we obtained comparable results. We observed a more signifi-

cant enrichment of miR-98 down-regulated probes in the top bin

sets of the related HOCTAR list (Fig. 4B,D; Supplemental Fig. S5).

In contrast, when the same analysis was carried out on the ranked

lists of prediction by miRanda, TargetScan, and PicTar for both

miR-26b and miR-98, we observed a homogeneous distribution of

the differentially expressed genes across all 10 bins (Supplemental

Fig. S6). Overall, these results indicate that the HOCTAR tool is

able to provide a reliable ranking of miRNA target predictions.

Validation of the HOCTAR procedure by miRNA
loss-of-function studies

To assess further the validity of the HOCTAR procedure, we de-

cided to test it on a miRNA-inactivation experimental model by

down-regulating miR-26b and miR-98 expression in HeLa cells.

We first assessed by qRT-PCR the expression levels of miR-26b and

miR-98 in wild-type HeLa cells and we found that these miRNAs

were expressed at significant levels in this cell line (data not

shown). We then transfected HeLa cells with either an inhibitor-

miR-26b or an inhibitor-miR-98 (Dharmacon). Transfection with

the C. elegans miRNA cel-miR-67 duplex was used as control for

each of the two inhibition experiments.

We tested by qRT-PCR the expression levels of 43 HOCTAR

predicted target genes distributed along the entire HOCTAR

ranked list for miR-26b (Fig. 5A). We found that 19 out of the 43

genes tested showed a statistically significant up-regulation of

their expression levels following inactivation of miR-26b in HeLa

cells, and the vast majority of these mapped in the top ranking

position of the HOCTAR prediction list (first 50th percentile, n =

18). As negative controls, we also tested 15 genes not predicted to

represent miR-26b targets and none of these showed a significant

up-regulation.

Similar results were observed following the inactivation of

miR-98 in HeLa cells. We tested by qRT-PCR the expression levels

of 44 HOCTAR predicted target genes distributed along the entire

HOCTAR ranked list for miR-98 (Fig. 5B). We found that 24 out of

44 genes were significantly up-regulated following miR-98 in-

activation and that the majority of them were localized within the

first 50th percentile of the HOCTAR prediction list (n = 23). As

a control, none of the 17 control genes not predicted to be miR-98

targets displayed any significant change in their expression levels.

Similar to the miRNA overexpression analyses (see previous sec-

tion), the genes found to be up-regulated in HeLa cells following

miR-26b and miR-98 inhibition genes were uniformly distributed

within the ranked prediction lists of the miRanda, TargetScan, and

PicTar softwares (Supplemental Figs. S7, S8). Since we analyzed by

qRT-PCR largely overlapping subsets of genes in overexpression

and loss-of-functions experiments (Figs. 3, 5), we could test the

consistency of the results obtained in the two types of experiments.

MicroRNA host gene oppositely correlated targets
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We found that 18/19 and 23/24 genes up-regulated after, re-

spectively, miR-26b and miR-98 inhibition were significantly down-

regulated in the corresponding overexpression experiments (data

not shown). Taken together, these results further confirm the re-

liability of HOCTAR in pinpointing bona fide miRNA targets.

Discussion
We have demonstrated that HOCTAR, a procedure based on the

analysis of expression correlation between host genes and the

candidate targets of the corresponding intragenic miRNAs, can be

a valuable resource to improve the efficacy of miRNA target pre-

diction. HOCTAR takes advantage of the following observations:

(1) miRNAs can down-regulate some of their targets not only at the

translational but also at the transcript level (Shyu et al. 2008); (2) it

is therefore possible to use the paired expression analysis of miR-

NAs and mRNAs to identify mRNA targets of miRNAs; and (3) the

expression profiles of intragenic miRNAs and of their corre-

sponding host genes are very similar both at the tissue and cellular

level (Baskerville and Bartel 2005; Kim and Kim 2007), which

makes it possible to use the expression data pertaining to host

genes to infer the expression data of the corresponding embedded

miRNAs. For the target prediction, HOCTAR relies on the use of

three established miRNA target prediction softwares, miRanda,

TargetScan, and PicTar, which have already been proved to be very

effective. We evaluated the efficacy of the HOCTAR procedure by

analyzing a set of 56 already validated miRNA:mRNA target pairs.

The vast majority of these miRNA:mRNA pairs (91%, 51 out of 56)

were localized within the first 50th percentile of the HOCTAR

ranked lists for these miRNAs, thus demonstrating the efficacy of

the procedure when compared to the sequence-based target pre-

diction softwares (Fig. 2).

It was generally believed, until recently, that miRNAs ex-

erted their repressive action on their targets via translation down-

regulation. However, it is now widely accepted that miRNAs can

determine in animal cells a down-regulation of their targets also at

the transcriptional levels via mRNA degradation (Bagga et al. 2005;

Lim et al. 2005; Wu and Belasco 2008) and that this action does

not require the presence of a perfect sequence complementarity

between miRNA and mRNA targets. More recently, high-

throughput methods have been used to determine on a large scale

the amount of protein repression mediated by miRNAs (Baek et al.

2008; Selbach et al. 2008). These studies have shown that the

translational repression operated by miRNAs is very significant

and that a subset of miRNA targets are modestly derepressed by

miRNAs at the protein level with little or no change at the mRNA

Figure 4. Genes down-regulated after miR-26b and miR-98 overexpression are overrepresented in high-scoring HOCTAR predictions, as determined
by microarray analysis. Enrichment plots generated by GSEA analysis of the HOCTAR predictions list for miR-26b and miR-98 are represented in A and B.
The enrichment score is shown as a green line in each plot, and the vertical black bars below the plots indicate the position of probes belonging to the
HOCTAR prediction lists for miR-26b within the rank ordering of the 22,277 probes present on the human U133A microarray from the probe most down-
regulated (position 1 on the left) to the most up-regulated in HeLa cells after miR-26b (A) and miR-98 (B) transfection. (C,D) Histograms showing the
number of probes with significant expression changes in HeLa cells after miR-26b (C) and miR-98 (D) overexpression (size, Y-axis). Each bar represents one
of the 10 bins (probe sets, X-axis) in which the entire HOCTAR lists for miR-26b and miR-98 were subdivided (see the text for further details).
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level (Baek et al. 2008; Selbach et al. 2008). Obviously, the HOC-

TAR procedure cannot be used at present to identify miRNA targets

exclusively regulated at the translational level, However, by testing

the HOCTAR procedure on a set of experimentally validated

miRNA targets (Fig. 2), we did not observe any significant differ-

ences in the behavior of targets that had previously been ascer-

tained only at the translational level vs. targets that had been

shown to be affected at the transcript level (data not shown). This

Figure 5. Experimental validation of the HOCTAR procedure by down-regulation of miR-26b and miR-98 in HeLa cells. Histogram showing differences
in the expression levels between HeLa cells transfected with a miRNA-inhibitor (black bars) and control (cel-miR-67 transfected) HeLa cells (white bars), of
a subset of HOCTAR predicted target genes for miR-26b (A) and miR-98 (B) and of a subset of control genes by qRT-PCR assays. Y-axis: fold change
activation (expressed as 2�DDCt values). X-axis: predicted target genes tested (their symbols are indicated in the light blue boxes). The target genes tested
were distributed along the entire HOCTAR ranked prediction lists for miR-26b (A) and miR-98 (B) and the red lines below the diagrams indicate the ranking
of each target genes tested within the HOCTAR prediction ranked list for miR-26b (A) and miR-98 (B). The control genes shown on the right part of the two
diagrams are not predicted to represent targets of the two analyzed miRNAs. The housekeeping (HK) genes used to normalize the expression of genes are
HPRT1 and GAPDH. The analysis of each gene tested was performed in triplicate.
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observation further confirms that the transcriptional effects of

miRNA action on the expression levels of their targets represent

a widespread phenomenon (Lim et al. 2005; Baek et al. 2008;

Selbach et al. 2008), which is not limited to a restricted subset of

targets, thus increasing the usefulness of HOCTAR in miRNA tar-

get identification.

We have also demonstrated, by means of experimental

miRNA overexpression and loss-of-function procedures in HeLa

cells, that HOCTAR can be reliably used to predict effectively novel

transcriptional targets, not previously experimentally validated. In

particular, we validated, by both microarray and qRT-PCR proce-

dures, 34 and 28 novel targets for miR-26b and miR-98, re-

spectively. The sequence-predicted mRNA targets of these two

miRNAs, that proved to undergo the most significant extent of

down-regulation following miRNA overexpression, were prefer-

entially distributed at the top of the HOCTAR ranked lists of miR-

26b and miR-98. These validation experiments further support the

idea that the candidates identified by HOCTAR are bona fide

miRNA targets and not targets of other independent regulatory

processes controlled, directly or indirectly, by the protein product

of the host gene itself. Therefore, we conclude that the use of

HOCTAR can facilitate the preselection of targets to be tested for

a given miRNA.

Obviously, we cannot completely rule out the possibility that

some of the targets predicted by HOCTAR, although containing

the specific miRNA recognition sequence in their 39 UTR, are not

direct targets of the analyzed miRNAs and that the anti-correlated

expression behavior they exhibit is due to other indirect molecular

mechanisms. However, both the high performance obtained by

HOCTAR in predicting a set of already validated targets (Fig. 2) and

the fact that HOCTAR high-scoring targets showed a significant

enrichment in Gene Ontology Biological Process categories, which

were consistent with already published data, make this hypothesis

less likely. On the other hand, the transcriptional changes medi-

ated by miRNAs on the expression levels of their targets may not

be entirely explained by the direct repression operated by miRNAs

but may also reflect the activation of feedback and feedforward

transcriptional loops within gene regulatory networks of which

miRNAs represent important players (Tsang et al. 2007; Marson

et al. 2008). In particular, miRNA-mediated ‘‘coherent’’ and ‘‘in-

coherent’’ feedforward loops (Marson et al. 2008) are now recog-

nized as important components of cellular gene regulatory

networks. The relative role of these transcriptional circuits in the

overall picture of miRNA function remains to be further estab-

lished through additional experimental work.

It has already been suggested that high-throughput expres-

sion data analysis could be exploited to improve miRNA target

prediction procedures (Huang et al. 2007). However, to the best of

our knowledge, HOCTAR is the first tool for systematic miRNA

target prediction that utilizes the same set of microarray experi-

ments to monitor the expression of both miRNAs (through their

host genes) and candidate targets. The expression data set used by

HOCTAR is much larger than any currently available miRNA-

specific microarray data set. Moreover, this data set is representa-

tive not only of static evaluations of wild-type or disease cells/

tissues, but also of a large variety of dynamic states following

different types of stimulations and perturbations that can be of

physical, biological, and genetic nature (Supplemental Table S3). It

is also important to point out that HOCTAR is the first tool for

miRNA target recognition that is able to provide different pre-

diction target lists for identical miRNAs present in multiple copies

in the genome and localized within different host genes. These

lists differ in the ranking of the predictions, which is based on the

expression data pertaining to the corresponding host gene. On the

other hand, a drawback of HOCTAR is represented by the fact that,

by virtue of its design, it is expected to have a lower performance

in the particular case in which a miRNA targets its own host gene.

Overall, we believe that the specific features of HOCTAR strongly

contribute to its capability to pinpoint targets of a large number of

miRNAs, which have a different expression specificity and diverse

biological roles.

The HOCTAR procedure could so far be applied to 178 in-

tragenic miRNAs whose host genes were represented in the

microarray data set selected for the analysis (see Results). The in-

creasing availability of transcriptomic data generated by both

microarray and high-throughput sequencing procedures (Gresham

et al. 2008; Mortazavi et al. 2008; Sultan et al. 2008) is expected to

further improve the efficacy of the HOCTAR procedure and to

extend its use to a higher number of intragenic miRNAs, particu-

larly those embedded within poorly characterized transcriptional

units such as EST clusters representing noncoding RNAs (Kim and

Nam 2006).

In conclusion, based on both bioinformatic and experimental

analyses, we have demonstrated that the HOCTAR integrated pro-

cedure represents a valuable tool to identify bona fide miRNA tar-

gets. Furthermore, thanks to a systematic application of this

procedure, we have also been able to assess that the action that

miRNAs exert on the transcript levels of their targets is more com-

mon than previously recognized. Overall, these results are expected

to lead to a deeper insight into the biological role of this class of

noncoding RNAs in both physiological and pathological conditions.

Methods

The HOCTAR procedure
The list of human intragenic miRNAs and corresponding host
genes was retrieved from miRBase (release 10.1) (http://microrna.
sanger.ac.uk/sequences/; Griffiths-Jones 2004). We considered
host genes only those whose RefSeq sequences overlapped the
miRNA either in introns, exons, or UTR and that were transcribed
on the same strand as the miRNA. All the above-mentioned fea-
tures were manually verified using the UCSC Human Genome
Browser database (release 2006/March; http://genome.ucsc.edu/).

Expression correlation analyses of miRNA host genes and
putative targets were performed by using the g:Sorter tool (http://
biit.cs.ut.ee/gprofiler/gsorter.cgi), which is part of the g:Profiler
package (Reimand et al. 2007). g:Sorter is a tool for gene expression
similarity search. For a selected gene, protein, or probe ID, g:Sorter
retrieves a number of most similar coexpressed (correlated) or
dissimilar reversely expressed (anti-correlated) profiles in a speci-
fied GEO data set. For the analysis, we focused on the HG-U133A
GeneChip array (GPL96, Feb 19, 2002), for which a total of 160
microarray data sets were available at g:Sorter at the time of the
analysis. These experiments are widely heterogeneous, including
analyses of tissue differentiation, comparisons of cancerous and
healthy cells/tissues, responses to biological or physical stimuli,
etc. (for more details, see Supplemental Table S3). As input to the
HOCTAR procedure we used all the probes corresponding to the
selected miRNA host genes and represented in the HG-U133A ar-
ray, as assessed through the analysis of the Affymetrix website
(http://www.affymetrix.com/index.affx). The probes were map-
ped to the human genome sequence by using the UCSC Human
Genome Browser to verify their actual correspondence to the
miRNA host genes. As a result, we selected 220 probes covering
130 miRNA host genes encompassing 178 distinct miRNAs.
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The lists of putative target genes (PT lists) were built by re-
trieving, using default parameters, target predictions from PicTar
(release 2007/March, http://pictar.mdc-berlin.de/), miRanda (release
2005/July, http://cbio.mskcc.org/mirnaviewer/), and TargetScan
(version 4.1, release 2008/January, http://www.targetscan.org/
vert_40/). In the case of PicTar, we selected the targets which were
found to be conserved in mammalian genomes (Krek et al. 2005).

We queried the selected experimental data set of g:Sorter with
all the individual probes covering the 178 selected host genes. For
each analyzed probe, we retrieved at g:Sorter the first 3% of most
anti-correlated genes for each microarray data set. Then, we
ranked all relative putative target genes based on their occurrence
in the 160 different lists of most anti-correlated genes. Genes with
an equal number of occurrences were ranked according to their
average ranking within the subset of experiments in which they
were found to be anti-correlated. The entire procedure resulted in
the building of ranked lists of putative target genes for each
miRNA, ordered by their anti-correlated expression with respect to
the corresponding miRNA host gene.

Cell transfection assays

The Human cervical cancer-derived cells (HeLa) were grown in
Dulbecco’s Modified Eagle’s Medium (DMEM, Invitrogen), sup-
plemented with 10% heat-inactivated Fetal Bovine Serum (FBS,
Euroclone). All cells were incubated at 37°C in a humidified
chamber supplemented with 5% CO2. Cells were seeded in six-
well plates at 10% confluence (1 3 105 cells) before transfection.
Transfection of HeLa cells was performed using DharmaFECT 1
Transfection Reagent (Dharmacon Research) according to the
manufacturer’s protocol. Cells were transfected with either miRI-
DIAN� Dharmacon microRNA Mimics (miR-26b, miR-98, or
negative control cel-miR-67), at a final concentration of 100 nM or
with miRIDIAN� Dharmacon microRNA Inhibitor (miR-26b, miR-
98, or negative control cel-miR-67) at a final concentration of 80
nM. Cells were harvested after 48 h for total RNA extraction. Total
RNA was obtained using the miRNeasy kit (Quiagen) according to
the manufacturer’s instructions. RNA was quantified using the
NanoDrop 1000 (Thermo Fischer). Quality of RNA was assessed by
gel electrophoresis.

Quantitative real-time PCR

Quantitative (q) Reverse Transcriptase (RT-)PCR-based detection of
mature miR-26b and miR-98 was performed using the TaqMan
microRNA assays (Applied Biosystems). The qRT-PCR results, re-
corded as threshold cycle numbers (Ct), were normalized against
an internal control (RNU48), and then expressed as fold changes
(Chen et al. 2005).

We used samples with high-quality RNA to prepare cDNA
synthesis using Quantitect Reverse Transcription kit (Quiagen,
Inc.) starting from 1 mg of DNase-treated RNA.

In order to unambiguously distinguish spliced cDNA from
genomic DNA contamination, specific exons primers were
designed to amplify across introns of the genes tested. All primers
were previously tested by reverse transcription (RT)-PCR and -RT
controls reactions were performed. The primers for all target genes
tested were designed with PrimerDesigner 2.0 software (Applied
Biosystems). Primer sequences are available in supplemental me-
thods (Supplemental Tables S4, S5).

Quantitative RT-polymerase chain reaction (qRT-PCR)
experiments were performed using the ABI Prism 7900HT Fast Se-
quence Detection System with ABI Power SYBR Green reagents
(Applied Biosystems). Real-time PCR results were analyzed using
the comparative Ct method normalized against the housekeeping

genes HPRT1 and GAPDH (Vandesompele et al. 2002). The range of
expression levels was determined by calculating the standard de-
viation of the DCT (Pfaffl 2001). We considered as down-regulated
and up-regulated the genes showing a change in their expression
with a P-value < 0.01.

Luciferase assays

HeLa cells were transfected with firefly luciferase reporter plasmids
containing the 39 UTR of the genes analyzed and with psiUx
plasmid (Denti et al. 2004) constructs containing the precursor
sequences of hsa-miR-26b and hsa-miR-98 (see Supplemental Ta-
ble S6 for a list of olignucleotides used to amplify both the 39 UTR
and the pre-miR sequences). Twenty-four hours before trans-
fection, HeLa cells were plated in a six-well plate. Luciferase assays
were performed 48 h after transfection using Dual Luciferase Re-
porter Assay System (Promega), normalized for transfection effi-
ciency by cotransfected Renilla luciferase.

Microarray experiments

Total RNA from HeLA-transcfected cells was used to prepare cRNA
for hybridization to the Affymetrix HG-U133A array platform.
Microarray hybridizations were performed in triplicates at the
Coriell Genotyping and Microarray Center, Coriell Institute for
Medical Research, Camden, NJ, USA. Microarray results are avail-
able from the GEO database with the accession number GSE12091
(miR-26b overexpression) and GSE12092 (miR-98 overexpression).
A false discovery rate (FDR) <0.05 was used to assess significant gene
differential expressions.

Gene set enrichment analysis

GSEA was performed as previously described (Subramanian et al.
2005). The cumulative distribution function was constructed by
performing 1000 random gene set membership assignments. A no-
minal P-value < 0.01 and an FDR < 0.25 are used to assess the sig-
nificance of the enrichment score (ES).

Gene Ontology analysis

Gene Ontology (GO) analyses were performed with the web tool
DAVID at http://david.abcc.ncifcrf.gov/home.jsp using default
parameters (Sherman et al. 2007). GO analyses were performed on
the 30th, 50th, and 100th percentile of HOCTAR ranked lists for
all 178 miRNA analyzed. After performing the analysis, only
Biological Process (BP) categories with a P-value # 0.001, FDR # 5,
and fold enrichment $ 2 in the analysis of the 50th percentile lists
were retained. Redundant terms and noninformative terms (e.g.,
multigene family) were eliminated. Results are collected in the
HOCTAR database at http://hoctar.tigem.it.

HOCTAR database

The data set is stored in a relational form using MySQL 4.1.14
database and it is freely accessible through a web interface written
in php and supported by all the common browsers. The database
can be accessed at http://hoctar.tigem.it.
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