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Abstract

Background: To understand the dynamic behavior of cellular systems, mathematical modeling is
often necessary and comprises three steps: (1) experimental measurement of participating
molecules, (2) assignment of rate laws to each reaction, and (3) parameter calibration with respect
to the measurements. In each of these steps the modeler is confronted with a plethora of
alternative approaches, e. g., the selection of approximative rate laws in step two as specific
equations are often unknown, or the choice of an estimation procedure with its specific settings in
step three. This overall process with its numerous choices and the mutual influence between them
makes it hard to single out the best modeling approach for a given problem.

Results: We investigate the modeling process using multiple kinetic equations together with
various parameter optimization methods for a well-characterized example network, the
biosynthesis of valine and leucine in C. glutamicum. For this purpose, we derive seven dynamic
models based on generalized mass action, Michaelis-Menten and convenience kinetics as well as the
stochastic Langevin equation. In addition, we introduce two modeling approaches for feedback
inhibition to the mass action kinetics. The parameters of each model are estimated using eight
optimization strategies. To determine the most promising modeling approaches together with the
best optimization algorithms, we carry out a two-step benchmark: (1) coarse-grained comparison
of the algorithms on all models and (2) fine-grained tuning of the best optimization algorithms and
models. To analyze the space of the best parameters found for each model, we apply clustering,
variance, and correlation analysis.

Conclusion: A mixed model based on the convenience rate law and the Michaelis-Menten
equation, in which all reactions are assumed to be reversible, is the most suitable deterministic
modeling approach followed by a reversible generalized mass action kinetics model. A Langevin
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model is advisable to take stochastic effects into account. To estimate the model parameters, three
algorithms are particularly useful: For first attempts the settings-free Tribes algorithm yields
valuable results. Particle swarm optimization and differential evolution provide significantly better
results with appropriate settings.

Background
The metabolism of whole cells can be described as a
network of metabolites and reactions interconverting
these metabolites. To understand cellular systems,
dynamic modeling of cellular processes has become an
important task in systems biology [1-4]. Dynamic
models describe the whole system and the state of each
reacting species therein in a time-dependent manner [2].
Once such a model is constructed, several network
properties can be derived, for instance stability, robust-
ness, or the long-term behavior [5]. Furthermore, a well
developed model provides a basis for predictions under
different perturbations or varied environmental circum-
stances and can be applied to enhance the yield of
desired metabolic products like certain amino acids [3].

To set up such models, appropriate rate laws have to be
assigned to each reaction within the network. From
these, a differential equation system that characterizes
the rates of change of each reactant can be derived.
However, setting up model equations is a difficult task.
For many larger networks available in databases like
KEGG[6, 7] or METACYC[8] the reaction mechanism
remains unknown. In many cases, reliable rate equations
for the reactions are not known because these actually
have to be derived for each catalyzing enzyme individu-
ally [9]. It is therefore a common approach to apply
approximative rate laws, which characterize the most
important features of the reaction rate. Many rate laws,
which are either continuous or discrete, and either
deterministic or stochastic [2], have been proposed for
this purpose. Several examples of each group exist such
as probabilistic [10, 11], phenomenological [5, 12-15],
or semi-mechanistic approaches [5, 16].

A second problem arises whenever a dynamic model of
biochemical systems is created, because any such model
contains a certain number of parameters like the reaction
rates, Michaelis constants or the limiting rate as well as
constants describing the influence of certain inhibitors
[17-19] or, in stochastic systems, the reaction propensity
[20]. Except for phenomenological models like power
law approximations [21], linlog [12, 22], or loglin
kinetics [13, 23], the parameter values can often be
measured. However, this procedure is time-consuming,
expensive, and often impractical. Online databases like

the Brunswick Enzyme Database (BRENDA) [24-26]
provide measured parameter values for many enzymes,
but variations in the experimental settings, under which
these and the time series measurements for the system
under study were obtained, limit the applicability of
these values for modeling purposes. In addition, it was
observed that there are differences between parameters
measured in vivo and in vitro [[27], p. 461]. The
application of computational methods to optimize
model parameters regarding the fit error has therefore
become an important task in the model identification
process [28-31]. In this connection, the optimizer tries to
minimize the distance between measured values or
values created in silico and the simulated time course
for each reacting species by varying the model para-
meters. The smaller this distance is, the higher is the
quality of a possible solution for one parameter set. This
quality measure is often called the "fitness" of the
parameter set. As an exhaustive search for the best
solution is computationally not possible, heuristic
optimization methods try to find the global optimum
of the system. Usually, metabolic systems are analytically
hard or infeasible to solve. Often those systems are non-
convex or multimodal, i. e., contain numerous local
optima, and the gradient cannot be computed easily.
Biologically inspired optimization procedures like Evo-
lutionary Algorithms (EAs) are known to handle even
highly nonlinear optimization problems [32-34]. Many
such optimization algorithms are freely available in
several software packages [35-38] or included in com-
mercial toolboxes [39].

During the last few decades, manifold derivatives of EAs
have been proposed. Each of them has certain advan-
tages and is therefore more or less appropriate for a
special problem. Their development was driven by
analogies to natural phenomena such as Darwinian
evolution (genetic algorithm [40], evolution strategy
[41], differential evolution [42]), hill climbing [43], the
formation of crystal structures in metallurgy (simulated
annealing [44]), or the swarm intelligence idea (particle
swarm optimization [45, 46]). Each one of these
optimization procedures provides several settings that
influence its performance; for instance, the temperature
in simulated annealing, the crossover probability in
genetic algorithms, or the population size in particle
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swarm optimization. For a detailled introduction to all
heuristic optimization procedures used in this work [see
Additional file 1].

In several studies, heuristic optimization procedures
like EAs have been applied successfully to biochem-
ical systems after these have been translated into sets
of differential equations [32-34, 47-50]. Most of the
time standard settings for the optimization procedures
are used. An analysis of these settings does, in fact,
enable enhancement of the performance of the
optimization process [33, 47, 48]. In many cases, a
lack of time prevents researchers from systematically
benchmarking these settings. In order to improve the
model quality, however, this would be necessary. The
resulting model systems, including the identified
parameters, are often used to derive network proper-
ties like the long-term behavior or to perform steady-
state analyses [49-53] of the system, but only in few
cases detailed and specially derived rate laws could be
applied to deduce a model system [49, 50]. Many
studies are available, in which a single type of
approximative rate equation is applied to set up a
model – in many cases without a comparison with
alternative approaches. Guthke et al. modeled the
amino acid metabolism of primary human liver cells
using a phenomenological approach [51, 53] whereas
Liu and Wang used S-systems [21, 54, 55] for their
biochemical models [56]. Magnus et al. applied linlog
kinetics [12, 22] to model the valine and leucine
metabolism in C. glutamicum [52].

Very few studies compare alternative modeling
approaches to investigate their applicability for the
specific problem [9, 34]. While Spieth et al. studied
whether in silico time series data generated with certain
model systems can be reproduced crosswise with other
ones [34], Bulik et al. analyzed properties like stability
when detailed kinetic equations within a system are
replaced by approximative ones [9].

An investigation of both, alternative modeling
approaches together with a systematical benchmark of
the settings of optimization procedures, was rarely done.
The disposability of software tools, which assign rate
equations more or less automatically [57-61], requires
the user to be especially aware of the properties of
different modeling approaches and the possible quality
that can be achieved with a certain type of kinetic
models. Since automatically created models have already
been published [62], and attempts have been made to
scale up this modeling process to derive even genome-
scale kinetic models automatically [63], these properties
are of paramount importance. Summarizing, to con-
struct a mathematical description of a biochemical

reaction system the modeler has to consider at least
two central questions:

1. Which rate laws are the most appropriate ones for the
specific purpose?

2. Which optimization procedure performs best on the
problem class of parameter inference?

Once a model has been created, the choice of initial
conditions represents a further important question for an
appropriate simulation of the model. Fundamentally,
the system can be written as an initial value problem,
sometimes referred to as a single-shoot approach [30], or
as a multiple-shooting problem [31, 64]. Here, a single-
shoot strategy is employed using the steady-state
concentrations of the participating metabolites as initial
values.

This work addresses both questions and tries to identify
an optimal model for a well-studied example network:
the metabolism of L-valine (Val) and L-leucine (Leu) in
Corynebacterium glutamicum, an aerobic gram-positive
bacterium which is used to produce about two million
tons of amino acids per year [65]. For this reaction
network (see Figure 1 and Table 1) we construct seven
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Figure 1
Process diagram of the biosynthesis of valine and
leucine in C. glutamicum. The pathway shown here is
constructed using the information from both the KEGG and
the METACYC databases. Metabolites outside the cell are not
directly included in the model system. As 2-ketoisovalerate
(KIV) is the starting point for both products, its production
and degradation are highly regulated. For this purpose four
feedback inhibitions control the reactions linked to this
intermediate. Val and Leu can be transported out of the cell
when not needed thereby competing for a free binding site in
the transporting enzyme. Note that enzymes are omitted
from this process diagram for the sake of a clear
arrangement of the participating species.

BMC Systems Biology 2009, 3:5 http://www.biomedcentral.com/1752-0509/3/5

Page 3 of 24
(page number not for citation purposes)



alternative systems of differential equations based on
four rate laws. These are the generalized mass action rate
law [5], Michaelis-Menten equation, and convenience
kinetics [16] as well as the stochastic Langevin equation
[10, 11]. To evaluate the influence of irreversible
reactions, we construct two models for each determinis-
tic rate law: one in which all reactions are considered
reversible and a second one in which only two reactions
are considered reversible. In a two-step benchmark we
systematically examine eight optimization algorithms to
estimate the parameters of all models. In a coarse-
grained trial all algorithms are applied to all model
systems with standard settings. In the fine-grained
benchmark, alternative settings of the algorithms are
evaluated to improve their optimization performance on
the best models. We focus on nature-inspired heuristic
optimization procedures [see Additional file 1], namely,
Hill Climber (HC), Simulated Annealing (SA), Genetic
Algorithm (GA), Evolution Strategy (ES), Differential
Evolution (DE), Particle Swarm Optimization (PSO),
and Tribes. A random (Monte Carlo) optimization serves
as a general reference algorithm.

Results and discussion
Mathematical models
Figure 1 shows the biosynthesis of Val and Leu in C.
glutamicum, starting with pyruvate (Pyr). The reactions
of this pathway are summarized in Table 1. In R3, one
substrate (DHIV) turns into one product (KIV) when
neglecting the influence of the second product, water,
which is plentiful in the cell. Therefore, we can apply a
Michaelis-Menten equation to model the kinetics of
this reaction. The transport of Val and Leu through the
cell wall (R6 and R10) has exactly one substrate and
one product and can, therefore, also be modeled using
the Michaelis-Menten approach. All other reactions in

the network cannot be modeled using this classical
approach because multiple substrate or product mole-
cules are involved. Therefore, approximative rate
laws can be applied to these reactions. Here we
employ one stochastic and three deterministic rate
equations. Approximative rate laws can be used for the
three reactions with a Michaelis-Menten mechanism as
well.

The reversibility of the reactions constitutes another
important question to be solved before modeling. As
transport through the cell wall removes both products
from the cellular system, we assume that there is no
reverse reaction (an uptake of Val or Leu) and, hence,
consider both reactions irreversible. The two reactions R2

and R9 are reversible [6-8, 52]. We let the optimization
procedure "decide" if the remaining reactions should be
modeled in a reversible or irreversible way. To this end,
we construct one "reversible" and one "irreversible"
alternative model for each rate law, keeping only the two
known reactions R2 and R9 reversible.

In this way we derive the following seven models based
on four approaches for the reaction velocity on this
pathway. Details and the formulas can be found in
Methods and [see Additional file 2].

GMAKr Pure generalized mass action kinetics, in which
all reactions apart from R6 and R10 are modeled
reversibly, with 24 parameters.

GMAKi Pure generalized mass action kinetics, in which
only the two reactions R2 and R9 are considered
reversible, with 18 parameters.

GMMr Like GMAKr but with three Michaelis-Menten
equations for reactions R3, R6 and R10. This model
contains 31 parameters. In the GMAKr model the
influences of all enzymes are neglected and hidden in
the rate constants, which is an oversimplification of the
biochemical process. The model comes closer to the
biochemical process when inserting Michaelis-Menten
equations for the three reactions R3, R6, and R10.

GMMi Like GMMr but with only two reversible reactions
R2 and R9, leading to 24 parameters.

CKMMr Convenience kinetics with three Michaelis-
Menten equations as in GMMr. All reactions apart from
R6 and R10 are considered reversible leading to 59
parameters. The convenience rate law is also an
approximation of the biochemical process. Therefore,
we do not construct a pure convenience kinetics model
of the whole system but apply Michaelis-Menten kinetics
whenever this is possible (R3, R6 and R10).

Table 1: The reaction system in more detail

No Reaction Enzyme Inhibitor

R1 2 Pyr Æ AcLac + CO2 AHAS Val
R2 AcLac + NADPH2 ⇌ DHIV + NADP+ AHAIR Val
R3 DHIV Æ KIV + H2O DHAD Val
R4 KIV + Glut Æ Val + aKG

BCAATValB

R5 KIV + Ala Æ Val + Pyr
BCAATValC

R6 Val Æ Valext TransVal Leu
R7 KIV + AcCoA Æ IPM + CoA IPMS Leu
R8 IPM + NAD+ Æ KIC + NADH2 + CO2 IPMDH
R9 KIC + Glut ⇌ Leu + a KG

BCAATLeuB

R10 Leu Æ Leuext TransLeu Val

The reactions in KEGG are lumped together resulting in this reaction
scheme which is in accordance with METACYC except for the question of
irreversibility, and apart from R2 and R9, which are reversible.
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CKMMi Convenience kinetics with three Michaelis-Menten
equationsas inmodelGMMi, inwhichonly thetworeactions
R2 and R9 are considered reversible, with 41 parameters.

LANG To demonstrate the possibility of large-scale
parameter optimization, even for stochastic models,
and to model the effects of random fluctuations in the
metabolite concentrations, we consider a stochastic
description as well. Based on the Langevin equation,
this system contains 24 parameters.

In a glucose stimulus-response experiment 47 measure-
ments are taken for 13 metabolites on this pathway (for
details see Methods). The parameters of all models are
calibrated with regard to these data.

Fine-tuned optimization algorithms and models
In the next step the parameters of all seven mathematical
models have to be estimated. In this process the relative
distance between simulated model data and experimental
data serves as a quality measure (fitness) of an estimated
parameter set. Note that the error between the measure-
ments and the model simulation is to be minimized, so the
quality of the solutions increases with decreasing error
values. A random optimization (Monte Carlo search) of the
models (Figure 2) yields relative differences between
measurements and model systems that are at least three
times higher than the difference between the measurements
and uncoupled cubic approximation splines. Therefore, we
apply the nature-inspired heuristic optimization procedures
HC, SA, GA, ES, DE, PSO, and Tribes to all seven models
with standard settings (Table 2; details in Methods section).
Apart from only some minor exceptions for the two
irreversible models, five algorithms turn out to be especially
useful (Figure 3 and Table 3). These are the binary-valued
Genetic Algorithm (binGA), Evolution Strategy with covar-
iance matrix adaptation [66] (cmaES) with elitism (plus
strategy), PSO, DE, and Tribes. The performance of the
lattermost procedure cannot be further improved as this

algorithm is a settings-free derivative of PSO. Hence, we
study the influences of various settings on the capabilities of
the other four procedures aiming to improve the fit of the
model to the data for each deterministic model.

Due to the generally better performance of the three
reversible models, we examine alternative settings for the
optimization procedures only for these models and
subsequently apply the best setting found to each
alternative irreversible model. The most promising
settings are used to optimize the stochastic model as well.

Taking a closer look at the effects of alternative mutation
and crossover operators on binGA and ES (Figure 4) reveals

GMAKr GMAKi GMMr GMMi CKMMr CKMMi
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Figure 2
Parameter identification using random optimization.
The Monte Carlo method constitutes the simplest way to
optimize the parameters within a model. Thereby this
method "dices" a random solution within the search space
and logs the best solution found. This procedure is repeated
twenty times in fifty multi-starts using 100,000 evaluations.
The more complex the model the better is the solution
found by the Monte Carlo method (RSE 66.920 for the
CKMMi model), but still this method cannot approach the
quality of independently generated splines (RSE 19.670).

Table 2: Settings for the standard algorithms in detail

Algorithm Population Mutation Crossover Selection

Monte Carlo 50 no no Best
Hill Climber 1, 10, 25, 50, 100, 250 Fixed Step s = 0.2, pm = 1 no Best
binGA 250 one-point, pm = 0.1 one-point, pc = 0.7 Tournament, group of 8
realGA 250 global, pm = 0.1 UNDX, pc = 0.8 Tournament, group of 8
stdES (5, 25) global, pm = 0.8 discrete one-point, pc = 0.2 Best
cmaES (5,+25) CMA, pm = 1 no Best
SA 250 linear annealing schedule, a = 0.1, initial T = 5 Best
DE 100 current-to-best/1, l = F = 0.8, CR = 0.5
PSO 100 star topology, j1 = j2 = 2.05, c = 0.73

This overview lists the standard settings for the optimization procedures used to infer the parameters in the differential equation systems. The
algorithms DE and PSO do not follow the general scheme of mutation and crossover. The Tribes algorithm is not listed here as it was designed to be a
settings-free derivative of PSO. The cmaES is used with and without elitism (plus or comma strategy). For details, see Methods and [see Additional file 1].
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that the more detailed CKMMr model can be fitted to the
data with almost any combination of both operators,
whereas the other two reversible models show larger
differences. BinGA especially provides good performance
with almost every operator combination. The only two
exceptions are no mutation combined with one- or n-point
crossover. The influence of these operators on ES is much
stronger andmore problem-specific. Some settings improve
the performance of ES, butmost result in significantly worse
fitness values. In contrast to binGA, for which the
combination of adaptive mutation with one-point or bit-
wise crossover or adaptive mutation without crossover
provides an improved average performance, the plots in
Figure 4(d) through Figure 4(f) do not show such a general
trend for ES. Thus, we evaluate the influence of themutation
and crossover probabilities pm and pc on only binGA to
identify the best ratio. The plot of the resulting fitness
landscape for the GMAKr model was limited to a fitness of
28 (Figure 5(a)). Hence, areas with a worse performance are

shown inwhite. The best combination pm = 0.2 with pc = 1.0
is the starting point for investigating the influence of
different population sizes. We vary the population sizes
from 50 to 2,000 (Figure 5(b)). The larger the population,
the smaller is the variance within this population. However,
if the population is too large, this variance increases again.
Although a larger population leads to smaller variances,
statistically, it does not help to find a better total solution for
the optimization problem.

Due to the fact that cmaESplus leads to reasonable results on
each model and also that there is no general trend for
alternative combinations of other mutation and crossover
operators, we pick the CKMMr model to examine the
influence of population size (μ + l). The value of
μ represents the number of parents in the population
from which, in each generation, l offsprings are created.
Figure 6 depicts the resulting fitness landscape. Combina-
tions of μ and l with μ > l are left out and occur as a white
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(f) CKMMi

Figure 3
Comparison of the standard optimization algorithms applied to each deterministic model. Five algorithms show
outstanding results on the reversible models. These are binGA, cmaESplus, DE, PSO, and Tribes. On the irreversible models, binGA
doesnot yield such good average results, but is still capableof finding good local optima. For thesemodels, cmaESplus andTribes also find
pre-eminent results, whereas PSO and DE are among the best algorithms, except for the GMMmodels. The real-valued GA performs
worst in all cases. The hill climbers showdifferences in their effectivenesswhen invokedwith various numbers ofmulti-starts but cannot
compete with the other algorithms. The term "fitness" is used to define a quality measure of possible solutions, which is minimized.
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area within the landscape. Larger population sizes lead to
better average fitness values. ES achieves its best average and
total performance for (25 + 125). The combination (50 +
75) leads to only a slightly worse average and total fitness.
These two settings clearly outperform all other combina-
tions. By varying the values for F, l, and CR we test how to
improve the performance of DE on each reversible model.
Generally, the choice of F = 0.8 leads to a better performance
than F = 0.5 (Figure 7). The influence of the remaining two
parameters is less clear. Hence, we pick the best setting for
each model and evaluate the influence of different popula-
tion sizes (Figure 8). A population with 100 individuals
performs best on each model according to the median.

To hone the performance of PSO we alter both strategy
parameters j1 and j2 on the star topology and apply a
grid 3 and linear 3 topology using the standard values
for j1 and j2 (Figure 9). On the three reversible models
the grid 3 topology performs slightly better than all other
settings. Hence, we test how an alternative population
size influences its capacity. Figure 10 depicts the results
of this experiment where we vary the size of the
population in the intervall from 25 to 500. A larger
size lowers the quality and a small population of 25
individuals is confirmed to be the best choice.

Comparison of the performance of the optimization
algorithms
An overview of the most successful optimization algo-
rithms together with their best suited settings can be
found in Table 4. Tribes is not the very best optimization
algorithm but yields meaningful results for all models.
As a settings-free procedure, Tribes is a good choice if
there is no time to examine alternative adjustments. The
standard PSO algorithm yields the best median fitness
for the CKMMr model with 21.687. On the GMAKr
model, DE with F = 0.8, l = 0.5, and CR = 0.3, and a
population size of 100 gives the best median fitness of
20.369 for this model. This is almost 0.9 better than
standard PSO. DE yields a median fitness of 22.196 on
the CKMMr model when set to F = 0.8, l = 0.5, CR = 0.5,
and a population size of 100. Both algorithms also
perform well on the GMMr and the Langevin model (in
total, average, and median). Hence, they are an advisable
choice when optimizing the parameters of various
mathematical models of biological systems.

Comparison of the modeling approaches
Figure 11 depicts the measurement data together with
the best simulation results of each reversible determi-
nistic and the Langevin model.

Table 3: Preliminary test results

GMAK, reversible GMAK, irreversible

Min. Algorithm Average Std. Dev. Algorithm Min. Algorithm Average Std. Dev. Algorithm

20.334 PSO 21.190 0.576 PSO 24.587 PSO 25.967 1.171 Tribes
20.335 DE 21.228 0.756 DE 25.006 Tribes 29.502 9.610 DE
21.401 Tribes 21.725 0.275 Tribes 25.683 DE 33.169 10.143 PSO
23.097 binGA 26.106 2.204 binGA 25.981 binGA 35.670 3.125 cmaESplus
24.321 cmaESplus 27.598 2.091 cmaESplus 30.704 cmaESplus 50.663 4.138 HC MS 10

GMM, reversible GMM, irreversible

Min. Algorithm Average Std. Dev. Algorithm Min. Algorithm Average Std. Dev. Algorithm

20.312 PSO 21.272 0.461 PSO 24.477 Tribes 24.654 0.282 Tribes
20.407 DE 21.711 1.153 DE 24.499 DE 37.696 19.374 DE
21.590 Tribes 21.887 0.243 Tribes 24.553 PSO 41.529 21.768 binGA
22.913 binGA 26.742 2.711 binGA 25.266 binGA 31.136 9.052 cmaESplus
23.890 cmaESplus 26.624 1.851 cmaESplus 25.812 stdES 31.338 0.546 HC MS 1

CKMM, reversible CKMM, irreversible

Min. Algorithm Average Std. Dev. Algorithm Min. Algorithm Average Std. Dev. Algorithm

20.882 PSO 21.773 0.352 PSO 21.632 PSO 23.968 0.931 DE
21.821 DE 22.633 0.562 DE 22.651 DE 24.624 0.315 Tribes
22.258 Tribes 23.079 0.464 Tribes 24.191 Tribes 25.761 0.331 binGA
22.829 cmaES 24.341 1.026 cmaES 25.152 binGA 26.434 0.339 cmaESplus
23.687 binGA 24.736 0.557 cmaESplus 25.738 cmaESplus 26.539 0.210 HC MS 10

For all deterministic models (reversible models on the left, irreversible models on the right) the five absolute best algorithms and the five average best
algorithms with standard deviations are listed.
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To evaluate which model is the most promising one we
consider the following three criteria:

1. Fit of the model to the data

2. Number of model parameters

3. Computational time for simulation (computational
complexity, weak criterion)

Each reversible deterministic model can be fitted to the
data with a similar deviation from the measurements.
The irreversible alternatives show a significantly higher
deviation. Only the irreversible CKMM model is able to
fit the data almost as well as the reversible models.
However, most curves resulting from all of the irrever-
sible models tend to become straight lines through the

measurements, and thus behave in a biologically
implausible manner [see Additional file 2]. This suggests
that the irreversible models are unable to follow the
dynamics of the system due to their fewer degrees of
freedom. The rather abstract reversible models are able
to tackle possible side effects of reactions not included in
this reaction system and simulate them in terms of the
reverse reaction. These models also consider the fact that,
in biological systems, reaction products are normally not
completely absent. Their concentration may be low, but
they still take part in the reaction, in some cases giving a
kind of feedback to the reactants [[19], pp. 312–313].
Therefore, the irreversible models are generally not
competitive with respect to the data fit. From the three
remaining reversible models, the CKMMr model
achieves the best fit to the data, with 20.100, followed
by GMMr model at 20.280 (worse by 0.180), and the
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Figure 4
Benchmark of various combinations of mutation and crossover operators. The six box plots depict the dependency of
fitnessonamultitudeof combinationsofmutationandcrossoveroperators available forbinGA(a-c) andES (d-f).All plots are limited toa
fitness of 60. The more detailed the model the better the overall fitness that can be obtained. For binGA almost all combinations of
mutation and crossover operators yield good fitness values. The only two exceptions are nomutation with one- or n-point crossover,
which shows the worst fitness on all three models. The ES is more sensitive to alternative combinations of mutation and crossover
operators. The abbreviations cma, correlat., no mutat., and 1/5 success stand for covariance matrix adaptation, correlated, and no
mutation and for the 1/5th success rule. The elaborated comparison shows that some settings of the ES lead to equally good or even
better results than that of binGA. However, most ES-settings cannot compete with the fitness values found for most binGA settings.
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GMAKr model at 20.326 (slightly worse by a further
0.046). The difference in the best model fit between the
CKMMr and the GMAKr models is only 0.303. Hence, all
three reversible models can be fitted to the data with a
similarly small relative squared error (RSE, see Methods).
A comparison of the best model fit 20.100 (CKMMr) to
the fitness of the independently computed splines
(19.670) evinces a difference of only 0.430. When
considering the number of parameters (criterion 2), the
GMAKr model shows a clear advantage with its 24
parameters compared to the 31 of the GMMr model or
even 59 of the CKMMr model.

When choosing the parameter values for the GMAKr
model completely randomly, this system can hardly be
integrated without step size adaptation. Therefore, it is
necessary to identify meaningful ranges of kinetic
parameters within BRENDA [24-26]. A low-value initi-
alization is necessary to assure numerically stable initial
populations for the optimization procedures. For the
other models this happens only if the parameters are
chosen from implausibly large ranges.

The last criterion, the computation time, also depends
on the complexity of the model but not necessarily on
the number of parameters. The GMAKr model requires
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Figure 5
Optimizing the settings for binGA on the reversible GMAK model. The best combination of mutation and crossover
operators for binGA on the reversible GMAK model is adaptive mutation and bit-simulated crossover. For this pair the
influence of the mutation and crossover probabilities pm and pc is examined and plotted in (a). Each experiment is repeated 20
times. The combination pm = 0.2 and pc = 1.0 improved the average fitness most successfully. Figure 5(b) depicts the impact of
the population size for this setting. The variance decreases with an increasing population size and reaches its minimum at
1,000. However, the best single result cannot be surpassed.
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can be improved by another choice of the parameters (μ + l). All
experiments are repeated 20 times. The fitness landscape shows
a minimum in the average values at (50 + 75).
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the smallest number of mathematical operations, fol-
lowed by the GMMr model. The most complicated
model is the CKMMr model. The average evaluation time
over 100,000 repeats with randomly chosen parameters
is 49 ms for the GMAKr model, 101 ms for the GMMr
model and 151 ms for the CKMMr model. For hardware
details see the Hardware Configuration section.

In order to take the effects of random fluctuations into
account, one has to use stochastic models of the
chemical reaction system. However, the most general
approach, the chemical master equation [67], can hardly
be solved numerically for larger systems [20]. Taking the
number of parameters (criterion 2) and the

computational costs (criterion 3) into account, the
Langevin model is the most suitable formalism to
consider the effects of random fluctuations while still
providing an acceptable performance. Since the model
can be stated in a way that allows it to be integrated with
standard solvers for ordinary differential equations, the
computational costs are of the same order of magnitude
as the solution of the GMAKr model. However, care must
be taken with respect to justification of the underlying
simplifying assumptions [10]. The stochastic model
equations of the biological system under consideration
show no qualitatively different behavior in comparison
to the deterministic model. The main reasons for this
observation are found in the rather large molecule
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Figure 7
Comparison of a multitude of settings for differential evolution on the three reversible models. The settings of
DE are studied on the reversible models. All plots suggest that the choice F = 0.8 is more appropriate than F = 0.5, whereas CR
and l influence the results less clearly.
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Figure 8
Influence of various population sizes on the performance of differential evolution. The settings F = 0.8, l = 0.5, and
CR = 0.3 are found to be most suitable for the GMAKr and GMMr model, whereas CR = 0.9 performs slightly better on the
CKMMr model. Using these settings, the influence on the population size is studied. The boxplots suggest that a population size
of 100 yields the best median results over 20 repeats.
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populations and the absence of points of instability in
the allowed phase-space region.

Parameter space analysis
Once a model has been optimized several times and
locally optimal parameter sets for the model are
available, an analysis of the space of potential solutions
becomes possible. This allows deducing characteristics of
the solution space aiming to reduce the model complex-
ity and enhance the optimization performance. If, for
instance, two parameters show a linear dependency or
correlation to each other, one of these can be removed
from the model. Another interesting experiment would
be to determine new ranges for each parameter. This can
be done if a certain parameter varies only in a very small
range compared to its maximal possible range.

For each of the three models, GMAKr, GMMr, and
CKMMr, we gather all parameter values from
all optimization runs that lead to a fitness less than 25.
In this way, we obtain one parameter matrix for
each model, in which each column corresponds to
one optimization run and each row stands for
one parameter. We conduct three analyses on the
best parameters on each reversible model (see Methods):

1. Clustering to identify groups of similar ranges or
almost constant values and to visualize the values of
each parameter.

2. Variance analysis to visualize the scattering of each
parameter.

20.0

20.5

21.0

21.5

22.0

22.5

23.0

F
itn

es
s

G
rid

 3

Li
ne

ar
 3

S
ta

nd
ar

d

A
lte

rn
at

iv
e

(a) GMAKr

20.0

20.5

21.0

21.5

22.0

22.5

23.0

F
itn

es
s

G
rid

 3

Li
ne

ar
 3

S
ta

nd
ar

d

A
lte

rn
at

iv
e

(b) GMMr

20.0

20.5

21.0

21.5

22.0

22.5

23.0

F
itn

es
s

G
rid

 3

Li
ne

ar
 3

S
ta

nd
ar

d

A
lte

rn
at

iv
e

(c) CKMMr

Figure 9
Influence of the settings on particle swarm optimization. Besides the standard star topology, a grid 3 and a linear 3
topology is tested on the three reversible models with j1 = j2 = 2.05. Furthermore, the alternative setting j1 = 2.8 and j2 =
1.3 is applied to the star topology. The grid topology performs best according to the median for the GMAKr and the CKMMr
models, but is slightly worse than the linear topology on the GMMr model. All experiments are repeated 20 times.
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Figure 10
Influence of the population size on the performance of PSO with grid 3 topology. An increasing population size
cannot improve the performance of PSO.
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3. Multiple correlation analysis aiming at finding highly
correlated parameters, some of which can be eliminated.

For Histograms showing the parameter distribution of
the GMAKr, GMMr, and CKMMr models [see Additional
file 2].

Clustering groups similar parameters and similar optimi-
zation runs together. First, all parameters are reordered
so that within the parameter vector all parameters with
similar values over all optimization runs are placed next
to each other. In the second step, all parameter vectors
from every optimization run are swapped so that similar
parameter vectors are located next to each other. Figure
12 graphically displays the results of the clustering
approach (1). The heatmaps show all parameters on the
y-axis and all optimization runs on the x-axis. The lighter
the color, the lighter the value e of the parameter in the
respective optimization run, with black representing
values close to zero. As can be seen, there is a very flat
hierarchy so there are no groups of parameters showing a
similarity, but there are many parameters which are
similar to their neighbor. A similar flat hierarchy can also
be seen for the optimization runs. There is almost no
relationship between the values of the parameters with
respect to the experiments. This means that each
parameter was optimized independently by the analyzed
procedures. Some parameters show stripes within the
heatmap of Figure 12. Stripes like these mean that the
corresponding parameter barely varies in its value over
all experiments. Note that these more or less constant
parameters do not occur within the same cluster. All
parameters of this type can either be replaced by their
median thus reducing the complexity of the system, or

the ranges of these parameters can be set to more
restrictive values. However, the experiments are broken
into two groups in all three models: The first group
shows homogeneously distributed parameter values
whereas the second one contains more differences. The
level of differences in the second group rises with the
complexity of the model.

These results are confirmed by the variance analysis (2),
whose results are shown in Figure 13. As can be seen, the
higher the dimension of the optimization problem,
i. e., the more complex the model is, the higher are the
variances among the parameter set. This indicates that all
parameters in the CKMMr model are allowed to vary
within a rather large range. Such behavior is often
referred to as a multimodal optimization problem.
In contrast, the less complex models, GMAKr and
GMMr, showed several dimensions of almost no
variance. This corresponds to the observation made
from the heatmaps that certain parameter values can vary
only within a small range of values or even stay constant
over multiple optimizations. Thus, the probability of
finding multiple local optima increases with the model
complexity. Particularly, all parameters which represent
the impact of inhibitors exhibit noticeably large var-
iances. The biological interpretation of this is that
variations in strength and concrete mechanism of
inhibition in one reaction can be balanced in terms of
other reactions because this pathway contains four
feedback inhibition mechanisms for this purpose (struc-
tural robustness).

In order to identify linear dependencies between model
parameters, we perform a multiple correlation analysis (3).

Table 4: Statistics on the most successful runs of each main optimizer

Model reversible irreversible Algorithm Population

Min Avg Std. Dev. Min Avg Std. Dev.

GMAK 20.326 20.742 0.501 25.745 34.472 15.285 PSO linear 3, j1 = j2 = 2.05 25
20.403 21.787 1.297 25.183 31.694 13.255 DE, f = 0.8, l = 0.5, CR = 0.3 100
21.975 23.812 1.604 24.741 49.045 21.285 binGA, adaptive MUT, no CROSS 250
24.321 27.598 2.091 30.704 35.670 3.125 cmaES (5+25)

GMM 20.280 22.818 2.186 24.857 27.978 9.146 DE, f = 0.8, l = 0.5, CR = 0.5 100
20.312 21.272 0.461 24.553 58.957 17.253 PSO star, j1 = j2 = 2.05 25
21.649 24.628 1.801 24.616 40.896 25.881 binGA, adaptive MUT, one-point

CROSS
250

23.890 26.624 1.851 26.414 31.136 9.052 cmaES (5+25)

CKMM 20.100 21.434 0.563 21.511 26.077 7.729 PSO grid3, j1 = j2 = 2.05 25
20.862 22.499 1.119 21.763 23.603 1.268 DE, f = l = 0.8, CR = 0.3 100
21.431 23.222 1.066 25.632 28.055 2.697 cmaES (10, 50)
22.092 23.353 0.666 25.040 25.346 0.176 binGA, adaptive MUT, no CROS 100

For each model the minimal fitness and the corresponding standard algorithm are listed. The algorithm that achives the best average fitness and the
corresponding average fitness are written in the last two columns together with the standard deviation. On the Langevin model, PSO with star
topology, j1 = j2 = 2.05 and a population size of 100 is the most successfull algorithm with a fitness of 20.716.
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For maximum generality, each parameter is assumed to
possibly correlate with all other parameters of the
system. Several highly correlated parameters are found
in each model system. The correlation results are shown
in Figure 14. All highly correlated parameters found
exhibited significant variances as can be seen in Table 5
and Figure 13. We select a subset of parameters to be

replaced by a linear regression model of highly corre-
lated parameters. In this way the number of parameters
is reduced by seven in the GMAKr model, by five in the
GMMr model and by four in the CKMMr model.
Subsequently, each model is optimized with the reduced
parameter set, using the linear regression model for the
non-optimized parameters. For this optimization, PSO is
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Figure 11
The best fit of all reversible deterministic and the Langevin models. Shown are the Langevin model, the
measurements, and all reversible deterministic models. For a better visualization, splines are added to the data as well to help
imagin how a perfect model curve would look. However, as can be seen, biological measurement data always shows
fluctuations. The splines shown here are uncoupled, one individual spline for each metabolite. Thus, there is no underlying
biological model motivating these curves. The irreversible models mostly result in straight lines through the data and are hence
biologically implausible. For the sake of a clearer recognition of the reversible models, we omit these curves from the plot, [see
Additional file 2] for the irreversible models.
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Figure 12
Clustering of the best parameter values of all reversible models. A cluster analysis is carried out on all parameter
values that have a fitness of less than 25. Each row of the above heatmaps corresponds to one parameter of the respective
model and each column gives one parameter set that has been obtained in one of the optimization runs. The cluster algorithm
swaps rows and columns to group similar parameters and parameter sets next to each other. This procedure leads to stripes
from the left to the right, meaning that many parameters are often set to similar values in all optimization runs. If there were
rectangular blocks within the heatmaps, this would mean that some parameters are correlated, thus showing a similar
behavior, but because this is not the case, all parameters are distinct from each other, which can also be seen from the flat
dendrograms at the side of each heatmap. Also, the dark-colored figures show that most parameters are set to low values
because zero corresponds to black. The lighter the color the higher the value. For details, histograms showing the parameter
distribution for the three models [see Additional file 2].
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Figure 13
Variance analysis of the best parameter values of all reversible models. Each bar plot shows the variances of every
parameter among the best optimization runs for the three reversible deterministic models. For the sake of a better
visualization these are plotted with a logarithmic scale.
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used because it is the the best-performing procedure in
our benchmark. The results are shown in Table 5. The
parameter reduction induced only a small loss of
performance in each model, indicating that the original
number of parameters does not reflect the true degrees of
freedom of the system.

Conclusion
Thepurpose of this study is to identify both themost suitable
modeling approach and the best-performing optimization
algorithm to calibrate the parameters contained inmetabolic
network models. To this end, we constructed one probabil-
istic andsixdeterministicmathematicaldescriptionsof valine
and leucine biosynthesis inC. glutamicum. The parameters of
each model were optimized with respect to in vivo measure-
ments for the reacting species within the system. In this way
we compared eight optimization procedures. We system-
atically benchmarkedboth the algorithms and the alternative
models to highlight their advantages and drawbacks. In the
following paragraphs, we draw several conclusions from the
comparison of these seven variants of a realistic reaction
system, and we assume them to hold for similar systems.

Thus, if no prior knowledge about a comparable metabolic
system is available, our results can serve as a starting point for
model construction and calibration.

Let us consider the capabilities of the modeling
approaches in more detail, when taking into account
the ability to approximate measured data, the hybrid
model for the reversible system based on convenience
rate laws and Michaelis-Menten equations (CKMMr) has
the best performance. At the same time, this is the most
complex model with respect to the number of para-
meters and computational costs for each simulation. The
acceptable parameter values for this model, found by
multiple optimization runs, varied over several orders of
magnitude. This corresponds to the fact that the
optimization problem shows a large number of local
optima, which is often referred to as multimodal
behavior. Furthermore, this model is integrable with
parameter values selected by chance from an almost
arbitrarily wide range. This means that no preliminary
data analysis in enzyme databases is required to obtain
an integrable start population for the CKMMr model.

On the other hand, a simplified deterministic descrip-
tion of the reaction system based on the generalized

(a) GMAKr (b) GMMr

(c) CKMMr

Figure 14
The correlation among the parameters in all
reversible models. Each heat map shows to which extent
each parameter is correlated with all other ones. The main
diagonal shows the self correlation, which equals one. The
correlation was computed using a multiple correlation
analysis based on the Pearson correlation coefficient. If two
parameters are highly correlated, one of both can be
replaced by the other one hence reducing the system's
dimensionality.

Table 5: Reduced reaction system and optimization results

Model Replaced
Parameter

Linear Regression
Model

Mean Fitness ±
Std. Dev.

GMAKr k+1 a1 · K 3
I 21.4782 ± 0.3254

k+3 a2 · K 3
I

k-1 a3 · K 3
I

k-3 a4 · K 3
I

k+4 a5 · k-4
k+7 a6 · k-7
k+9 a7 · K-9

GMMr k-4 b1 · k+4 + b2 · k+5 21.9538 ± 0.0832
k+1 b3 · k-1 + b4 · K1

I

k+7 b5 · k-7
k+8 b6 · k-8
k+9 b7 · k-9

CKMMr k+1
cat c1 · K [ ]Pyr

M
1

22.7219 ± 0.6626

K [ ]DHIV
M

1
c2 · K

[ ]NADP
M

+
1

k+3
cat c3 · K [KIV]

M
1

K [KIC]
M

2
c4 · K [KIV]

M + c5 · K [Glut]
M

2

The table lists the parameters that are replaced by linear regression
models with coefficients ai, bi, ci of other highly correlated model
parameters.
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mass action rate law (GMAKr) yields good performance
as well. Its advantage over the CKMMr model is its small
number of parameters. Its major disadvantage is the
strong tendency to become non-integrable when select-
ing parameter values by chance from a larger range. A
restriction of the parameter space is required to ensure
numerical stability when integrating metabolic network
models. Some of the parameters showed almost no
variance among the results of multiple optimization
runs.

For models of biochemical systems with low metabolic
concentrations or systems operating close to the point of
instability, stochastic effects should be considered.
Generally, simulating large stochastic models is compu-
tationally not feasible. The Langevin approach is a
simplified stochastic description which facilitates taking
these effects into account at acceptable computational
costs. For the specific biochemical example network
considered in this study, the stochastic effects are
negligible as the behavior of the Langevin model is
similar to the GMAKr model due to the rather large
molecular populations. However, the benchmark
showed that this approach is suitable for large-scale
parameter optimization and model inference.

Modeling certain reactions in a non-reversible way as
was done in all remaining models leads to a significantly
worse ability to fit the measured data. We conclude that
possible side effects are compensated by means of the
reverse reaction. When modeling multi-enzyme systems
all reactions should be treated reversibly, unless there is
significant biological evidence to introduce irreversible
rate laws. If neither the kinetic equations nor meaningful
ranges of the parameter space are known, the model
should be constructed using convenience kinetics. If the
parameter space can be restricted using prior knowledge
and the number of parameters matters, a model based
on generalized mass-action rate laws constitutes an
appropriate choice.

The second aim of this study is to identify the best-
performing optimization algorithm for parameter esti-
mation. The ability to find good local optima for the
parameter values is the first quality measure for the
algorithms. All five evolutionary algorithms tested
yielded reasonable performance. From a user perspec-
tive, these algorithms differ in the number of settings
which influence their behavior and are therefore more or
less easy to apply. Hence, the effort to find a good
configuration for an algorithm constitutes the second
criterion of quality. The Tribes algorithm was among the
best-performing algorithms in our benchmarks. As a
settings-free optimization procedure, it is the most user-
friendly method. However, other algorithms are able to

yield even better results after fine-tuning. Particularly,
DE and PSO provided the best performance while
keeping the effort necessary for their fine-tuning within
reasonable limits. ES and binGA are also able to identify
valuable local optima for all systems but require
examining a large number of well-established alternative
operators for their crossover and mutation steps.

For first optimization attempts, the easy to use Tribes
algorithm is a good choice. With slightly more effort, the
user can adjust the algorithms PSO and DE to yield even
better results. Combined with the convenience kinetics
modeling approach, these algorithms provide a suitable
choice to model unknown systems of metabolic
reactions.

Methods
The biochemical example network
Figure 1 illustrates the biosynthesis of Val and Leu in a
process diagram [68, 69] according to the METACYC [8]
and KEGG[6, 7] databases. The pathway starts with
pyruvate (Pyr), from which Val and Leu are produced.
Both products are used for biomass production or can be
transported out of the cell if not needed. It is important
to note that this pathway is regulated by both products
in six feedback inhibition mechanisms. The transport of
Leu and Val across the cell wall is actually performed by
the same enzyme, so that both substrates compete with
each other. However, for modeling purposes two distinct
reactions are necessary in which the competition is
included as inhibition. Some reactions are lumped
together (Table 1) as suggested by Magnus et al. [52].
Since the reaction 2 IPM) ⇌ 3 IPM is fast, it is assumed to
be in equilibrium. This and the two following reactions
3 IPM + NAD+ Æ 2 I3OS + NADH2 as well as
(2S)-2-isopropyl-3-oxosuccinate (2 I3OS) Æ 2-ketoiso-
caproate (KIC) +CO2 that only depend on the concen-
tration of 2 IPM are lumped together, introducing the
symbol IPM for both derivatives.

Glucose stimulus-response experiment
After a 10 min starvation period, a glucose pulse was
added to the culture medium increasing the glucose
concentration from 0 to 3.5 g/l. This glucose step-
function induced a dynamic response from the meta-
bolic intermediates linked to this central nutrient. Over a
time span of 25 s, beginning 4 s before the glucose
pulse, 47 samples were taken for 13 metabolites on the
pathway starting at the state of Pyr, which is generated
during phosphotransferase system-mediated glucose
uptake and is also the final product of glycolysis.
Immediate quenching and cooling with methanol to -
30°C prevented the metabolites from further reactions.
Mass spectrometry (HPLC MS/MS) was used to quantify
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the metabolite concentrations in the probes. For
details of this experiment we refer to Magnus et al.
[52]. For technical reasons, NADH2 and NADPH2 as well
as acetylCoA and CoA could not be measured with a
high degree of exactness. Thus, Magnus et al. [52]
suggested taking into account that both couples,
NAD+ and NADH2 as well as NADP+ and NADPH2,
follow a conservation relation so that the total amount
of both coupled metabolites remains constant during
the 25 s of interest. Thus, NADH2 = 0.8 mM - [NAD+]
and [NADPH2] = 0.04 mM - [NADP+]. We assume a
constant pool of the other two central metabolites
that does not vary over the considered time span. The
steady-state concentrations (Table 6) of the seven
metabolites to be simulated serve as initial values for
the models.

Mathematical models
The rates of change of each metabolite's concentration
over time can be calculated by linear combination of the
stoichiometric matrix N describing the structure of the
reaction system, i. e., its topology, with the vector of
reaction velocities v that depends on the vector of
reacting species S, the parameter vector p, and may also
explicitly depend on time t:

d
dt

t tS Nv S p= ( ( ), , ). (1)

For the resulting seven-dimensional differential equa-
tion system [see Additional file 2]. The databases KEGG[6,
7] and METACYC[8] do not indicate if the reaction
network pictured in Figure 1 contains irreversible
reactions besides the draining of both products as listed
in Table 1. One way to study the influence of the
existence or non-existence of reverse reactions on the
dynamics of the whole system is to derive alternative
models and investigate their ability to approximate the
data. The simpler irreversible reactions are favored if
they are able to fit the data. The following paragraphs
present the general equations for all rate laws, which are
inserted for each vi and investigated in this study. For the
resulting differential equation systems [see Additional

file 2]. An implementation of the fourth-order Runge-
Kutta method [70] solves the ordinary differential
equation systems. The stochastic Langevin system is
adapted to be integrated using the MATLAB™ integrator
ode15s [71, 72].

Generalized Mass Action Kinetics (GMAKr)
The simplest rate law is mass action kinetics, in which
the effects of the participating enzymes are hidden in the
rate constants. To include inhibition effects, we apply an
inhibition function that fits the generalized mass action
rate law [5, 73]:

v F k S k Sj j j i
n

j i
n

ii

ij ij( , ) ( , ) .S p S p= −
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟+ −

− +∏∏ (2)

The function Fj(S, p) must be a positive function of the
substrate concentrations S and the parameter vector p to
introduce saturation or inhibition effects to the common
mass action rate law written in brackets [5]. For
convenience of notation, the matrices N± are introduced,
whose elements nij

± express the absolute values of the
positive or negative stoichiometric coefficients. Feedback
inhibition loops are included using the following
approaches:

F
K j

j( , )
[ ]

S p =
+ ⋅

1

1 I I
(3)

F Kj j( , ) exp( [ ])S p = − ⋅I I (4)

with K j
Ir0 . While Equation (4) is derived intuitively,

driven by the assumption that the exponential function
constitutes an important growth and shrinkage function
in biology, Equation (3) can be derived from the
competing reactions of the enzyme with its substrate or
inhibitor. The first equation can be derived using the
equilibrium constant for the inhibition reaction and the
conservation law of the enzyme as well as the enzyme-
inhibitor complex concentrations. Applying Equation
(2) combined with Equation (3) to reaction system R1

through R10 leads to an Ordinary Differential Equation
(ODE) system with 24 parameters k± j, K j

I .

Irreversible GMAK with exp inhibition (GMAKi)
By setting all product concentrations apart from R2 and
R9 to zero and applying Equation (4) to Equation (2) we
obtain the irreversible version of this equation system
with 18 parameters k± j, K j

I .

Michaelis-Menten equations (GMMr)
Three reactions of the system (R3, R6, and R10, Table 1)
fo l low a Michae l i s -Menten mechanism. The

Table 6: Steady-state concentrations of the reacting species

Metabolite Concentration (mM)

AcLac 0.236
DHIV 0.132
IPM 0.0227
KIC 0.0741
Leu 0.209
Val 29.4

The data in this table serve as the initial values of all differential equation
systems derived herein.
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corresponding rate law is given by Equation (5), where S
forms product P and the catalyst E is inhibited by I:

v

v

K

v

K

K a K K

j =

+ − −

+ + +
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

+

m

S
M

S
m

P
M

P

I
I

S

S
M

P

P
M

I

[ ] [ ]

[ ] [ ] [ ] [
1 1

]]
.

K bI
⎛

⎝
⎜

⎞

⎠
⎟

(5)

In the case of R3 theremight be a reverse reaction.R6 andR10

are assumed to be irreversible because they describe the
transport of Val and Leu out of the cell. We further assume
that the constants vm in R6 and R10 are allowed to be zero so
that there is no need to export Val or Leu if it is needed for
biomass formation. All other reactions are modeled using
the GMAKr approach including Equation (3) for inhibition.
The complete GMMr model contains 31 parameters to be
estimated. To avoid numerical problems, the inhibition
constants inMichaelis-Menten kinetics are transformed into
their reciprocals K a b

K a b
I

I
|

|’ = 1 . Thismodification allows the
optimization procedure to "decide" which kind of inhibi-
tion occurs [5] [see Additional file 2].

Irreversible Michaelis-Menten Model (GMMi)
From the GMMr model an irreversible alternative is
established by setting all product concentrations to zero.
The resulting system contains 24 parameters K j

Ia b| , k± j,
K ij

M to be estimated.

Reversible Convenience Kinetics (CKMMr)
The general equation of the convenience rate law for
reaction j reads

v h S K h S K

k j
Si

K ji
j j m jm

w
m jm

w

m

jm jm= ⋅
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SSi
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⎟
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∑∏ 100

(6)

with hA and hI being functions for activation or
inhibition, respectively, the turnover rates k j±

cat and the
matrices W± containing positive entries for the connec-
tivity of the modulating metabolites as well as K ji

M being
a constant analogous to the Michaelis constant KM [16].
For inhibition, which plays an important role in Val and
Leu biosynthesis of C. glutamicum,

h S K
K

K Si
Si
K

K i
iI

I
I

I
I

I
( , ) =

+
=

+
=

+

1

1

1

1 ’S (7)

has been suggested and herein applied. Besides the
reciprocal constant this approach equals Equation (3).

The product [Ej] k j±
cat is lumped into one parameter V j±

m

for all j assuming that all enzyme concentrations remain
constant during the 25 s. No enzyme concentrations
have been measured, so that an optimizer cannot
distinguish between the product of two parameters or
one parameter. The three reactions that follow the
Michaelis-Menten mechanism are modeled using Equa-
tion (5). The reactions R6 and R10 are considered
irreversible as described before. Applying Equation (6)
to all remaining reactions in the system R1 through R10

yields an equation system with 59 parameters. The
stoichiometric matrix has full column rank. Hence, the
parameters k j±

cat can be estimated directly without
violating thermodynamic constraints [16].

Irreversible Convenience Kinetics (CKMMi)
By setting all product concentrations apart from R2 and
R9 to zero, we obtain an irreversible version of this
model containing 41 parameters.

Stochastic modeling based on the Langevin equation (LANG)
The concentration variables Si are replaced by the
random variables Xi(t) ≡ number of Si molecules in the
system at time t, i = 1,...,N in an enclosing reaction
volume V, where the N species interact through M
reaction channels Rj, j = 1,...,M. Each reaction is
characterized by a stochastic rate constant cj depending
only on the physical properties of the reacting molecules
[11]. In the case of large systems with high metabolite
concentration these simulation strategies are highly
computationally intensive and therefore unsuited for
large-scale parameter optimization. However, for macro-
scopic systems it is possible to directly approximate the
time evolution of the stochastic state variables by the
chemical Langevin equation [10, 11], which reads

d d  x t n a t n a t W i Ni ij j

j

M

ij j j

j

M

( ) ( ( )) ( ( )) , ,...,= + =
= =
∑ ∑x x

1 1

1

(8)

when rewritten using the Wiener process [74] for easier
numerical treatment. Here nij represents the stoichio-
metric coefficient of the ith metabolite in the jth reaction.
The propensity aj is defined as: ajdt = cjhjdt ≡ probability
that an Rj reaction will occur in V in (t, t + dt), given that
the system is in state (X1,...,XN) at time t. The function hj
gives the number of distinct Rj molecular reactant
combinations available in the state (X1,...,XN), j = 1,...,
M. The discrete variables (X1,...,XN) are replaced by the
continuous molecule concentrations (x1,...,xN). In order
to numerically integrate the Langevin equation with
standard ODE solvers, the equation is split into a
stochastic and a deterministic term. The deterministic
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term and the deterministic part of the stochastic term are
treated like ODEs, as suggested by Bentele et al. [75]:

Δ Δˆ ( ) ( )x t n a ti ij j t

j

M

=
=
∑ x

1

(9)

Δ Δ%x t n a t ti ij j

j

M

( ) ( ( )) .=
=
∑ x

1

(10)

The latter term is then multiplied by a normal random
variable ni =  in analogy to the finite Wiener
increments used in the Euler-Maruyama method [74].
After each time-step, both terms are added to give the
full state-variable change:

Δ Δ Δx t x t x t ni i i i( ) ( ) ( )= + ⋅% (11)

allowing adaptive step-size control of the ODE solver.
The reaction propensities are calculated according to
Gillespie [11]. This leads to an equation system with 24
parameters.

Representing external metabolites with splines
As suggested by Magnus et al. [52], metabolites whose
concentrations cannot be explained in terms of the
model are considered external, i. e., they are an input to
the model but involved in numerous other reactions that
are not reflected by this system (Figure 1). We
approximate these using cubic splines which smooth
the measurements. To weight all measurements equally,
all ωi are set to 1. Due to the different ranges of the
concentrations of the six metabolites, it is not possible to
find one appropriate degree of smoothness l that leads
to equally smooth curves. Hence, we transform all
concentrations into the range [0, 1], set l = 1, compute
the spline coefficients and re-transform them back into
the original range of the specific metabolite. For details
and a figure showing the resulting splines [see Addi-
tional file 2].

Fitness function and search-space restrictions
Since many distance measurements have been defined,
the choice of the most appropriate one is an important
step for the parameter estimation process. Due to the
differences in the concentrations of certain metabolites
the Euclidian distance between the model values and the
measurements is not applicable: metabolites in higher
concentration would dominate in fitness over those in
lower concentration. Minimizing the relative squared
error (RSE, see Equation (12)) overcomes this limitation.
The outer sum runs over all dimensions of x̂ describing
the model output at each sample time τt. T is the number
of measurements taken and X = (xti) is the given data
matrix.

f
xi t xti

xtit

T

i

RSE( , )
( )

.
dim( )

x X
x

= −⎛

⎝
⎜

⎞

⎠
⎟

==
∑∑ t

2

11

(12)

This fitness function was used in several publications for
similar problems [33, 47, 48].

To restrict the search space for the optimizers, we limit
parameter values to the range [0, 2000], covering
98.748% of all known kinetic parameters in BRENDA
[24-26], as suggested in [47, 48]. All known parameters in
BRENDA are greater than or equal to zero. To avoid
division by zero in some parameters, the range is set to [ε,
2000] with ε = 10-8. For parameters transformed in
Michaelis-Menten equations (as described above), the
range is limited to [0, 108], resulting in a search space
from 10-8 through ∞. Only 0.962% of all KI and 0.004%
of all KMvalues in BRENDA are reported to be lower than 10-
8. This ε is chosen to guarantee numerical stability. These
restrictions are applied to all parameters. In cases where
no division by the parameter value is necessary, ε = 0 is
allowed to be a lower bound of the parameter range.

All parameters are initialized with low values to avoid
obtaining unstable initial populations and it is assumed
that large parameter values are rather infrequent in
nature [47, 48]. A Gaussian distribution with μ = s = 1
guarantees low initial values and ensures stable initial
populations. Each parameter is set to the boundary
values if it breaks any of the search-space restrictions. We
limit the initialization procedure for all models to a low
value initialization to ensure equal conditions in all
comparisons.

Systematically improving the performance of the
optimization procedures
Standard settings for the optimization algorithms
For a comprehensive introduction to all optimization
algorithms used in this study [see Additional file 1], in
which we also explain the specific settings and operators
for each method in detail.

Using the open-source framework EVA2 for nature-
inspired optimization procedures [37, 38], we test the
following standard settings of the algorithms (Table 2)
on the inference problem, of which the following are
evolutionary optimization procedures:

• Binary Genetic Algorithm (binGA) with one-point
mutation, pm = 0.1, and one-point crossover, pc = 0.7.

• Real-valued Genetic Algorithm (realGA) with global
mutation, pm = 0.1, and UNDX crossover, pc = 0.8. Both
GAs use tournament selection with a group size of 8 in a
population of 250 individuals.
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• Standard Evolution Strategy (stdES) as (5,25)-ES with
global mutation, pm = 0.8, and discrete one-point
crossover, pc = 0.2.

• Evolution Strategy with covariance matrix adaption
with and without elitism, i. e., "plus" strategy, (cmaES/
cmaESplus) with μ = 5 and l = 25, pm = 1.0, and no
crossover. All ESs use deterministic best-first selection to
choose the next generation.

• Differential Evolution (DE) with the scheme DE/
current-to-best/1 [42] setting l = F = 0.8, CR = 0.5 and a
population size of 100.

Two optimization strategies are swarm intelligence
optimization procedures:

• Constricted Particle Swarm Optimization (PSO) [45, 76]:
setting j1 = 2.05, j2 = 2.05, c = 0.73 using star topology and
a population size of 100 as well as its derivative

• Tribes [46]

We also study the following classical non-evolutionary
methods:

• Monte Carlo Optimization (MCO) with 50 multi-runs

• (Multi-start) Hill Climber (HC), the number of starts
varying from 1, 10, 25, 50, 100 to 250 using Gaussian
mutation with a fixed standard deviation of s = 0.2 and a
mutation probability pm = 1.0.

• Simulated Annealing (SA) with a = 0.1 and an initial
temperature of T = 5 using a linear annealing schedule
and a population size of 250.

For all algorithms with population sizes lower than 250
individuals, a pre-population with 250 parameter
vectors is generated and the best are selected to create
the initial population. This step is crucial to obtain
comparable results for algorithms with different popula-
tion sizes [33]. Every setting described in this and all
following paragraphs is repeated 20 times with 100,000
fitness evaluations per run on the deterministic models.
The results of this preliminary trial are shown in Table 3
and Figure 3. The methods found to be successful in
these analyses are utilized to optimize the Langevin
model as well.

Alternative settings for the best optimization algorithms
We first study the influence of various mutation and
crossover operators on the three deterministic reversible
models for binGA and ES. In a grid search, all
combinations of the following operators are evaluated,

and we exclude the combinations of no crossover with
no mutation. For binGA, no mutation, one-point, and
adaptive mutation, an operator which modifies indivi-
dual mutation probabilities similar to ES step-size
adaptation, is tested, paired with one- and n-point (n =
3), uniform, and bit-simulated crossover, each with pm =
0.1, pc = 0.7. On ES we use the mutation operators
covariance matrix adaptation (CMA), the 1/5th success
rule as well as correlated, global, local, and no mutation
paired with the crossover operators one- and n-point (n
= 3), UNDX, and no crossover, each with pm = 0.8, pc =
0.2. To study the influence of the mutation or the
crossover operator alone, the values for pm and pc are set
to zero or one, depending on which influence is
investigated. The population size for binGA is set to
100 and for ES (5, 25) (Figure 4). For the most
successful operator combination (adaptive mutation
with bit-simulated crossover) on the GMAKr model,
we study the influence of the probabilities pm and pc,
with which the respective operator is invoked by binGA.
All pairs of pm and pc are evaluated from 0.0 through 1.0
in 0.1 steps and a population size of 100, excluding pm =
pc = 0.0 (Figure 5(a)). Subsequently, the population
sizes 50, 100, 250, 500, 1,000, and 2,000 are tested for
binGA with pm = 0.2 and pc = 1.0 (Figure 5(b)). For the
cmaESplus, we evaluate all combinations of μ Œ {5, 10,
25, 50, 75}, and l Œ {10, 25, 50, 75, 100, 125, 150},
excluding cases where μ > l and keeping pm at 1.0, and pc
at 0.0 (Figure 6).

For the DE approach, another grid search is performed
on the three reversible deterministic models, altogether
testing values for F, l Œ {0.5, 0.8}, and CR Œ {0.3, 0.5,
0.9} (Figure 7). For the most promising parameter set (F
= 0.8, l = 0.5, and CR = 0.3 for GMAKr and GMMr, and
CR = 0.9 for the CKMMr), the population size is
additionally varied over {50, 250, 500, 1000} for each
model (Figure 8).

The PSO with star topology and standard settings for j1 =
j2 =2.05 is comparedwith a star topology and settingsj1 =
2.8, j2 = 1.3, as suggested in [77] as well as a linear 3 and
grid 3 topology with standard parameters on all three
reversible deterministic models (Figure 9). The popula-
tion size is set to 25. Additional population sizes, namely
{50, 250, 500}, are evaluated using a grid 3 topology and
standard values for j1 and j2 on thesemodels (Figure 10).

Parameter-space analysis
The completion of the large-scale parameter optimiza-
tion study in the first part yields a large set of different
optimal parameters. We select all parameter sets with a
fitness less than 25 for each reversible deterministic
model (GMAKr, GMMr, and CKMMr).
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Cluster analysis
To cluster these best parameter sets (Figure 12), we apply
the agglomerative nesting algorithm (AGNES) [[78], pp.
199–251], using a Euclidean metric, which is imple-
mented in the cluster package [79] of the R-project [80].

Variance analysis to visualize the scattering of each parameter
The variances of each parameter among the best optimiza-
tion results of the three reversible deterministic models are
calculated and plotted on a logarithmic scale due to the
large differences in their orders of magnitude (Figure 13).

Multiple correlation analysis
Multiple correlation rY,(X1,...,Xp), measures the dependency
of one model parameter Y on p other parameters X1,...,Xp of
themodel. Here, rY,(X1,...,Xp) is defined as the largest simple
correlation among the correlations of Y and all linear
combinations of the Xi, that is a Xi i

i

p

=
∑

1

, with arbitrary
weights ai. A large value of rY,(X1,...,Xp) indicates a strong
dependence of Y on other model parameters and suggests
that Y is not a genuine degree of freedom of the model. In
order to calculate the multiple correlation of Y and X1,...,Xp

within a sample of size n different runs for each parameter,
all simple correlations rY, Xi must be determined using the
Pearson correlation coefficient rY, Xi [81]:
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A correlation of ± 1 means that there is a perfect positive/
negative linear relationship between the parametersY andX.
In that case, the parameter Y can be explained by parameter
X and therefore be omitted. The multiple correlation is then
established from all of these simple correlations [81]:
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The coefficient of determination

B rY X X p
= ,( ,..., )1

2 (15)

measures how well the paremeter Y can be explained in a
linear sense by the other model parameters X1,...,Xp. After
identification of highly correlated parameters, a subset of
replacement candidates is selected. A parameter X is
considered a replacement candidate for parameter Y if rX,Y
≥ 0.7 and the p-value of the correlation, computed using a

t-test, is close to zero. The degrees of freedom selected for
replacement are subsequently substituted by a linear
regression model of their correlated parameters.

Hardware configuration
All experiments are run on a cluster with 16 AMD dual
Opteron CPUs with 2.4 GHz, 1 MB level 2 cache, and 2
GB RAM per node under the Sun Grid Engine, and JVM
1.5.0 with Scientific Linux 5 as operating system. An
optimization of one model in 20 parallel multi-runs
takes approximately 1.5 h.

Availability of models and optimization procedures
All models investigated in this study are included as
optimization problems in EvA2, a Java™-based workbench
forheuristicoptimization[37,38],whichcanbedownloaded
at http://www.ra.cs.uni-tuebingen.de/software/EvA2.
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Additional file 1
Nature-inspired heuristics for optimization. This document provides a
detailed introduction to the basic concepts of all evolutionary and swarm
intelligence algorithms that are used in this study.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-5-S1.pdf]

Additional file 2
Modeling the valine and leucine metabolism in Corynebacterium
glutamicum. This document gives a comprehensive introduction to
mathematical modeling of biochemical systems and all four kinds of rate
laws that are used in this study. Additionally, the method to introduce
inhibition effects to the generalized mass action rate law is derived in
this document. Histograms are presented showing the distribution of the
parameters. For the best-performing optimization algorithms, the fitness
is plotted depending on the evaluations of the objective function.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-5-S2.pdf]
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