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Abstract
The Ca2+ coupling between endoplasmic reticulum (ER) and mitochondria is central to multiple cell
survival and cell death mechanisms. Cytoplasmic [Ca2+] ([Ca2+]c) spikes and oscillations produced
by ER Ca2+ release are effectively delivered to the mitochondria. Propagation of [Ca2+]c signals to
the mitochondria requires the passage of Ca2+ across 3 membranes, namely the ER membrane, the
outer mitochondrial membrane (OMM) and the inner mitochondrial membrane (IMM). Strategic
positioning of the mitochondria by cytoskeletal transport and interorganellar tethers provides a means
to promote the local transfer of Ca2+ between the ER membrane and OMM. In this setting, even
>100µM [Ca2+] may be attained to activate the low affinity mitochondrial Ca2+ uptake. However, a
mitochondrial [Ca2+] rise has also been documented during submicromolar [Ca2+]c elevations.
Evidence has been emerging that Ca2+ exerts allosteric control on the Ca2+ transport sites at each
membrane, providing mechanisms that may facilitate the Ca2+ delivery to the mitochondria. Here
we discuss the fundamental mechanisms of ER and mitochondrial Ca2+ transport, particularly the
control of their activity by Ca2+ and evaluate both high and low [Ca2+] activated mitochondrial
calcium signals in the context of cell physiology.
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Mechanisms of ER-mitochondrial Ca2+ transport: Ca2+-mediated feedforward
and feedback pathways
Endoplasmic-and sarcoplasmic reticulum (ER/SR) Ca2+ release mediated by IP3R/RyR

The ER forms a luminally interconnected network of tubules and cysternae throughout the
cytoplasm and shows inhomogeneous distribution of the Ca2+ uptake and release sites. Based
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on these properties, different cytoplasmic signals may converge in the ER to form spatio-
temporally controlled Ca2+ release patterns [1;2].

ER Ca2+ uptake—The resting [Ca2+] in the lumen of the ER/SR ([Ca2+]ER) is in the range
of 0.1–0.8 mM, ~4 orders of magnitude higher than [Ca2+]c. This steep [Ca2+] gradient, which
is comparable to the one across the plasma membrane, is built up primarily by means of
Ca2+ pumps of the SERCA family at the expense of ATP hydrolysis (Fig1A). SERCA pumps
are encoded by 3 genes that yield more than 10 different isotypes at the protein level due to
alternative splicing. The expression of the different isotypes is tissue and developmental stage
specific. SERCA pumps are controlled by a host of Ca2+-dependent and independent cytosolic,
intra-membrane as well as luminal factors [3]. Evidence has been presented that mitochondrial
function e.g. ATP production and Ca2+ uptake may exert local control on SERCA activity in
the adjacent ER [4–7].

ER luminal Ca2+ buffering—The ER Ca2+ storage capacity is dependent on the expression
of the intra-ER Ca2+ binding proteins [8;9] that may also have a role in chaperoning Ca2+

release channel proteins [10]. In pancreatic acinar cells, the Ca2+-binding capacity in the lumen
of the ER was calculated to be ~100 times lower than in the cytosol (20 vs. ~1500–2000
[11]), suggesting greater mobility for the Ca2+ ions inside the store. The major luminal
diffusible Ca2+ buffers are calreticulin (CRT) in the ER and calsequestrin (CSQ) in the SR.
CRT may also bind to the SERCA [12] and CSQ forms a complex with the ryanodine receptor
(RyR) [13] to effectively control [Ca2+]ER close to the transport sites and to regulate their
activity. Changes in the ER Ca2+ loading in association with CRT deficiency or overexpression
were not paralleled by similar changes in [Ca2+]ER [14;15], indicating that the steady-state
[Ca2+]ER is maintained under a wide range of store Ca2+ content. Interestingly, in CRT-
overexpressing cells the IP3-mediated [Ca2+]m rise was suppressed and was transient probably
due to the rapid reuptake of Ca2+ mediated by the SERCA [5].

ER Ca2+ release—Two major and phylogenetically related families of Ca2+ release channels
in the reticular Ca2+ stores are: the inositol 1,4,5-trisphosphate receptors (IP3Rs, types 1,2,3)
that reside primarily in the ER (Fig1A) and the RyRs (types 1,2,3) predominantly in the SR of
muscle cells. However, IP3Rs are also present in the SR of some muscle cells and RyR in the
ER of certain non-muscle cells. Different cell types contain various combinations of the 3
IP3R isotypes, whereas in each tissue one RyR isotype is dominant (skeletal muscle, type 1;
cardiac muscle, type 2; smooth muscle and brain, type 3). Recently, in a cell line that expresses
all IP3R isoforms, type 3 IP3Rs were shown to preferentially transmit calcium signals to the
mitochondria [16]. The IP3Rs and RyRs encounter dozens of molecular interactions to receive
input from different signalling systems (see [17–19] for recent reviews). One of the principal
factors that determine the Ca2+ release signal output is the regulation of the release channels
by Ca2+ itself. Both, IP3R and RyR have been reported to be regulated by luminal and cytosolic
Ca2+ as well. The control of Ca2+ release by luminal and cytosolic Ca2+ and other factors is
expanded below.

The IP3 sensitivity of the IP3R is increased by luminal Ca2+ [20;21] but it was claimed that
this co-agonistic effect had been established via a cytosolic Ca2+ binding site by Ca2+ exiting
through the IP3R [22]. On the other hand, single channel studies conducted at optimal [IP3]
levels indicated the presence of a luminal Ca2+ inhibitory site [23;24]. The inhibition attributed
to this mechanism could be relieved by cytosolic ATP (500 µM) [25]. Recently, ERp44, an
ER luminal protein has been shown to interact with the IP3R1 in a Ca2+, redox and pH
dependent manner and to inhibit the Ca2+ release when the Ca2+ load falls [26]. This mechanism
does not apply to other IP3R isoforms and the luminal Ca2+ regulation of the IP3R2&3s has
not yet been studied. Similarly to the IP3R, the activation of RyR is also regulated by the luminal
[Ca2+]. Multiple reports showed that increasing luminal [Ca2+] causes a net increase in the
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channel activity [27–29]. A functionally relevant Ca2+ binding site has been localized on the
RyR [30] but recent data shows that the stimulatory Ca2+ effect is mediated by the luminal
CSQ that forms a regulatory complex with triadin and junction [13].

Overexpression of ER-targeted anti-apoptotic Bcl-2 protein caused increased Ca2+-leak from
the ER, suppressed the IP3R-linked [Ca2+]m responses and gave protection against ceramide-
induced apoptosis [31;32]. Binding of Bcl-2 to the IP3R may also be relevant for these effects
[33;34]. To directly test the ER Ca2+ load dependence of the IP3R-mediated Ca2+ release and
the corresponding mitochondrial Ca2+ uptake, we preloaded permeabilized RBL-2H3 cells
with small pulses of Ca2+. As the ER Ca2+ load was augmented the Ca2+ release induced by
optimal IP3 increased in a linear fashion. Interestingly, the mitochondrial Ca2+ uptake
associated with the IP3-induced Ca2+ release displayed a supralinear relationship with
increasing Ca2+ loading of the ER. This was also apparent when the [Ca2+]c was clamped by
EGTA at resting levels (Csordás& Hajnóczky, unpublished). Thus, the local Ca2+ signal
propagation from IP3R to the mitochondria is effectively controlled by the ER Ca2+ load.

IP3R/RyRs show a bell-shaped [Ca2+]c dependence for the activation of both receptors
although some subtypes (RyR2 and in a study, IP3R3) lack inactivation at physiologically
relevant [Ca2+]c ranges [reviewed in [17;18;35;36]]. Activation of the Ca2+ release channels
by [Ca2+]c is one of the principal mechanisms for coordination of individual release events
with each other giving rise to regenerative propagation of the Ca2+ release [reviewed e.g. in
[37]]. On the other hand, the bell-shaped [Ca2+]c dependence of activation offers a mechanism
for inhibiting release events by high [Ca2+] microdomains built at the mouth of the activated
receptors. Besides the low-affinity inhibitory Ca2+-binding site responsible for the inhibition
by high [Ca2+] independent of [IP3], there is also a high-affinity site that inhibits the channel
in the absence of IP3 but with increasing ligand concentrations it gets converted to an activation
site [17]. This latter mechanism may be important in increasing the fidelity of ligand-activated
channel openings in groups of channels (see later).

Multiple lines of evidence have been presented that the local Ca2+ control of the IP3R/RyR
can be modulated by the Ca2+ uptake and metabolic activity of the mitochondria located in the
immediate vicinity of the release channels at the close contacts of ER/SR and mitochondria.
By this mechanism, mitochondria can contribute to the shaping of the global [Ca2+]c signal.
In permeabilized hepatocytes, IP3-induced [Ca2+]ER decreases were larger in low
mitochondrial density regions of the cells as well as after pharmacological inhibition of the
mitochondrial Ca2+ uptake [38], while enhancement of the mitochondrial Ca2+ accumulation
after blocking the permeability transition pore suppressed the release activity [39]. On the other
hand, [Ca2+]c spikes generated by microinjection of a non-hydrolizable IP3 analogue into
Xenopus oocytes (IP3R1) became enhanced and more synchronized after boosting
mitochondrial Ca2+ uptake by the energizing substrate succinate [40]. Similarly,
pharmacological stimulation of the mitochondrial Ca2+ uptake sites enhanced the histamine-
induced [Ca2+]c signals in HeLa and human fibroblast cells [41]. Besides the local Ca2+

clearance, mitochondria may also participate in the development of regenerative/oscillatory
Ca2+ release patterns by returning Ca2+ in the inter-spike period via the mitochondrial Ca2+

extrusion pathways (Na+/Ca2+ and H+/Ca2+ exchangers) to ‘prime’ the next release event
[42]. However, in H295R cells uncoupling of the mitochondria enhanced the oscillatory pattern
of the [Ca2+]c signal and eliminated the amplitude difference between the [Ca2+]c rise recorded
in the perinuclear and in the subplasmalemmal regions [43]. The wide range of the
mitochondrial feedback effects on the IP3R-mediated [Ca2+]c signal reflects the contribution
of several factors, including the spatial relationship between ER and mitochondria and the
amount of Ca2+ available for mobilization.
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The [Ca2+]c signal generated by the activation of IP3R/RyR ranges from greatly confined
elementary release events produced by a single or a few channels through propagating
repetitive waves of release to concerted simultaneous activation of the entire release channel
population throughout the ER. The IP3R/RyR channels are not distributed homogenously on
the ER/SR surface but they form clusters where the inter-channel signalling is enhanced. These
clustered channels may work as autonomous elementary release modules that can be activated
independently of the rest of the channel population giving rise to isolated and spatially confined
[Ca2+]c transients called ‘puffs’ (IP3R) or ‘sparks’ (RyR) [reviewed in [37]]. Depending on
the channel density, the functional IP3R release units may have different IP3 sensitivities
[44;45]. The release units formed by RyR in skeletal/cardiac muscle tissue show a regular
pattern and subcellular distribution [46]. Dynamic reorganization of the IP3R clusterization is
induced in certain cell systems by sustained increases in [Ca2+]c [47] or by prolonged openings
of the IP3R channels [48].

In muscle cell lines and myotubes, mitochondria can pick up Ca2+ mobilized from a single
RyR release unit ([Ca2+]c sparks) leading to the generation of single mitochondrial miniature
[Ca2+]m signals (Ca2+ marks, [49]) and to feedback control on the Ca2+ release [49;50]. The
effect of [Ca2+]c puffs on [Ca2+]m has not been directly measured. However, in Xenopus
oocytes [Ca2+]c puffs were frequently colocalized with mitochondria but showed reduced
frequency and intensities and never served as wave initiation sites, further indicating that
mitochondria are involved in the control of local [Ca2+]c signalling events [51]. Furthermore,
recent modeling studies estimated that only 25–35 out of 40–70 IP3Rs would contribute
actively to the elementary release event Ca2+ puffs in Xenopus oocyte [45], which is likely
due to local Ca2+-inhibition of clusterized IP3R-mediated release activity [52]. However, in
response to optimal IP3 every channel synchronously opens in the cluster. The need for
synchronized opening of the neighboring IP3Rs for activation of the mitochondrial Ca2+ uptake
may be a reason why suboptimal IP3-induced Ca2+ release is not very efficient in raising
[Ca2+]m [53].

Several factors originating from the mitochondria e.g. ATP, cytochrome c and reactive oxygen
species (ROS) are important for the control of IP3R/RyR activity. The mitochondrial output
of these factors is commonly induced by a [Ca2+]m signal. ATP (free of Mg2+) has been reported
to potentiate Ca2+-activation of IP3R1&3 and may be present at particularly high
concentrations in the close appositions of mitochondria and ER, establishing progressive
sensitization of IP3R during oscillatory release activity [54–57]. Cytochrome c (cyto c) is
normally confined to the mitochondrial intermembrane space and cristae, however pro-
apoptotic conditions may cause permeabilization of the OMM and let cyto c escape to the
cytosol. Boehning et al. found that cyto c specifically interacted in vitro and in vivo with
IP3R, enhanced its activity by relieving its Ca2+-inhibition and was necessary for apoptosis in
some paradigms based on the effects of a peptide specifically interfering with the cyto c binding
to the IP3R [58;59]. ROS are produced by the mitochondria under physiological, and in larger
amounts under pathophysiological conditions. Both superoxide anion and hydrogen peroxide
stimulate IP3R/RyR-mediated [Ca2+]c signalling [60–62].

ER-mitochondrial interface
Ca2+ uptake via the ruthenium-sensitive Ca2+ uniporter is driven by the 150–180 mV (inside
negative) mitochondrial membrane potential, its half-maximal transport rate, as measured in
mitochondrial suspensions, is attained in the range of 10−6–10−4 M Ca2+ [63]. In an
electrophysiological study on mitoplasts (mitochondria without the OMM) [64] the ruthenium
red-sensitive Ca2+ transport was found to occur through highly selective ion channels. The
inward rectifying Ca2+ current had half-saturation of the Ca2+ carrying capacity at 19 mM
[Ca2+]c, orders of magnitude higher than that of Ca2+ uptake in mitochondrial suspension.
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(This difference may be attributed to the rapid dissipation of the membrane potential during
Ca2+ entry, causing flux saturation at much lower [Ca2+]c in mitochondrial suspension, as
opposed to the voltage-clamped mitoplasts). In view of these transport characteristics it has
been assumed that [Ca2+]c far exceeding the micromolar range is required for net Ca2+ uptake,
however, such [Ca2+]c values have not been observed experimentally in over the whole (so-
called global) cytoplasm.

Protein binding significantly limits Ca2+ diffusion in the cytoplasm [65]. Therefore Ca2+,
entering a cytosolic domain confined by neighbouring membranes, can generate local Ca2+

transients with amplitudes far exceeding those measured over the global cytoplasm.
Mitochondria, forming a complex cytoplasmic tubulovesicular system [66;67], are frequently
apposed to the smooth as well as the rough ER (Fig1B). The apposition, often termed as contact
point, has been observed in several cell types by means of electron microscopy or tomography
(e.g. [68]). Microdomains are thus formed and Ca2+ released through IP3R into such a confined
space, may induce supramicromolar, or even submillimolar Ca2+ signal (Fig1A). The
possibility of such an event was indicated in 1993 by the experiments of Rizzuto and his
coworkers in Pozzan’s laboratory [69]. The mitochondrial response to a mean 600 nM elevation
of [Ca2+]c in histamine-stimulated HeLa cells could be reproduced by superfusing the cells
with a cytosolic medium containing at least 5 µM Ca2+ after cell permeabilization. Similar
results were obtained in cardiac (H9c2) cells where the RyR-mediated elevation of global
[Ca2+]c increases were in the submicromolar range but the rate of [Ca2+]m increases was as
large as that induced with 30 µM Ca2+ in permeabilized cardiomyocytes [70]. Also in cardiac
and skeletal muscle, EGTA/BAPTA antagonized the RyR-mediated increase in [Ca2+]c but
had substantially less impact on [Ca2+]m [70–72]. In permeabilized RBL-2H3 cells IP3-induced
Ca2+ elevation reached values more than 20-fold higher in the vicinity of mitochondria than
those measured for the global cytosol [53]. In hepatocytes the long lag between [Ca2+]c and
NAD(P)H increases induced by Ca2+ influx, as opposed to IP3 –induced Ca2+ release, was due
to a delayed uptake of Ca2+ into the mitochondrial matrix [73]. The dependence of
mitochondrial Ca2+ uptake on the distance between ER and mitochondria was examined in
H295R adrenocortical cells. Following stimulation with angiotensin II both mitochondrial
Ca2+ uptake rate and [Ca2+]m peak showed a close correlation with the vicinity of ER vesicles,
where the distance of ER from the mitochondria was assessed on basis of the fluorescence
intensity of a GFP-tagged protein targeted to the ER [74].

Measurement of the mitochondrial redox state in adrenal glomerulosa cells [75] and
hepatocytes [73] showed that despite comparable [Ca2+]c increases, voltage and store-operated
Ca2+ influx were much less effective than Ca2+ release from the IP3 –sensitive store in
activating Ca2+ -sensitive mitochondrial dehydrogenases and increasing mitochondrial NAD
(P)H levels. These observations also supported the notion that mitochondrial Ca2+ uptake
occurs preferentially from high-Ca2+ microdomains formed between the IP3R and the
mitochondrion.

Targeting aequorin to the outer surface of the IMM in HeLa cells made the measurement of
[Ca2+] in the mitochondrial intermembrane space possible. After stimulation with histamine
[Ca2+] rose in the intermembrane space to significantly higher values than in the global cytosol
[76]. This observation has given a strong support to the concept that net mitochondrial Ca2+

uptake occurs from high-Ca2+ perimitochondrial microdomains.

The issue was raised whether the vicinity between ER and mitochondria is a stochastic event
due to the dense packing of the organelles within the cell or specific interactions support their
apposition. In HeLa cells repeatedly exposed to histamine, the comparison of nuclear and
mitochondrial Ca2+ responses suggested the existence of specific interactions rather than
stochastic approach of the two particles [77]. The existence of physical support for the ER-

Spät et al. Page 5

Cell Calcium. Author manuscript; available in PMC 2009 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



mitochondrial interface has been indicated by co-sedimentation of ER particles with
mitochondria and electron microscopic observations of close associations between
mitochondria and ER vesicles [68;78;79]. At these sites the shortest ER-OMM distance varies
from 10nm to 100nM. Based on transmission electron micrographs of fixed H9c2, RBL-2H3
and DT40 cells, approx. 10% of the entire mitochondrial surface is at <100nm distance from
the ER (Csordás& Hajnóczky, unpublished). In cells exposed to ER stress (serum starvation,
tunicamycin) an increase in the ER-mitochondrial interface and enhanced ER-mitochondrial
calcium signalling have been observed. Also, coupling of the two organelles with a fusion
protein increased the ER-mitochondria interface area, reduced the ER-mitochondrial distance
to about 6 nm and greatly facilitated the transfer of cytosolic Ca2+ signal into the mitochondria
of RBL-2H3 cells [80].

Evidence has been presented for the contribution of three different components to the ER-
mitochondrial scaffold (Fig1A): (a) anchorage of both ER and mitochondria to cytoskeletal
structures; (b) tethers, forming direct links between ER membrane and OMM and (c)
multimolecular complexes involving both IP3Rs and voltage-dependent anion selective
channels (VDACs).

(a) Anchorage of both ER and mitochondria to cytoskeletal structures: Both ER and
mitochondria are anchored to microtubules and microfilaments [81;82]. Organization of ER
and mitochondria along the microtubules is apparent in cell processes (see Fig1B). Actin and
tubulin [83;84] as well as microtubule and microfilament associated proteins e.g. gelsolin, a
Ca2+-dependent actin regulatory protein and microtubule associated protein 2 (MAP2) [85;
86] have been shown to interact with OMM structures. In addition, the microtubular and
microfilamental motor proteins are primarily involved in dynamic positioning of ER and
mitochondrial domains.

(b) Tethers, forming direct links between ER membrane and OMM: Recently, electron
tomography analysis revealed the presence of tethers directly linking the ER to the OMM and
showing similar morphology in both isolated organelles and in intact cells and tissue [80;87].
The tethers appear as narrow linear densities ending on both smooth ER and rough ER, in the
latter case on or near ER-bound ribosomes. The inter-membrane distances spanned by the
tethers range from 6 to 15 nm for the smooth ER and 19–30 nm for the rough ER. Since the
ion channels protrude from the membrane surface [88], the vicinity of the tethers may also
allow close association and in turn, communication between ER and OMM Ca2+ channels.

Based on the sensitivity to proteases the tethers are made of proteins [80]. The knock-out of
all IP3R subtypes in DT40 cells still shows ER – mitochondrion tethers, indicating that IP3R-
independent linkage exists between ER and mitochondria [80]. Recently, many mitochondria-
or ER-associated proteins have been shown to be important for maintaining the spatial
relationship between ER and mitochondria and hence, have also been implicated as possible
ER-mitochondrial linking elements (DLP-1/DRP1-1[89;90], tumor autocrine motility factor
receptor (AMFR)[91], PACS-2 and BAP-31 [92]). A complication is that a change in the
position of mitochondria relative to the ER can be caused by ER-independent mechanisms e.g.
an impairment in the cytoskeletal transport of the mitochondria. Furthermore, sustained IP3R-
mitochondrial Ca2+ transfer has been observed even after experimentally induced
redistribution of mitochondria [93]. However, it cannot be excluded that under these conditions
the ER-mitochondrial associations may be sustained or reformed since the ER is present
throughout the cell. A Ca2+-regulated connection between ER and mitochondria seems to be
mediated by AMFR in MDCK cells [91;94].

(c) Role of multimolecular complexes involving both IP3Rs and VDAC: Studies of the IP3R-
interacting proteins did not reveal direct interaction between IP3R and the VDAC. However,
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both IP3R and VDAC1 serves as a scaffold for many cytoplasmic proteins and both of these
proteins may reside in a common multimolecular complex (Fig1A). Grp-75, a molecular
chaperone is candidate for bringing together and for regulating the Ca2+ transfer between
IP3R and VDAC1 [95]. The IP3R-VDAC complex is not likely to form the tethers described
above since the tethers were also demonstrated in cells lacking any IP3Rs [80]. The IP3R-
VDAC complex has multiple Ca2+ binding sites and is exposed to fluctuations in [Ca2+],
providing a hint that this form of linkage may be controlled by [Ca2+].

Early immuno-electronmicroscopy studies indicated the concentration of IP3Rs at the ER-
mitochondrial interface [96;97]. In RBL-2H3 cells, the ER-mitochondrial coupling displays a
“quasi-synaptic” organization that would involve enrichment of both IP3Rs and the
mitochondrial Ca2+ uptake sites at the interface [53]. While the IP3R has not been visualized
directly with transmission electron microscopy, the distribution of native RyRs has been
established in muscle. RyRs decorate predominantly the SR surface of the terminal cysternae
facing toward the T tubules, opposite to the mitochondria [66]. The shortest distance between
RyR and the OMM is ~37nm in cardiac muscle [71] and more variable and usually longer in
skeletal muscle, up to ~130 nm in mouse leg muscles [66]. Since microdomain formation
requires the vicinity of membranes and not all the mitochondria are in juxtaposition to ER or
the plasma membrane, only a fraction of the mitochondria is exposed to Ca2+ hotspots,
therefore the Ca2+ signal of single mitochondria within the same cell is heterogenous. The
fraction of mitochondria showing great responsiveness to [Ca2+]c elevation [98–101] may
reflect the ultrastructure of a given cell type.

Several recent results suggest that the ER-mitochondrial interface is dynamically controlled.
In tracheal smooth muscle cells acetylcholine or depolarization-induced Ca2+ signal is
followed by significant reduction of the proportion of mitochondria that was enveloped by
sarcoplasmic reticulum [102]. In contrast, in permeabilized MDCK cells, the addition of rat
liver cytosol stimulates the dissociation of smooth ER and mitochondria under conditions of
low [Ca2+] but [Ca2+] above 1 µM favors their close association [91]. Narrowing of the ER-
mitochondrial gap occurs in intact cells exposed to ER stress agents (serum starvation,
tunicamycin treatment) and may be an important step in the execution of apoptosis [80].
Stability of the ER-mitochondrial association is also supported by the inhibition of
mitochondrial movements in the presence of increased [Ca2+]c [81]. The ER-mitochondrial
interface may also be modified by ROS. ROS are well known to induce cytosolic and
mitochondrial Ca2+ signal, followed by the deterioration of mitochondrial function [103]. In
adrenal glomerulosa cells high-power UV light induces a high rate of superoxide formation
and evokes Ca2+ signalling whereas low-power light induces a low rate of O2

.- formation
without eliciting Ca2+ signalling. Nevertheless, the latter impairs the transfer of Ca2+ signal
from the cytosol into the mitochondrial matrix only in angiotensin-stimulated cells but not
when [Ca2+]c is elevated by voltage or store-operated Ca2+ influx [104], suggesting that the
local ER-mitochondrial Ca2+ coupling has been specifically affected by the UV-treatment.

Ca2+ permeation through OMM
Early studies of isolated mitochondria and purified VDAC reconstituted in artificial
membranes provided considerable support for the view that the OMM is freely permeable for
Ca2+ due to the presence of VDAC. However, a series of recent experiments conducted in
permeabilized or in intact cells indicate that the OMM permeability may limit the transport of
ions and small molecules between cytoplasm and mitochondria e.g. ADP, H+ [105–107] or
Ca2+ [108;109]. It is possible that the OMM transport barrier is less apparent in isolated
mitochondria because the preparation procedure led to some rearrangement or damage in the
OMM structure. Indeed an increase in the OMM permeability of isolated cardiac mitochondria
for 3nm nanoparticles has been documented [110]. Also, the studies of the purified VDAC

Spät et al. Page 7

Cell Calcium. Author manuscript; available in PMC 2009 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



were usually conducted at supraphysiological ionic strength and [Ca2+], which could have
affected the channel function. Evaluation of this possibility by incubation of purified VDAC
and isolated OMM incorporated to lipid bilayers or liposomes in physiological intracellular
medium showed small subconductances of the VDAC and low Ca2+ permeability [111]. Higher
subconductances and sustained opening of VDAC to maximal conductance occurred when
[Ca2+] was elevated, indicating that Ca2+ affects the gating of VDAC. Importantly, to attain
an increase in VDAC Ca2+ permeability it was sufficient to increase [Ca2+] from 20nM to 2µM
[111], indicating a possible physiological relevance of the Ca2+ dependence of the VDAC.
Most recently, Tan and Colombini have reported a lack of effect of Ca2+ on VDAC conductance
but again the measurement was done in the presence of 1M KCl and [Ca2+] was not tested in
the low [Ca2+] buffer (Figure 1 in [112]). A putative Ca2+ binding site of the VDAC has been
identified by Shoshan-Barmatz and coworkers [113;114] but the Ca2+ effect can also be
conferred to VDAC by an associated protein that is differently accessible in physiological and
higher ionic strengths. Since the Ca2+ effect was documented in ATP free conditions, Ca2+-
dependent protein phosphorylation does not seem to be involved.

Importantly, the limitation of Ca2+ transport by the OMM appeared only when the response
of mitochondria to short-lasting IP3R-mediated [Ca2+]c spikes was studied [108],[109].
Therefore, the Ca2+ permeability of the OMM seems to become a limiting factor when
subregions of the mitochondrial surface have to allow the rapid equilibration of the
intermembrane space [Ca2+] with the cytosol. VDAC expression and distribution in the OMM
is relevant for this process [109]. Furthermore, regulation of VDAC gating by Ca2+ may
provide a supplementary mechanism to enhance the permeation of ions and solutes across the
OMM during repetitive [Ca2+]c elevations [111].

Ca2+ permeation through the IMM
Ca2+ influx occurs through a channel termed the uniporter (UP) and the rate of influx depends
upon the driving force (Fig1A), the main component of which is the highly negative
transmembrane potentials across the IMM generated by the electron transport in normally
respiring mitochondria. Ca2+ efflux is mediated by separate pathways that are also coupled to
the proton motive force developed by the respiratory chain. The IMM has a Ca2+/2H+

exchanger and/or a Ca2+/3Na+ exchanger analogous to that found in the plasma membrane
(Fig1A). Ca2+ efflux along the concentration gradient may also occur through a mechanism
referred as the permeability transition pore (PTP). The molecular structure of each of these
IMM Ca2+ flux pathways remains to be solved. Therefore it is of significance that Graier and
coworkers have shown that overexpression and silencing of uncoupling proteins 2 and 3 (UCP2
and UCP3) effectively increased and suppressed mitochondrial Ca2+ uptake, respectively.
Furthermore, liver mitochondria isolated from UCP2−/− mice showed lack of the ruthenium
red sensitive mitochondrial Ca2+ sequestration [115]. These data would indicate that UCP2 is
either part of the UP or is an important controller of it. Since in UCP2 and UCP3 expression
in hepatocytes has been under the limit of detection, a minuscule amount of UCP would need
to be sufficient to support the robust mitochondrial Ca2+ uptake in these cells [116;117]. It is
also relevant that a change in UCP2 and UCP3 expression may affect mitochondrial
metabolism for example the production of ROS [118;119] that may also exert an effect on the
UP activity. Furthermore, recent studies of UCP2 knockout and overexpression paradigms
have also indicated that UCP2 is not required for mitochondrial Ca2+ uptake and ATP
production in pancreatic β cells [119;120].

Another candidate for the UP activity in heart mitochondria has been the RyR [121]. Follow-
up studies have indicated that the biochemical and pharmacological properties of the protein
isolated from the mitochondrial preparation is similar to RyR1 [122;123], whereas
electrophysiological studies indicate both common and distinctive properties of the SR and
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mitochondrial preparation derived channels [123]. The RyR1 knockout mice are expected to
provide a powerful model to establish the role of RyR1 in Ca2+ transport by cardiac
mitochondria.

Evidence has been accumulating that numerous signalling molecules and drugs affect the
calcium signal propagation to the mitochondria. In many cases, no distinction has been made
between targeting of the OMM and IMM components of the Ca2+ uptake and is unclear
whether the driving force of the Ca2+ uptake was affected. Pinton et al. showed that various
protein kinase C (PKC) isozymes exert differential control on the [Ca2+]c signal delivery to
the mitochondria [124]. Szanda et al. have presented both pharmacological and genetic
evidence that p38 MAPK serves as a negative modulator of the mitochondrial Ca2+ uptake
[125]. p38 MAPK seems to act in concert with PKC epsilon, in inhibition of the [Ca2+]m signal
[125]. Notably, p38 MAPK phosphorylates Bcl-2 family proteins that may confer an effect to
the UP [126]. Also, PKC epsilon may target the mitochondrial K(ATP) channels [124] inducing
a change in matrix volume which may alter the mitochondrial Ca2+ uptake. A p38 MAPK
inhibitor, SB202190 also caused augmented mitochondrial Ca2+ uptake in ATP-free conditions
[127;128], indicating that interfering with protein phosphorylation is not the sole mechanism
of the drug’s effect.

Allosteric regulation of the mitochondrial Ca2+ uptake by Ca2+ has been established first in
studies of isolated mitochondria [129]. In cell paradigms, both Ca2+-induced desensitization
[130–132] and Ca2+-induced potentiation of the mitochondrial Ca2+ uptake [133;134] have
been observed (for a recent review see [135]). A mechanism of the Ca2+ induced facilitation
seems to be mediated through calmodulin to the UP [131;134] but other Ca2+ sensing molecules
and multiple signalling pathways may also be involved. The regulatory pathways to the UP
allow tuning of mitochondrial Ca2+ uptake activity to the changing needs of the stimulated
cells.

Ca2+ buffers and effectors in the mitochondrial matrix
Calcium ions entering the mitochondrial matrix increase [Ca2+]m but over 99.9% of the total
matrix calcium content is in bound form. The calcium binding species includes cardiolipin and
other anionic phospholipids that bind Ca2+ with high affinity. Another important Ca2+ binding
species are the carboxy-anion-containing metabolites of the Krebs cycle (citrate, oxalo-acetate)
and inorganic phosphate, which can also form poorly soluble salts with Ca2+. There is no
evidence for the presence of a specialized Ca2+ buffering protein in the mitochondrial matrix.
Buffering of gradually accumulated Ca2+ is more efficient than that of a bolus of Ca2+ [136].
Ca2+ binding affinity of the anionic metabolites of the Krebs cycle is sensitive to matrix pH.
Furthermore, the IMM pH gradient also affects the distribution of the carboxylated anions and
phosphate between the mitochondria and cytosol. Thus, matrix Ca2+ buffering is dynamically
regulated by mitochondrial metabolism primarily, through the changes in matrix pH.

Despite the robust Ca2+ buffering capacity in the mitochondrial matrix, [Ca2+]c spikes yield
rapid elevations in [Ca2+]m from 100nM to at least micromolar and in some cases over hundred
micromolar [101]. Mitochondrial matrix Ca2+ effectors are several key enzymes that enhance
ATP production, providing an important mechanism for synchronizing energy production with
the energy demands of Ca2+-activated processes during cell stimulation (excitation–
metabolism coupling). Another effector is the PTP that is activated during massive
mitochondrial Ca2+ loading or by the combination of some forms of stress and Ca2+ loading
and leads to mitochondrial membrane permeabilization and ensuing cell death, either apoptotic
or necrotic.
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Dynamic changes in ER/mitochondrial morphology
The amount of ER and mitochondria, the distribution and connectedness of the organelles in
the cell may affect both the bulk cytoplasm-mediated and the local ER-mitochondrial Ca2+

signalling but only few data have become available. The ER and mitochondrial fraction of cell
volume shows large, cell type specific differences and undergoes changes during cell
development and differentiation. Overexpression of a the peroxisome-proliferator-activated-
receptor-c-coactivator -1α (PGC-1α) that triggers mitochondrial biogenesis resulted in
selective suppression of the [Ca2+]m signal by reducing the efficacy of mitochondrial Ca2+

uptake sites and increasing organelle volume [137]. The distribution of the ER and
mitochondria are controlled by cytoskeletal transport and anchorage [82]. In certain cell types,
subdomains of the ER and subsets of mitochondria have a stable position but the majority of
organelles display permanent movement. Ca2+-dependent control of the motility allows a
homeostatic distribution of the mitochondria to the sites of ATP and Ca2+ buffering demand
[81;138–140]. Importantly, Ca2+-induced attenuation of mitochondrial motility occurs in the
sub-micromolar range of [Ca2+]c (IC50 ≈ 400nM), indicating that mitochondrial motility is
controlled in the physiological range of [Ca2+]c [79]. Ca2+ uptake leads to the formation of
Ca2+ hot-spots in the mitochondrial matrix and Ca2+ diffusion is limited to short segments of
the mitochondrial network [141]. Szabadkai et al. have provided evidence that fragmentation
of the mitochondria leads to suppression of the spreading of Ca2+ in the matrix of the
mitochondrial network [142]. Ca2+ is a potent inducer of fragmentation of both ER [143];
[47] and mitochondria [144]. Ca2+ engages calcineurin to dephosphorylate and in turn, activate
the mitochondrial fission protein, Drp1 [145].

Transfer of submicromolar [Ca2+]c elevations into the mitochondrial matrix
There are reports on intact cells suggesting that Ca2+ is sequestered by mitochondria also when
the organelle is exposed to Ca2+ at submicromolar concentration. In these cases Ca2+ enters
the cytosol through the plasma membrane and it can be assumed that the formation of a high-
Ca2+ microdomain between the plasma membrane and subplasmalemmal mitochondria was
not responsible for the mitochondrial Ca2+ uptake. The limitation of these studies, similarly to
those reporting on high-Ca2+ microdomains, is that perimitochondrial [Ca2+] cannot be directly
measured but only assessed. In bullfrog sympathetic neurons increased mitochondrial calcium
uptake could be detected when depolarization with K+ raised [Ca2+]c above 300–500 nM
[146;147]. In a further study on the same cell type mitochondrial Ca2+ transport processes were
analyzed on basis of the kinetics of depolarization-induced Ca2+ signal and the application of
transport inhibitors. It was found that above 400 nM [Ca2+]c, net mitochondrial Ca2+ transport
is dominated by uptake but net Ca2+ uptake occurs even at 200–300 nM [148]. Considering,
however, that at least in one of these studies [147], the extent of Ca2+ accumulation depended
on proximity of mitochondria to the plasma membrane, the formation of subplasmalemmal
high-Ca2+ microdomains in these experiments may not be ruled out. In another excitable cell
type, the arterial smooth muscle cells, [Ca2+]c was raised by brief activations of voltage-
operated Ca2+ channels. Even when [Ca2+]c remained in the low submicromolar range,
mitochondrial depolarisation slowed the rate of Ca2+ removal from the cytosol, indicating that
polarized mitochondria can sequester Ca2+ also at low [Ca2+]c values [149]. In HeLa cells, a
[Ca2+]c signal was evoked by histamine (IP3–induced Ca2+ release), thapsigargin (Ca2+ leak
from the ER) or readdition of Ca2+ following store depletion. The efficiency of mitochondrial
Ca2+ uptake from high-Ca2+ perimitochondrial microdomains was clearly shown by the
observation that for equivalent [Ca2+]c increases, the rate of [Ca2+]m rise was greater with
IP3 –induced signal than any other source. However, irrespective of the source of Ca2+, already
in the range of 100 to 400 nM [Ca2+]c, Ca2+ uptake varied nearly linearly with [Ca2+]c. This
indicates the ability of mitochondria to take up Ca2+ in the low submicromolar range under
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some situations. It is worth mentioning that the theshold value for Ca2+ uptake by individual
mitochondria showed great variance [130].

There are observations also in endocrine cells indicating mitochondrial Ca2+ uptake in the low
submicromolar [Ca2+]c range. Aldosterone secretion by adrenal glomerulosa cells is rapidly
stimulated by angiotensin II. Mitochondrial Ca2+ response to angiotensin is generated through
the formation of high-Ca2+ perimitochondrial microdomain [150]. Physiological elevation of
extracellular [K+] induces long-lasting but small elevation of [Ca2+]c. Rat glomerulosa cells
respond to an elevation of [K+] as small as 0.5 mM with a slowly developing [Ca2+]c signal
that never attains 200 nM [151;151], yet this signal is followed by elevated [Ca2+]m,
mitochondrial NAD(P)H level and aldosterone production [152]. Store-operated Ca2+ influx
both in glomerulosa [75] and ovarian luteal cells [153] also results [Ca2+]c signals never
exceeding 200 nM and they are again associated with a mitochondrial NAD(P)H signal.
Considering that in these cases the [Ca2+]c signal is formed very slowly whereas its rapid
formation would be needed for the generation of a high Ca2+ microdomain, mitochondrial
Ca2+ uptake may not be attributed to the formation of such microdomains. In support of this
assumption it should be recalled that in the related adrenocortical cell line (H295R) stimulated
with K+, Ca2+ uptake by subplasmalemmal mitochondria did not differ from that by perinuclear
mitochondria [43]. These observations suggested that net mitochondrial Ca2+ uptake may take
place without the formation of high-Ca2+ microdomains. The effect of [Ca2+]c on [Ca2+]m was
examined in permeabilized cells, applying cytosol-like Ca2+ buffers. With such a protocol the
formation of microdomains could be avoided. When extramitochondrial [Ca2+] was raised
from 50 or 60 nM to less than 200 nM, reproducible increases in [Ca2+]m were measured in
glomerulosa [154]}[155], luteal [153] and insulin-producing INS-1cells [154]. The biological
significance of the measured small increases in [Ca2+]m was demonstrated by the detection of
concomitant increase in NAD(P)H [154]. Further stepwise increases, still in the submicromolar
range, of [Ca2+]c resulted in stepwise increases of steady-state [Ca2+]m. The [Ca2+]m elevations
were ruthenium red-sensitive, developed slowly and were maintained as long as raised
[Ca2+]c was present. These data provided evidence that net mitochondrial Ca2+ uptake and
Ca2+ sensitive dehydrogenase activation can be enhanced by low submicromolar increases in
[Ca2+]c. In harmony with these observations, in permeabilized pancreatic β cells methyl
succinate, a cell permeable substrate induced mitochondrial hyperpolarization and increased
[Ca2+]m, without the formation of high-Ca2+ perimitochondrial microdomain [156]. Notably,
a rapid mode of Ca2+ uptake has also been documented in isolated mitochondria exposed to
[Ca2+] pulses which peak at 200nM [157].

Differing from the primary glomerulosa and luteal cells (v.s.), the [Ca2+]c threshold for
mitochondrial Ca2+ uptake was ~500 nM and 1 µM in H295R adrenocortical and HeLa cells,
respectively [158]. This latter value is much higher than that observed by Collins et al. [159]
but is lower than observed by Montero et al. [127]. Net Ca2+ uptake in T lymphocytes begins
at ~400 nM [160], in ventricular myocytes at 200–500 nM [70;161] whereas supramicromolar
threshold values were reported for RBL-2H3 [53] and chromaffin cells [101]. Mitochondrial
Ca2+ uptake at the [Ca2+]c threshold is relatively slow, new steady-state of [Ca2+]m is attained
after several tens of seconds.

The mechanisms underlying the great variance in the [Ca2+]c threshold for mitochondrial
Ca2+ uptake and the unexpectedly low threshold in some cell types are unknown. Ca2+-induced
potentiation of the mitochondrial Ca2+ uptake may be involved when the kinetics of the
[Ca2+]m rise is slow [133;134]. It has been known for three decades that Mg2+ modifies
Ca2+ uptake of isolated mitochondria [162–165]. Yet, we are not aware of any publication
which would have considered cytosolic [Mg2+] as a factor influencing the [Ca2+]c threshold
for net mitochondrial Ca2+ uptake. We have examined this issue in permeabilized HEK293T
cells and found that in the physiological range of 0.25 – 2.5 mM Mg2+ this threshold inversely
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correlated with [Mg2+]. In addition, in the submicromolar range of [Ca2+]c mitochondrial
Ca2+ uptake rate was also reduced by increase in [Mg2+] (G. Szanda, A. Spät & J. Garcia-
Sancho, manuscript in preparation). In view of these data it may be presumed that cell-
dependent Mg2+ balance and unchecked Mg2+ concentrations in cytosol-like media may be a
cause of the apparent cell-to-cell variance in the mitochondrial responsiveness to
submicromolar cytosolic Ca2+.

Future directions
The evidence on local communication between ER/SR and mitochondria presents a major
challenge for microscopy. The spatial resolution required for tracking the interacting molecules
both in vitro and in vivo exceeds the resolution of light microscopy therefore creative
application of some current techniques (e.g. FRET) may be useful and establishing of novel
means is necessary. For the in vitro studies, high-voltage electron tomography offers a
promising approach. Also, labeling of the endogenous proteins needs novel technology. This
direction also needs the long sought information on the molecular identity of the mitochondrial
Ca2+ transport proteins. The varying affinity for Ca2+ of the mitochondrial Ca2+ uptake in
different paradigms highlights the need for deciphering the mechanisms that control the
Ca2+ sensitivity of the mitochondrial Ca2+ transporters in the OMM and IMM. An intriguing
question remains regarding the subcellular distribution of the signalling proteins that target the
IMM components. An impetus for these efforts is the growing support for the broad and
fundamental biological significance of the ER-mitochondrial interactions.
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Fig1. Local coupling between ER and mitochondria
(A) Scheme depicting the mechanisms of local Ca2+ transport and physical linkage between
an ER stack and an adjacent mitochondrion. Ca2+ stored in the ER lumen is released through
the IP3 receptors (IP3R) giving rise to a high [Ca2+] microdomain that exposes an adjacent
mitochondrion. Ca2+ traverses the outer mitochondrial membrane (OMM) through the voltage
dependent anion-selective channels (VDAC) and the inner mitochondrial membrane (IMM)
via the uniporter (UP). In the mitochondrial matrix Ca2+ binds to the Ca2+ sensitive
mitochondrial dehydrogenases (CSMDH) to stimulate energy metabolism. Ca2+ exits
mitochondria through the Na+/Ca2+ or H+/Ca2+ exchanger (EXC) and is taken back to the ER
by the Ca2+ pumps (SERCA). [Ca2+] is indicated by shades of red.
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Components of the physical coupling between ER and mitochondria: a, binding of both ER
and mitochondria to a microtubule (MT) or to other cytoskeletal fibers; b, protein tethering ER
membrane directly to the mitochondria and c, multimolecular complexes involving both the
IP3Rs and VDACs.
(B) Visualization of mitochondria and ER (upper), mitochondria and a microtubule (middle)
and the IP3-induced mitochondrial calcium signal (lower) in a projection of an RBL-2H3 cell.
Confocal imaging was performed in cells expressing either an ER-targeted enhanced green
fluorescent protein (ER-GFP) and a mitochondrial matrix targeted red fluorescent protein
(mito-RFP) (upper) or tubulin-targeted enhanced green fluorescent protein (tubulin-GFP) and
mito-RFP (middle). The length of the scalebar is 1µm. Fluorescence imaging was conducted
in mitochondrial matrix targeted ratiometric pericam expressing permeabilized cell
sequentially stimulated with IP3 (7.5µM) and Ca2+ (30µM). The graph shows the time course
of the pericam ratio calculated for a mitochondrion located in a projection.
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